A Highly Stable Electrochemical Sensor Based on a Metal–Organic Framework/Reduced Graphene Oxide Composite for Monitoring the Ammonium in Sweat
<p>The synthesis of Ni-MOF/rGO composite and deposition on working electrode (WE).</p> "> Figure 2
<p>Schematic fabrication process of the all-solid-state MOF/rGO-modified wearable sweat sensor.</p> "> Figure 3
<p>SEM micrographs of MOF/rGO composite structure at different MOF to rGO ratios (M:G).</p> "> Figure 4
<p>(<b>a</b>) SEM micrograph of the MOF/rGO composite (MOF/rGO ratio = 10:1); (<b>b</b>) zoomed-in SEM micrograph of the same MOF/rGO composite (All scale bars = 1 μm).</p> "> Figure 5
<p>X-ray diffraction (XRD) patterns of rGO, MOF, and MOF/rGO composite.</p> "> Figure 6
<p>Raman spectra of GO, rGO, MOF, and MOF/rGO composite.</p> "> Figure 7
<p>FTIR spectra of rGO, MOF, and rGO/MOF composite.</p> "> Figure 8
<p>Nyquist plots of (<b>a</b>) bare WE, MOF-modified WE, and MOF/rGO-modified WE in 0.1 M NH<sub>4</sub>Cl solution (AC amplitude: 100 mV; frequency range: 0.1 Hz to 1 MHz); (<b>b</b>) magnified view of the Nyquist plot for the MOF/rGO-modified WE (MOF/rGO ratio of 10:1); (<b>c</b>) Nyquist plots of MOF/rGO-modified electrodes with various M:G ratios.</p> "> Figure 9
<p>CV results at different scan rates for (<b>a</b>) MOF, (<b>b</b>) rGO, and (<b>c</b>) MOF/rGO-modified electrodes, and plots of anodic peak currents versus the square root of the scan rate for (<b>d</b>) MOF, (<b>e</b>) rGO, and (<b>f</b>) MOF/rGO.</p> "> Figure 10
<p>CV test results of the bare carbon electrode, MOF, rGO, and MOF/rGO-modified electrodes at a scan rate of 100 mV/s.</p> "> Figure 11
<p>(<b>a</b>) Potential response of the sweat sensor to varying NH<sub>4</sub><sup>+</sup> concentrations over time (NH<sub>4</sub>Cl from 10<sup>−8</sup> to 10<sup>−1</sup> M); (<b>b</b>) reversibility test of the potential response (NH<sub>4</sub>Cl from 10<sup>−5</sup> to 10<sup>−1</sup> M).</p> "> Figure 12
<p>Chronopotentiometry test results of sensors with configurations of CE+NH<sub>4</sub><sup>+</sup> ISM, CE+MOF+NH<sub>4</sub><sup>+</sup> ISM, CE+rGO+NH<sub>4</sub><sup>+</sup> ISM, and CE+MOF/rGO+NH<sub>4</sub><sup>+</sup> ISM under currents of (<b>a</b>) ±1 nA and (<b>b</b>) ±10 nA.</p> "> Figure 13
<p>Aqueous layer test results for sensors with bare carbon ISM and MOF/rGO ISM in 0.1 M NH<sub>4</sub>Cl and 0.1 M NaCl solutions.</p> "> Figure 14
<p>Contact angle test results of (<b>a</b>) screen-printed bare carbon WE, (<b>b</b>) rGO-CNT-modified WE, and (<b>c</b>) MOF/rGO-modified WE.</p> "> Figure 15
<p>(<b>a</b>) Long-term stability of MOF/rGO-based sensors in NH<sub>4</sub>Cl solutions with electrolyte concentrations ranging from 10<sup>−8</sup> to 10<sup>−1</sup> M; (<b>b</b>) sensitivity change over time for sensors with bare carbon electrodes and MOF/rGO-modified electrodes.</p> "> Figure 16
<p>(<b>a</b>) On-body testing of the MOF/rGO-based sweat sensor placed on the participant’s forehead during exercise; (<b>b</b>) close-up view of the wearable MOF/rGO-modified sweat sensor; (<b>c</b>) and (<b>d</b>) real-time measurement of ammonium levels in sweat, showing the onset of perspiration and the subsequent stabilization of potential.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Ni3HHTP2 MOF/rGO Composites
2.2. Fabrication of MOF/rGO-Modified Sweat Sensor
3. Results
3.1. Morphology of 3D MOF/rGO Composite
3.2. Characterization of 3D MOF/rGO Composite
3.3. Interface Properties of 3D MOF/rGO-Modified Electrodes
3.4. Ammonium Ion Detection
3.4.1. Sensitivity, LOD and Slectivity
3.4.2. Potential Stability
3.4.3. Water Layer Test
3.4.4. Long-Term Stability
3.5. On-Body Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiao, Y.; Qiao, L.; Chen, Z.; Liu, B.; Gao, L.; Zhang, L. Wearable Sensor for Continuous Sweat Biomarker Monitoring. Chemosensors 2022, 10, 273. [Google Scholar] [CrossRef]
- Gao, F.; Liu, C.; Zhang, L.; Liu, T.; Wang, Z.; Song, Z.; Cai, H.; Fang, Z.; Chen, J.; Wang, J.; et al. Wearable and Flexible Electrochemical Sensors for Sweat Analysis: A Review. Microsyst. Nanoeng. 2023, 9, 1. [Google Scholar] [CrossRef]
- Cinca-Morros, S.; Garcia-Rey, S.; Álvarez-Herms, J.; Basabe-Desmonts, L.; Benito-Lopez, F. A Physiological Perspective of the Relevance of Sweat Biomarkers and Their Detection by Wearable Microfluidic Technology: A Review. Anal. Chim. Acta 2024, 1327, 342988. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors 2022, 12, 543. [Google Scholar] [CrossRef]
- Saha, T.; Del Caño, R.; De la Paz, E.; Sandhu, S.S.; Wang, J. Access and Management of Sweat for Non-Invasive Biomarker Monitoring: A Comprehensive Review. Small 2023, 19, 2206064. [Google Scholar] [CrossRef]
- Wardak, C.; Morawska, K.; Pietrzak, K. New Materials Used for the Development of Anion-Selective Electrodes—A Review. Materials 2023, 16, 5779. [Google Scholar] [CrossRef]
- Yeung, K.K.; Huang, T.; Hua, Y.; Zhang, K.; Yuen, M.M.F.; Gao, Z. Recent Advances in Electrochemical Sensors for Wearable Sweat Monitoring: A Review. IEEE Sens. J. 2021, 21, 14522–14539. [Google Scholar] [CrossRef]
- Wardak, C.; Pietrzak, K.; Morawska, K.; Grabarczyk, M. Ion-Selective Electrodes with Solid Contact Based on Composite Materials: A Review. Sensors 2023, 23, 5839. [Google Scholar] [CrossRef]
- Polidori, G.; Tonello, S.; Serpelloni, M. Ion-Selective All-Solid-State Printed Sensors: A Systematic Review. IEEE Sens. J. 2024, 24, 7375–7394. [Google Scholar] [CrossRef]
- Mirabootalebi, S.O.; Liu, Y. Recent Advances in Nanomaterial-Based Solid-Contact Ion-Selective Electrodes. Analyst 2024, 149, 3694–3710. [Google Scholar] [CrossRef] [PubMed]
- Athavale, R.; Kokorite, I.; Dinkel, C.; Bakker, E.; Wehrli, B.; Crespo, G.A.; Brand, A. In Situ Ammonium Profiling Using Solid-Contact Ion-Selective Electrodes in Eutrophic Lakes. Anal. Chem. 2015, 87, 11990–11997. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, J.; Yin, T.; Jia, J.; Ding, Q.; Zheng, H.; Chen, C.-T.A.; Ye, Y. A Novel All-Solid-State Ammonium Electrode with Polyaniline and Copolymer of Aniline/2,5-Dimethoxyaniline as Transducers. J. Electroanal. Chem. 2015, 741, 87–92. [Google Scholar] [CrossRef]
- Ivanišević, I.; Milardović, S.; Ressler, A.; Kassal, P. Fabrication of an All-Solid-State Ammonium Paper Electrode Using a Graphite-Polyvinyl Butyral Transducer Layer. Chemosensors 2021, 9, 333. [Google Scholar] [CrossRef]
- Coutinho, C.F.; Muxel, A.A.; Rocha, C.G.; Jesus, D.A.d.; Alfaya, R.V.; Almeida, F.A.; Gushikem, Y.; Alfaya, A.A. Ammonium Ion Sensor Based on SiO2/ZrO2/Phosphate-NH4+ Composite for Quantification of Ammonium Ions in Natural Waters. J. Braz. Chem. Soc. 2007, 18, 189–194. [Google Scholar] [CrossRef]
- Hua, Y.; Guan, M.; Xia, L.; Chen, Y.; Mai, J.; Zhao, C.; Liao, C. Highly Stretchable and Robust Electrochemical Sensor Based on 3D Graphene Oxide–CNT Composite for Detecting Ammonium in Sweat. Biosensors 2023, 13, 409. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.; Chen, J.; Li, X.; Sun, J.; Zhu, J.; Wang, X.; Fu, Y. Recent Development and Applications of Electrical Conductive MOFs. Nanoscale 2021, 13, 485–509. [Google Scholar] [CrossRef]
- Mendecki, L.; Mirica, K.A. Conductive Metal–Organic Frameworks as Ion-to-Electron Transducers in Potentiometric Sensors. ACS Appl. Mater. Interfaces 2018, 10, 19248–19257. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Kwok, S.C.T.; Wang, X.; Lee, Y.K.; Yuen, M.M.F. Flexible Sweat Monitoring Based on All-Solid-State Metal-Organic Frameworks/Graphene Composite Sensors. In Proceedings of the 2019 IEEE SENSORS, Montreal, QC, Canada, 27–30 October 2019; pp. 1–4. [Google Scholar]
- Kim, M.-Y.; Lee, J.-W.; Park, D.J.; Lee, J.-Y.; Myung, N.V.; Kwon, S.H.; Lee, K.H. Highly Stable Potentiometric Sensor with Reduced Graphene Oxide Aerogel as a Solid Contact for Detection of Nitrate and Calcium Ions. J. Electroanal. Chem. 2021, 897, 115553. [Google Scholar] [CrossRef]
- Zaaba, N.I.; Foo, K.L.; Hashim, U.; Tan, S.J.; Liu, W.-W.; Voon, C.H. Synthesis of Graphene Oxide Using Modified Hummers Method: Solvent Influence. Procedia Eng. 2017, 184, 469–477. [Google Scholar] [CrossRef]
- Gao, J.; Geng, S.; Chen, Y.; Cheng, P.; Zhang, Z. Theoretical Exploration and Electronic Applications of Conductive Two-Dimensional Metal–Organic Frameworks. Top. Curr. Chem. 2020, 378, 25. [Google Scholar] [CrossRef]
- Chernikova, V.; Shekhah, O.; Eddaoudi, M. Advanced Fabrication Method for the Preparation of MOF Thin Films: Liquid-Phase Epitaxy Approach Meets Spin Coating Method. ACS Appl. Mater. Interfaces 2016, 8, 20459–20464. [Google Scholar] [CrossRef]
- Mazlan, N.A.; Butt, F.S.; Lewis, A.; Yang, Y.; Yang, S.; Huang, Y. The Growth of Metal–Organic Frameworks in the Presence of Graphene Oxide: A Mini Review. Membranes 2022, 12, 501. [Google Scholar] [CrossRef]
- He, S.; Li, Z.; Ma, L.; Wang, J.; Yang, S. Graphene Oxide-Templated Growth of Mofs with Enhanced Lithium-Storage Properties. New J. Chem. 2017, 41, 14209–14216. [Google Scholar] [CrossRef]
- Wen, P.; Gong, P.; Sun, J.; Wang, J.; Yang, S. Design and Synthesis of Ni-MOF/CNT Composites and RGO/Carbon Nitride Composites for an Asymmetric Supercapacitor with High Energy and Power Density. J. Mater. Chem. A 2015, 3, 13874–13883. [Google Scholar] [CrossRef]
- Li, T.; Zhang, W.-D.; Liu, Y.; Li, Y.; Cheng, C.; Zhu, H.; Yan, X.; Li, Z.; Gu, Z.-G. A Two-Dimensional Semiconducting Covalent Organic Framework with Nickel(Ii) Coordination for High Capacitive Performance. J. Mater. Chem. A 2019, 7, 19676–19681. [Google Scholar] [CrossRef]
- Mohan, V.B.; Nieuwoudt, M.; Jayaraman, K.; Bhattacharyya, D. Quantification and Analysis of Raman Spectra of Graphene Materials. Graphene Technol. 2017, 2, 47–62. [Google Scholar] [CrossRef]
- Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B.H. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Martín, A.; Hernández-Ferrer, J.; Martínez, M.T.; Escarpa, A. Graphene Nanoribbon-Based Electrochemical Sensors on Screen-Printed Platforms. Electrochim. Acta 2015, 172, 2–6. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, W.; Kandambeth, S.; Shekhah, O.; Eddaoudi, M.; Alshareef, H.N. Conductive Metal–Organic Frameworks Selectively Grown on Laser-Scribed Graphene for Electrochemical Microsupercapacitors. Adv. Energy Mater. 2019, 9, 1900482. [Google Scholar] [CrossRef]
- Umezawa, Y.; Umezawa, K.; Sato, H. Selectivity Coefficients for Ion-Selective Electrodes: Recommended Methods for Reporting Ka, Bpot Values (Technical Report). Pure Appl. Chem. 1995, 67, 507–518. [Google Scholar] [CrossRef]
- Ghauri, M.S.; Thomas, J.D.R. Poly(Vinyl Chloride) Type Ammonium Ion-Selective Electrodes Based on Nonactin: Solvent Mediator Effects. Anal. Proc. Incl. Anal. Commun. 1994, 31, 181–183. [Google Scholar] [CrossRef]
- Guinovart, T.; Bandodkar, A.J.; Windmiller, J.R.; Andrade, F.J.; Wang, J. A Potentiometric Tattoo Sensor for Monitoring Ammonium in Sweat. Analyst 2013, 138, 7031–7038. [Google Scholar] [CrossRef]
- Makrlík, E.; Toman, P.; Vaňura, P. Complexation of the Thallium Cation with Nonactin: An Experimental and Theoretical Study. Monatshefte Chem.—Chem. Mon. 2014, 145, 551–555. [Google Scholar] [CrossRef]
- Bobacka, J. Potential Stability of All-Solid-State Ion-Selective Electrodes Using Conducting Polymers as Ion-to-Electron Transducers. Anal. Chem. 1999, 71, 4932–4937. [Google Scholar] [CrossRef]
- Kim, J.; Wu, Y.; Luan, H.; Yang, D.S.; Cho, D.; Kwak, S.S.; Liu, S.; Ryu, H.; Ghaffari, R.; Rogers, J.A. A Skin-Interfaced, Miniaturized Microfluidic Analysis and Delivery System for Colorimetric Measurements of Nutrients in Sweat and Supply of Vitamins Through the Skin. Adv. Sci. 2022, 9, 2103331. [Google Scholar] [CrossRef]
- Choi, M.; Lee, G.; Lee, Y.-L.; Lee, H.; Yang, J.-H.; Jang, H.; Han, H.; Kang, M.; Yoo, S.; Jang, A.-R.; et al. Transferable, Highly Crystalline Covellite Membrane for Multifunctional Thermoelectric Systems. InfoMat 2024, 6, e12626. [Google Scholar] [CrossRef]
- Suzuki, K.; Siswanta, D.; Otsuka, T.; Amano, T.; Ikeda, T.; Hisamoto, H.; Yoshihara, R.; Ohba, S. Design and Synthesis of a More Highly Selective Ammonium Ionophore than Nonactin and Its Application as an Ion-Sensing Component for an Ion-Selective Electrode. Anal. Chem. 2000, 72, 2200–2205. [Google Scholar] [CrossRef]
- Manjakkal, L.; Szwagierczak, D.; Dahiya, R. Metal Oxides Based Electrochemical Ph Sensors: Current Progress and Future Perspectives. Prog. Mater. Sci. 2020, 109, 100635. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, Y.; Mai, J.; Su, R.; Ma, C.; Liu, J.; Zhao, C.; Zhang, Q.; Liao, C.; Wang, Y. A Highly Stable Electrochemical Sensor Based on a Metal–Organic Framework/Reduced Graphene Oxide Composite for Monitoring the Ammonium in Sweat. Biosensors 2024, 14, 617. https://doi.org/10.3390/bios14120617
Hua Y, Mai J, Su R, Ma C, Liu J, Zhao C, Zhang Q, Liao C, Wang Y. A Highly Stable Electrochemical Sensor Based on a Metal–Organic Framework/Reduced Graphene Oxide Composite for Monitoring the Ammonium in Sweat. Biosensors. 2024; 14(12):617. https://doi.org/10.3390/bios14120617
Chicago/Turabian StyleHua, Yunzhi, Junhao Mai, Rourou Su, Chengwei Ma, Jiayi Liu, Cong Zhao, Qian Zhang, Changrui Liao, and Yiping Wang. 2024. "A Highly Stable Electrochemical Sensor Based on a Metal–Organic Framework/Reduced Graphene Oxide Composite for Monitoring the Ammonium in Sweat" Biosensors 14, no. 12: 617. https://doi.org/10.3390/bios14120617
APA StyleHua, Y., Mai, J., Su, R., Ma, C., Liu, J., Zhao, C., Zhang, Q., Liao, C., & Wang, Y. (2024). A Highly Stable Electrochemical Sensor Based on a Metal–Organic Framework/Reduced Graphene Oxide Composite for Monitoring the Ammonium in Sweat. Biosensors, 14(12), 617. https://doi.org/10.3390/bios14120617