Synthesis of Iron Oxide/Gold Composite Nanoparticles Using Polyethyleneimine as a Polymeric Active Stabilizer for Development of a Dual Imaging Probe
"> Figure 1
<p>Schematic of the PEI-mediated NanoIOG synthesis.</p> "> Figure 2
<p>XRD patterns of the NanoIOGs for Au (<b>a</b>) and iron oxide (<b>b</b>) crystals. The diffraction patterns were almost identical for the NanoIOGs prepared with the PEI concentrations of 0.02, 0.05, and 0.08 wt. %.</p> "> Figure 3
<p>TEM images (<b>a</b>), high-angle annular dark-field (HAADF) scanning TEM images with the corresponding EDX elemental mappings for Fe, O, and Au (<b>b</b>), SEM images (<b>c</b>), and hydrodynamic sizes (<b>d</b>) of the NanoIOGs produced at different PEI concentrations.</p> "> Figure 4
<p>Magnetization curves for the NanoIOGs produced with different PEI concentrations; the inset shows an enlarged plot measured with magnetic field strengths between −2000 and +2000 Oe (<b>a</b>), <span class="html-italic">R</span><sub>2</sub> relaxation rate versus Fe concentration for the NanoIOGs prepared with 0.05 and 0.08 wt. % PEI; The slope from the linear regression yields the <span class="html-italic">r</span><sub>2</sub> relaxivity (<b>b</b>), and <span class="html-italic">T</span><sub>2</sub>-weighted MR images (echo time = 0.03 s) (<b>c</b>).</p> "> Figure 5
<p>Relative viability of human fibroblast cells cultured with the NanoIOGs prepared with 0.08 wt. % PEI; the error bars indicate ±SD (<span class="html-italic">n</span> = 4) (<b>a</b>), and bright field (left) and DF (right) microscope images of human fibroblast cells cultured with the NanoIOGs prepared with the same PEI concentration (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of NanoIOGs
2.2. Characterization of NanoIOGs
2.3. Magnetization and Relaxivity
2.4. In Vitro Cytotoxicity and DF Microscopy
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Lee, D.; Cohen, R.E.; Rubner, M.F. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 2005, 21, 9651–9659. [Google Scholar] [CrossRef] [PubMed]
- Ruparelia, J.P.; Chatterjee, A.K.; Duttagupta, S.P.; Mukherji, S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008, 4, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Srinivasan, M.P. Layer-by-layer assembled gold nanoparticle films on amine-terminated substrates. J. Colloid Interface Sci. 2008, 319, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Z.; Schwartzberg, A.M.; Norman, T., Jr.; Grant, C.D.; Liu, J.; Bridges, F.; Van Buuren, T. Comment on “gold nanoshells improve single nanoparticle molecular sensors”. Nano Lett. 2005, 5, 809–810. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.; Marecos, E.; Bogdanov, A.; Weissleder, R. Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 2000, 214, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Lewin, M.; Carlesso, N.; Tung, C.H.; Tang, X.W.; Cory, D.; Scadden, D.T.; Weisleder, R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 2000, 18, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Song, H.T.; Choi, J.S.; Huh, Y.M.; Kim, S.; Jun, Y.W.; Suh, J.S.; Choen, J. Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling. J. Am. Chem. Soc. 2005, 127, 9992–9993. [Google Scholar] [CrossRef] [PubMed]
- Hultman, K.L.; Raffo, A.J.; Grzenda, A.L.; Harris, P.E.; Brown, T.R.; O’Brien, S. Magnetic resonance imaging of major histocompatibility class II expression in the renal medulla using immunotargeted superparamagnetic iron oxide nanoparticles. ACS Nano 2008, 2, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Chen, K.; Lee, H.Y.; Xu, C.; Hsu, A.R.; Peng, S.; Chen, X.; Sun, S. Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin αvβ3-rich tumor cells. J. Am. Chem. Soc. 2008, 130, 7542–7543. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Park, S.; Lee, J.H.; Jeong, Y.Y.; Jon, S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc. 2007, 129, 7661–7665. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Li, K.; Cai, H.; Chen, Q.; Shen, M.; Huang, Y.; Peng, C.; Hou, W.; Zhu, M.; Zhang, G.; et al. Multifunctional dendrimer-entrapped gold nanoparticles for dual mode CT/MR imaging applications. Biomaterials 2013, 34, 1570–1580. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Novo, C.; Funston, A.; Wang, H.; Staleva, H.; Zou, S.; Mulvaney, P.; Xia, Y.; Hartland, G.V. Dark-field microscopy studies of single metal nanoparticles: Understanding the factors that influence the linewidth of the localized surface plasmon resonance. J. Mater. Chem. 2008, 18, 1949–1960. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Yong, K.T.; Roy, I.; Ding, H.; He, S.; Prasad, P.N. Metallic nanostructures as localized plasmon resonance enhanced scattering probes for multiplex dark field targeted imaging of cancer cells. J. Phys. Chem. C Nanomater. Interfaces 2009, 113, 2676–2684. [Google Scholar] [CrossRef] [PubMed]
- Talley, C.E.; Jackson, J.B.; Oubre, C.; Grady, N.K.; Hollars, C.W.; Lane, S.M.; Huser, T.R.; Nordlander, P.; Halas, N.J. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 2005, 5, 1569–1574. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Li, Y.; Niu, D.; Ma, Z.; Gu, J.; Chen, Y.; Zhao, W.; Liu, X.; Liu, C.; Shi, J. Facile synthesis of monodisperse superparamagnetic Fe3O4 core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy. Adv. Mater. 2011, 23, 5392–5397. [Google Scholar] [CrossRef] [PubMed]
- Yigit, M.V.; Zhu, L.; Ifediba, M.A.; Zhang, Y.; Carr, K.; Moore, A.; Medarova, Z. Noninvasive MRI-SERS imaging in living mice using an innately bimodal nanomaterial. ACS Nano 2011, 5, 1056–1066. [Google Scholar] [CrossRef] [PubMed]
- Smolensky, E.D.; Neary, M.C.; Zhou, Y.; Berquo, T.S.; Pierre, V.C. Fe3O4@organic@Au: Core-shell nanocomposites with high saturation magnetisation as magnetoplasmonic MRI contrast agents. Chem. Commun. 2011, 47, 2149–2151. [Google Scholar] [CrossRef] [PubMed]
- Melancon, M.P.; Lu, W.; Zhong, M.; Zhou, M.; Liang, G.; Elliott, A.M.; Hazle, J.D.; Myers, J.N.; Li, C.; Staffold, R.J. Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials 2011, 32, 7600–7608. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Li, K.; Shen, M.; Wen, S.; Luo, Y.; Peng, C.; Zhang, G.; Shi, X. Facile assembly of Fe3O4@Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications. J. Mater. Chem. 2012, 22, 15110–15120. [Google Scholar] [CrossRef]
- Weitz, E.A.; Lewandowski, C.; Smolensky, E.D.; Marjańska, M.; Pierre, V.C. A magnetoplasmonic imaging agent for copper(I) with dual response by MRI and dark field microscopy. ACS Nano 2013, 7, 5842–5849. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, H.; Chen, D.; Meng, X.; Liu, T.; Fu, C.; Hao, N.; Zhang, Y.; Wu, X.; Ren, J.; et al. Multifunctional Fe3O4@P(St/MAA)@chitosan@Au core/shell nanoparticles for dual imaging and photothermal therapy. ACS Appl. Mater. Interfaces 2013, 5, 4966–4971. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron Ooxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021. [Google Scholar] [CrossRef] [PubMed]
- Do, M.A.; Yoon, G.J.; Yeum, J.H.; Han, M.; Chang, Y.; Choi, J.H. Polyethyleneimine-mediated synthesis of superparamagnetic iron oxide nanoparticles with enhanced sensitivity in T2 magnetic resonance imaging. Colloid Surf. B-Biointerfaces 2014, 122, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Dong, S.; Wang, E. One-step preparation of highly concentrated well-stable gold colloids by direct mix of polyelectrolyte and HAuCl4 aqueous solutions at room temperature. J. Colloid Interface Sci. 2005, 288, 301–303. [Google Scholar] [CrossRef] [PubMed]
- Note, C.; Kosmella, S.; Koetz, J. Poly(ethyleneimine) as reducing and stabilizing agent for the formation of gold nanoparticles in w/o microemulsions. Colloid Surf. A-Physicochem. Eng. Asp. 2006, 290, 150–156. [Google Scholar] [CrossRef]
- Stephen, Z.R.; Kievit, F.M.; Zhang, M. Magnetite nanoparticles for medical MR imaging. Mater. Today 2011, 14, 330–338. [Google Scholar] [CrossRef]
- Lam, T.; Pouliot, P.; Avti, P.K.; Lesage, F.; Kakkar, A.K. Superparamagnetic iron oxide based nanoprobes for imaging and theranostics. Adv. Colloid Interface Sci. 2013, 199–200, 95–113. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Lopera, S.A.; Plaza, R.C.; Delgado, A.V. Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. J. Colloid Interface Sci. 2001, 240, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Iijima, T.; Seki, M.; Inagaki, N. Magnetic properties of ultrafine ferrite particles. J. Magn. Magn. Mater. 1987, 65, 252–256. [Google Scholar] [CrossRef]
- Lee, N.; Choi, Y.; Lee, Y.; Park, M.; Moon, W.K.; Choi, S.H.; Hyeon, T. Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r2 relaxivity for highly sensitive in vivo MRI of tumors. Nano Lett. 2012, 12, 3127–3131. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Gupta, M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 2005, 26, 1565–1573. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R.A.; Rivera, P.G.; Zhang, F.; Zanella, M.; Parak, W.J. Biological applications of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1896–1908. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; An, X.; Cui, J.; Li, J.; Wen, S.; Li, K.; Shen, M.; Zheng, L.; Zhang, G.; Shi, X. Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl. Mater. Interfaces 2013, 5, 1722–1731. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, G.J.; Lee, S.Y.; Lee, S.B.; Park, G.Y.; Choi, J.H. Synthesis of Iron Oxide/Gold Composite Nanoparticles Using Polyethyleneimine as a Polymeric Active Stabilizer for Development of a Dual Imaging Probe. Nanomaterials 2018, 8, 300. https://doi.org/10.3390/nano8050300
Yoon GJ, Lee SY, Lee SB, Park GY, Choi JH. Synthesis of Iron Oxide/Gold Composite Nanoparticles Using Polyethyleneimine as a Polymeric Active Stabilizer for Development of a Dual Imaging Probe. Nanomaterials. 2018; 8(5):300. https://doi.org/10.3390/nano8050300
Chicago/Turabian StyleYoon, Gyu Jin, So Young Lee, Seung Bin Lee, Ga Young Park, and Jin Hyun Choi. 2018. "Synthesis of Iron Oxide/Gold Composite Nanoparticles Using Polyethyleneimine as a Polymeric Active Stabilizer for Development of a Dual Imaging Probe" Nanomaterials 8, no. 5: 300. https://doi.org/10.3390/nano8050300
APA StyleYoon, G. J., Lee, S. Y., Lee, S. B., Park, G. Y., & Choi, J. H. (2018). Synthesis of Iron Oxide/Gold Composite Nanoparticles Using Polyethyleneimine as a Polymeric Active Stabilizer for Development of a Dual Imaging Probe. Nanomaterials, 8(5), 300. https://doi.org/10.3390/nano8050300