Eu, Gd-Codoped Yttria Nanoprobes for Optical and T1-Weighted Magnetic Resonance Imaging
<p>Transmission electron microscope (TEM) images of (<b>a</b>) bare Y<sub>2</sub>O<sub>3</sub>:Eu<sup>3+</sup>; (<b>b</b>) 3 mol % Gd<sup>3+</sup> codoped Y<sub>2</sub>O<sub>3</sub>:Eu<sup>3+</sup>; (<b>c</b>) 7 mol % Gd<sup>3+</sup> codoped Y<sub>2</sub>O<sub>3</sub>:Eu<sup>3+</sup>; and (<b>d</b>) 10 mol % Gd<sup>3+</sup> codoped Y<sub>2</sub>O<sub>3</sub>:Eu<sup>3+</sup>.</p> "> Figure 2
<p>Photoluminescence (PL) emission spectra of prepared samples.</p> "> Figure 3
<p>Longitudinal relaxivity rate R<sub>1</sub> vs. various concentrations of Gd-codoped nanoparticles measured at room-temperature. Inset is T<sub>1</sub>-weighted images of the 10 mol % Gd<sup>3+</sup> codoped nanoparticles at various concentrations (ppm).</p> "> Figure 4
<p>Relative cell viability of L-929 cells exposed to increasing concentrations (0–250 ppm) of the 10 mol % Gd<sup>3+</sup> codoped nanoparticles. An asterisk (*) denotes a significant difference compared with the control, <span class="html-italic">p</span> < 0.05.</p> "> Figure 5
<p>Fluorescence micrograps (200×) of L-929 cells treated with 10 ppm of 10 mol % Gd<sup>3+</sup> codoped nanoparticles, followed by cell nuclei counterstaining with 10 μmol/L of 4’6-diamidino-2-phenylindole (DAPI). (<b>a</b>) Phase contrast image of the cells co-labelled with nanoparticles and DAPI; (<b>b</b>,<b>c</b>) Fluorescence images of the cells collected from DAPI (blue) and nanoprobes (red) respectively; (<b>d</b>) Merged image of (<b>b</b>,<b>c</b>).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Nanoprobes Preparation
3.2. Characterization
3.3. Cell Culture and Cytotoxicity Assay
3.4. Fluorescence Microscopy
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shen, J.; Sun, L.D.; Zhang, Y.W.; Yan, C.H. Superparamagnetic and upconversion emitting Fe3O4/NaYF4:Yb,Er hetero-nanoparticles via a crosslinker anchoring strategy. Chem. Commun. 2010, 46, 5731–5733. [Google Scholar] [CrossRef] [PubMed]
- Atabaev, T.S.; Lee, J.H.; Han, D.W.; Kim, H.K.; Hwang, Y.H. Fabrication of carbon coated gadolinia particles for dual-mode magnetic resonance and fluorescence imaging. J. Adv. Ceram. 2015, 4, 118–122. [Google Scholar] [CrossRef]
- Atabaev, T.S.; Kim, H.K.; Hwang, Y.H. Fabrication of bifunctional core-shell Fe3O4 particles coated with ultrathin phosphor layer. Nanoscale Res. Lett. 2013, 8, 357. [Google Scholar] [CrossRef] [PubMed]
- Atabaev, T.S.; Urmanova, G.; Hong, N.H. Highly mesoporous silica nanoparticles for potential drug delivery applications. NanoLife 2014, 4, 1441003. [Google Scholar] [CrossRef]
- Faucher, L.; Gossuin, Y.; Hocq, A.; Fortin, M.A. Impact of agglomeration on the relaxometric properties of paramagnetic ultra-small gadolinium oxide nanoparticles. Nanotechnology 2011, 22, 295103. [Google Scholar] [CrossRef] [PubMed]
- Atabaev, T.S.; Lee, J.H.; Han, D.W.; Kim, H.K.; Hwang, Y.H. Ultrafine PEG-capped gadolinia nanoparticles: Cytotoxicity and potential biomedical applications for MRI and luminescent imaging. RSC Adv. 2014, 4, 34343–34349. [Google Scholar] [CrossRef]
- Chen, F.; Chen, M.; Yang, C.; Liu, J.; Luo, N.; Yang, G.; Chen, D.; Li, L. Terbium-doped gadolinium oxide nanoparticles prepared by laser ablation in liquid for use as a fluorescence and magnetic resonance imaging dual-modal contrast agent. Phys. Chem. Chem. Phys. 2015, 17, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Atabaev, T.S.; Lee, J.H.; Han, D.W.; Choo, K.S.; Jeon, U.B.; Hwang, J.Y.; Yeom, J.A.; Kang, C.; Kim, H.K.; Hwang, Y.H. Multicolor nanoprobes based on silica-coated gadolinium oxide nanoparticles with highly reduced toxicity. RSC Adv. 2016, 6, 19758–19762. [Google Scholar] [CrossRef]
- Atabaev, T.S.; Vu, H.H.T.; Kim, H.K.; Hwang, Y.H. The optical properties of Eu3+ and Tm3+ codoped Y2O3 submicron particles. J. Alloys Compd. 2012, 525, 8–13. [Google Scholar] [CrossRef]
- Atabaev, T.S.; Vu, H.H.T.; Kim, H.K.; Hwang, Y.H. Synthesis and optical properties of Dy3+-doped Y2O3 nanoparticles. J. Korean Phys. Soc. 2012, 60, 244–248. [Google Scholar] [CrossRef]
- Li, J.G.; Li, X.; Sun, X.; Ikegami, T.; Ishigaki, T. Uniform colloidal spheres for (Y1-xGdx)2O3 (x = 0–1): Formation mechanism, compositional impacts, and physicochemical properties of the oxides. Chem. Mater. 2008, 20, 2274–2281. [Google Scholar] [CrossRef]
- Ajmal, M.; Atabaev, T.S. Facile fabrication and luminescent properties enhancement of bimodal Y2O3:Eu3+ particles by simultaneous Gd3+ codoping. Opt. Mater. 2013, 35, 1288–1292. [Google Scholar] [CrossRef]
- Atabaev, T.S.; Jin, O.S.; Lee, J.H.; Han, D.W.; Vu, H.H.T.; Hwang, Y.H.; Kim, H.K. Facile synthesis of bifunctional silica-coated core-shell Y2O3:Eu3+,Co2+ composite particles for biomedical applications. RSC Adv. 2012, 2, 9495–9501. [Google Scholar] [CrossRef]
- Atabaev, T.S.; Lee, J.H.; Han, D.W.; Hwang, Y.H.; Kim, H.K. Cytotoxicity and cell imaging potentials of submicron color-tunable yttria particles. J. Biomed. Mater. Res. A 2012, 100, 2287–2294. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.X.; Hong, G.Y.; Sun, D.X. Synthesis and characterization of SiO2/Gd2O3:Eu core-shell luminescent materials. J. Colloid Interface Sci. 2004, 278, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Qiao, R.; Fang, F.; Wang, X.; Dong, C.; Liu, K.; Liu, C.; Liu, Z.; Lei, H.; Wang, F.; et al. NaGdF4 nanoparticle-based molecular probes for magnetic resonance imaging of intraperitoneal tumor xenografts in vivo. ACS Nano 2013, 7, 330–338. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atabaev, T.S.; Lee, J.H.; Shin, Y.C.; Han, D.-W.; Choo, K.S.; Jeon, U.B.; Hwang, J.Y.; Yeom, J.A.; Kim, H.-K.; Hwang, Y.-H. Eu, Gd-Codoped Yttria Nanoprobes for Optical and T1-Weighted Magnetic Resonance Imaging. Nanomaterials 2017, 7, 35. https://doi.org/10.3390/nano7020035
Atabaev TS, Lee JH, Shin YC, Han D-W, Choo KS, Jeon UB, Hwang JY, Yeom JA, Kim H-K, Hwang Y-H. Eu, Gd-Codoped Yttria Nanoprobes for Optical and T1-Weighted Magnetic Resonance Imaging. Nanomaterials. 2017; 7(2):35. https://doi.org/10.3390/nano7020035
Chicago/Turabian StyleAtabaev, Timur Sh, Jong Ho Lee, Yong Cheol Shin, Dong-Wook Han, Ki Seok Choo, Ung Bae Jeon, Jae Yeon Hwang, Jeong A. Yeom, Hyung-Kook Kim, and Yoon-Hwae Hwang. 2017. "Eu, Gd-Codoped Yttria Nanoprobes for Optical and T1-Weighted Magnetic Resonance Imaging" Nanomaterials 7, no. 2: 35. https://doi.org/10.3390/nano7020035
APA StyleAtabaev, T. S., Lee, J. H., Shin, Y. C., Han, D.-W., Choo, K. S., Jeon, U. B., Hwang, J. Y., Yeom, J. A., Kim, H.-K., & Hwang, Y.-H. (2017). Eu, Gd-Codoped Yttria Nanoprobes for Optical and T1-Weighted Magnetic Resonance Imaging. Nanomaterials, 7(2), 35. https://doi.org/10.3390/nano7020035