Spectrally Selective Detection of Short Spin Waves in Magnetoplasmonic Nanostructures via the Magneto-Optical Intensity Effect
<p>The scheme of the magnetization precession and the spatial dependence of the oscillating component of the magnetization <math display="inline"><semantics> <msub> <mi>m</mi> <mi>x</mi> </msub> </semantics></math>.</p> "> Figure 2
<p>The scheme of the addressed magnetoplasmonic nanostructure. Gold grating is fabricated above the ferrimagnetic layer magnetized by the external magnetic field <math display="inline"><semantics> <msub> <mi mathvariant="bold">H</mi> <mn mathvariant="bold">0</mn> </msub> </semantics></math> directed along the <span class="html-italic">y</span>-axis. The spin wave also propagating along the <span class="html-italic">y</span>-axis creates a modulation of the magnetization inside the magnetic layer shown by the green line. This leads to modulation of the gyration value <math display="inline"><semantics> <msub> <mi>g</mi> <mi>x</mi> </msub> </semantics></math> along the <span class="html-italic">y</span>-axis (green curve). The nanostructure is illuminated by linearly <span class="html-italic">p</span>-polarized light (shown by the red oblique arrow) with the plane wavefront. The electric vector <math display="inline"><semantics> <mi mathvariant="bold">E</mi> </semantics></math> of the input light lies in the plane <math display="inline"><semantics> <mrow> <mi>z</mi> <mi>O</mi> <mi>y</mi> </mrow> </semantics></math>. The spatial distribution of the intensity of the optical field inside the ferrimagnetic layer related to the excitation of the SPP wave is shown by a yellow-red-black color plot. One can see that the period of the magnetization modulation is equal to double the period of the SPP wave. Parameter <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>y</mi> </mrow> </semantics></math> is a spatial shift between the left edge of the nearest gold stripe (the start of the plasmonic grating period) and ‘zero’ of the gyration modulation. This parameter plays a role in the phase shift between the optical mode and the magnetization modulation. The parameters <math display="inline"><semantics> <msub> <mi>h</mi> <mrow> <mi>A</mi> <mi>u</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>h</mi> <mrow> <mi>B</mi> <mi>I</mi> <mi>G</mi> </mrow> </msub> </semantics></math> refer to the thickness of gold and ferrimagnetic layers, correspondingly.</p> "> Figure 3
<p>Angular and wavelength-resolved transmission (<b>a</b>–<b>c</b>) <math display="inline"><semantics> <msub> <mi>δ</mi> <mi>T</mi> </msub> </semantics></math> (<b>d</b>–<b>f</b>) spectra of the addressed nanostructure with the uniform spatial distribution of the magnetization in the ferrimagnetic layer (left column), magnetization modulation with <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mrow> <mi>S</mi> <mi>W</mi> </mrow> </msub> <mo>=</mo> <mi>P</mi> </mrow> </semantics></math> (center column), and <math display="inline"><semantics> <mrow> <mn>2</mn> <msub> <mi>λ</mi> <mrow> <mi>S</mi> <mi>W</mi> </mrow> </msub> <mo>=</mo> <mi>P</mi> </mrow> </semantics></math> (right column). The orders of the SPP modes in the left column are denoted by <span class="html-italic">m</span>. The phase shift between the plasmonic grating and the magnetization modulation is 0.</p> "> Figure 4
<p>The spatial distributions of the <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>H</mi> <mi>x</mi> </msub> <msup> <mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> of the SPP wave and the magnetization modulation (green line) for two different values of phase shift between the plasmonic grating and the magnetization modulation (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>1.9</mn> </mrow> </semantics></math> rad (<math display="inline"><semantics> <mrow> <msub> <mi>δ</mi> <mi>T</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>) and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>2.7</mn> </mrow> </semantics></math> rad (<math display="inline"><semantics> <mrow> <msub> <mi>δ</mi> <mi>T</mi> </msub> <mo>=</mo> <mn>0.15</mn> </mrow> </semantics></math>). The magnon wavelength is half of the plasmonic grating period. White dashed lines denote the cross sections of the gold stripes of the plasmonic grating.</p> "> Figure 5
<p>The magneto-optical effect <math display="inline"><semantics> <msub> <mi>δ</mi> <mi>T</mi> </msub> </semantics></math> versus the phase shift <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> between the plasmonic grating and the spin wave for two periods of the magnetization modulation. (<b>a</b>) The magnetization modulation period is equal to the period of the plasmonic grating. (<b>b</b>) The magnetization modulation period is equal to the half of the period of the plasmonic grating. (<b>c</b>) The spectral dependence of the maximum value of <math display="inline"><semantics> <msub> <mi>δ</mi> <mi>T</mi> </msub> </semantics></math> for two different periods of magnetization modulation.</p> "> Figure 6
<p>Angular and wavelength-resolved transmission (<b>a</b>,<b>b</b>) and <math display="inline"><semantics> <msub> <mi>δ</mi> <mi>T</mi> </msub> </semantics></math> (<b>c</b>,<b>d</b>) spectra of the nanostructure near the waveguide modes excitation area with (right column) and without (left column) the spatial modulation of the magnetization in the ferrimagnetic layer. The phase shift between the plasmonic grating and the magnetization modulation is 0.</p> ">
Abstract
:1. Introduction
2. Magnetization Modulation Due to the Spin Waves Excitation
3. The Magnetoplasmonic Nanostructure with the Magnetization Modulation
4. The Intensity MO Effect in the Magnetoplasmonic Nanostructure with the Magnetization Modulation
- The coincidence of the period of the plasmonic nanostructure and the magnetization modulation. When the periods are different, destructive interference occurs, causing the overall MO response to be distorted. Thus, we limit our consideration by , where , the period of the plasmonic nanostructure is equal to integer number, n, of magnon wavelength.
- From Equation (3) one can see that the MO effect depends on the phase shift or, equally, on . By varying the spatial shift between the plasmonic grating and magnetization modulation, the MO effect can be controlled and even turned to zero, when or . As mentioned above, the plasmonic grating period should be equal to an integer number of magnon wavelength, i.e., . It can be easily shown that the phase takes the values 0 and for 2n times in the interval .
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SPP | surface plasmon polaritons |
MO | magneto-optical |
References
- Barman, A.; Gubbiotti, G.; Ladak, S.; Adeyeye, A.O.; Krawczyk, M.; Gräfe, J.; Adelmann, C.; Cotofana, S.; Naeemi, A.; Vasyuchka, V.I.; et al. The 2021 Magnonics Roadmap. J. Phys. Condens. Matter 2021, 33, 413001. [Google Scholar] [CrossRef] [PubMed]
- Satoh, T.; Terui, Y.; Moriya, R.; Ivanov, B.A.; Ando, K.; Saitoh, E.; Shimura, T.; Kuroda, K. Directional control of spin-wave emission by spatially shaped light. Nat. Photonics 2012, 6, 662–666. [Google Scholar] [CrossRef]
- Kalashnikova, A.; Kimel, A.; Pisarev, R.; Gridnev, V.; Kirilyuk, A.; Rasing, T. Impulsive generation of coherent magnons by linearly polarized light in the easy-plane antiferromagnet FeBo3. Phys. Rev. Lett. 2007, 99, 167205. [Google Scholar] [CrossRef] [Green Version]
- Nikitov, S.; Kalyabin, D.; Lisenkov, I.; Slavin, A.; Barabanenkov, Y.; Osokin, S.; Sadovnikov, A.; Beginin, E.; Morozova, M.; Sharaevsky, Y.; et al. Magnonics: A new research area in spintronics and spin wave electronics. Phys. Usp. 2015, 58, 1002–1028. [Google Scholar] [CrossRef]
- Kimel, A.V.; Kirilyuk, A.; Usachev, P.A.; Pisarev, R.V.; Balbashov, A.M.; Rasing, T. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 2005, 435, 655–657. [Google Scholar] [CrossRef] [PubMed]
- Kampen, M.V.; Jozsa, C.; Kohlhepp, J.; LeClair, P.; Lagae, L.; de Jonge, W.J.M.; Koopmans, B. All-optical probe of coherent spin waves. Phys. Rev. Lett. 2002, 88, 227201. [Google Scholar] [CrossRef] [Green Version]
- Kirilyuk, A.; Kimel, A.; Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 2010, 82, 2731. [Google Scholar] [CrossRef]
- Hansteen, F.; Kimel, A.; Kirilyuk, A.; Rasing, T. Femtosecond photomagnetic switching of spins in ferrimagnetic garnet films. Phys. Rev. Lett. 2005, 95, 047402. [Google Scholar] [CrossRef] [Green Version]
- Hansteen, F.; Kimel, A.; Kirilyuk, A.; Rasing, T. Nonthermal ultrafast optical control of the magnetization in garnet films. Phys. Rev. B 2006, 73, 014421. [Google Scholar] [CrossRef] [Green Version]
- Demokritov, S.; Hillebrands, B.; Slavin, A. Brillouin light scattering studies of confined spin waves: Linear and nonlinear confinement. Phys. Rep. 2001, 348, 441–489. [Google Scholar] [CrossRef]
- Buchmeier, M.; Dassow, H.; Bürgler, D.E.; Schneider, C.M. Intensity of Brillouin light scattering from spin waves in magnetic multilayers with noncollinear spin configurations: Theory and experiment. Phys. Rev. B 2007, 75, 184436. [Google Scholar] [CrossRef] [Green Version]
- Atoneche, F.; Kalashnikova, A.; Kimel, A.; Stupakiewicz, A.; Maziewski, A.; Kirilyuk, A.; Rasing, T. Large ultrafast photoinduced magnetic anisotropy in a cobalt-substituted yttrium iron garnet. Phys. Rev. B 2010, 81, 214440. [Google Scholar] [CrossRef] [Green Version]
- Savochkin, I.; Jäckl, M.; Belotelov, V.; Akimov, I.; Kozhaev, M.; Sylgacheva, D.; Chernov, A.; Shaposhnikov, A.; Prokopov, A.; Berzhansky, V.; et al. Generation of spin waves by a train of fs-laser pulses: A novel approach for tuning magnon wavelength. Sci. Rep. 2017, 7, 5668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimine, I.; Tanaka, Y.; Shimura, T.; Satoh, T. Unidirectional control of optically induced spin waves. Eur. Lett. 2017, 117, 67001. [Google Scholar] [CrossRef] [Green Version]
- Chernov, A.; Kozhaev, M.; Khramova, A.; Shaposhnikov, A.; Prokopov, A.; Berzhansky, V.; Zvezdin, A.; Belotelov, V. Control of phase of the magnetization precession excited by circularly polarized fs-laser pulses. Photonics Res. 2018, 6, 1079–1083. [Google Scholar] [CrossRef] [Green Version]
- Wurtz, G.; Hendren, W.; Pollard, R.; Atkinson, R.; Guyader, L.; Kirilyuk, A.; Rasing, T.; Smolyaninov, I.; Zayats, A. Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field. Adv. Opt. Mater. 2008, 10, 105012. [Google Scholar] [CrossRef] [Green Version]
- Belotelov, V.; Akimov, I.; Pohl, M.; Kotov, V.; Kasture, S.; Vengurlekar, A.; Gopal, A.V.; Yakovlev, D.; Zvezdin, A.; Bayer, M. Enhanced magneto-optical effects in magnetoplasmonic crystals. Nat. Nanotechnol. 2011, 6, 370–376. [Google Scholar] [CrossRef]
- Baryshev, A.; Uchida, H.; Inoue, M. Peculiarities of plasmon-modified magneto-optical response of gold-garnet structures. J. Opt. Soc. Am. B 2013, 30, 2371–2376. [Google Scholar] [CrossRef]
- Armelles, G.; Cebollada, A.; García-Martín, A.; González, M. Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities. Adv. Opt. Mater. 2013, 1, 10–35. [Google Scholar] [CrossRef] [Green Version]
- Borovkova, O.; Spitzer, F.; Belotelov, V.; Akimov, I.; Poddubny, A.; Karczewski, G.; Wiater, M.; Wojtowicz, T.; Zvezdin, A.; Yakovlev, D.; et al. Transverse Magneto-Optical Kerr Effect at Narrow Optical Resonances. Nanophotonics 2019, 8, 287–296. [Google Scholar] [CrossRef]
- Kreilkamp, L.; Belotelov, V.; Chin, J.; Neutzner, S.; Dregely, D.; Wehlus, T.; Akimov, I.; Bayer, M.; Stritzker, B.; Giessen, H. Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect. Phys. Rev. X 2013, 3, 041019. [Google Scholar] [CrossRef] [Green Version]
- Chekhov, A.; Krutyanskiy, V.; Shaimanov, A.; Stognij, A.; Murzina, T. Wide tunability of magnetoplasmonic crystals due to excitation of multiple waveguide and plasmon modes. Opt. Express 2014, 22, 17762–17768. [Google Scholar] [CrossRef] [PubMed]
- Borovkova, O.; Hashim, H.; Ignatyeva, D.; Kozhaev, M.; Kalish, A.; Dagesyan, S.; Shaposhnikov, A.; Berzhansky, V.; Achanta, V.; Panina, L.; et al. Magnetoplasmonic structures with broken spatial symmetry. Phys. Rev. B 2020, 102, 081405(R). [Google Scholar] [CrossRef]
- Hubert, A.; Schäffer, R. Magnetic Domains: The Analysis of Magnetic Microstructures; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Barturen, M.; Salles, B.R.; Schio, P.; Milano, J.; Butera, A.; Bustingorry, S.; Ramos, C.; de Oliveira, A.; Eddrief, M.; Lacaze, E.; et al. Crossover to striped magnetic domains in Fe1-xGax magnetostrictive thin films. Appl. Phys. Lett. 2012, 101, 092404. [Google Scholar] [CrossRef]
- Dho, J.; Kim, Y.; Hwang, Y.; Kim, J.; Hur, N. Strain-induced magnetic stripe domains in La0.7Sr0.3MnO3 thin films. Appl. Phys. Lett. 2003, 82, 1434. [Google Scholar] [CrossRef]
- Dai, G.; Xing, X.; Shen, Y.; Deng, X. Stress tunable magnetic stripe domains in flexible Fe81Ga19 films. J. Phys. D Appl. Phys. 2019, 53, 055001. [Google Scholar] [CrossRef]
- Gurevich, A.; Melkov, G. Magnetization Oscillations and Waves; Fizmatlit: Moscow, Russia, 1994. [Google Scholar]
- Stancil, D.; Prabhakar, A. Spin Waves Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Serga, A.A.; Chumak, A.V.; Hillebrands, B. YIG magnonics. J. Phys. D Appl. Phys. 2010, 43, 264002. [Google Scholar] [CrossRef]
- Chernov, A.I.; Kozhaev, M.A.; Savochkin, I.V.; Dodonov, D.V.; Vetoshko, P.M.; Zvezdin, A.K.; Belotelov, V.I. Optical excitation of spin waves in epitaxial iron garnet films: MSSW vs BVMSW. Opt. Lett. 2017, 42, 279–282. [Google Scholar] [CrossRef]
- Geller, S.; Gilleo, M. Bismuth-Containing Garnets and Their Preparation. U.S. Patent 3,281,363, 25 October 1963. [Google Scholar]
- Borovkova, O.V.; Hashim, H.; Kozhaev, M.A.; Dagesyan, S.A.; Chakravarty, A.; Levy, M.; Belotelov, V.I. TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films. Appl. Phys. Lett. 2018, 112, 063101. [Google Scholar] [CrossRef] [Green Version]
- Levy, M.; Borovkova, O.; Sheidler, C.; Blasiola, B.; Karki, D.; Jomard, F.; Kozhaev, M.A.; Popova, E.; Keller, N.; Belotelov, V.I. Faraday rotation in iron garnet films beyond elemental substitutions. Optica 2019, 6, 642–646. [Google Scholar] [CrossRef] [Green Version]
- Gruszecki, P.; Kasprzak, M.; Serebryannikov, A.; Krawczyk, M.; Śmigaj, W. Microwave excitation of spin wave beams in thin ferromagnetic films. Sci. Rep. 2016, 6, 22367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collet, M.; Gladii, O.; Evelt, M.; Bessonov, V.; Soumah, L.; Bortolotti, P.; Demokritov, S.; Henry, Y.; Cros, V.; Bailleul, M.; et al. Spin-wave propagation in ultra-thin YIG based waveguides. Appl. Phys. Lett. 2017, 110, 092408. [Google Scholar] [CrossRef] [Green Version]
- Zvezdin, A.; Kotov, V. Modern Magnetooptics and Magnetooptical Materials; IOP: Bristol, UK, 1997. [Google Scholar]
- Belotelov, V.; Bykov, D.; Doskolovich, L.; Kalish, A.; Zvezdin, A. Extraordinary transmission and giant magnetooptical transverse Kerr effect in plasmonic nanostructured films. J. Opt. Soc. Am. B 2009, 26, 1594–1598. [Google Scholar] [CrossRef]
- Moharam, M.; Grann, E.; Pommet, D.; Gaylord, T. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. 1995, 12, 1068. [Google Scholar] [CrossRef]
- Li, L. Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors. J. Opt. A 2003, 5, 345. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borovkova, O.V.; Lutsenko, S.V.; Kozhaev, M.A.; Kalish, A.N.; Belotelov, V.I. Spectrally Selective Detection of Short Spin Waves in Magnetoplasmonic Nanostructures via the Magneto-Optical Intensity Effect. Nanomaterials 2022, 12, 405. https://doi.org/10.3390/nano12030405
Borovkova OV, Lutsenko SV, Kozhaev MA, Kalish AN, Belotelov VI. Spectrally Selective Detection of Short Spin Waves in Magnetoplasmonic Nanostructures via the Magneto-Optical Intensity Effect. Nanomaterials. 2022; 12(3):405. https://doi.org/10.3390/nano12030405
Chicago/Turabian StyleBorovkova, Olga V., Saveliy V. Lutsenko, Mikhail A. Kozhaev, Andrey N. Kalish, and Vladimir I. Belotelov. 2022. "Spectrally Selective Detection of Short Spin Waves in Magnetoplasmonic Nanostructures via the Magneto-Optical Intensity Effect" Nanomaterials 12, no. 3: 405. https://doi.org/10.3390/nano12030405
APA StyleBorovkova, O. V., Lutsenko, S. V., Kozhaev, M. A., Kalish, A. N., & Belotelov, V. I. (2022). Spectrally Selective Detection of Short Spin Waves in Magnetoplasmonic Nanostructures via the Magneto-Optical Intensity Effect. Nanomaterials, 12(3), 405. https://doi.org/10.3390/nano12030405