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Abstract: Accurate flow stress prediction is vital for optimizing the manufacturing of
lightweight materials under high-temperature conditions. In this study, a boron nitride
(BN)-reinforced AZ80 magnesium composite was subjected to hot compression tests at tem-
peratures of 300–400 ◦C and strain rates ranging from 0.01 to 10 s−1. A data-driven Support
Vector Regression (SVR) model was developed to predict flow stress based on temperature,
strain rate, and strain. Trained on experimental data, the SVR model demonstrated high
predictive accuracy, as evidenced by a low mean squared error (MSE), a coefficient of
determination (R2) close to unity, and a minimal average absolute relative error (AARE).
Sensitivity analysis revealed that strain rate and temperature exerted the greatest influ-
ence on flow stress. By integrating machine learning with experimental observations, this
framework enables efficient optimization of thermal deformation, supporting data-driven
decision-making in forming processes. The results underscore the potential of combining
advanced computational models with real-time experimental data to enhance manufactur-
ing efficiency and improve process control in next-generation lightweight alloys.

Keywords: thermal deformation behavior; boron nitride-reinforced magnesium composite;
support vector regression (SVR); flow stress prediction; machine learning models

1. Introduction
With the growing demand for lightweight and high-strength materials in various

industries, magnesium alloys have gained significant attention. These alloys are valued for
their low density, excellent machinability, and good mechanical properties, making them
ideal for applications in the automotive and aerospace sectors [1–3]. Magnesium, being
one of the lightest structural metals, offers significant weight reduction advantages, which
translates into improved fuel efficiency and performance. However, the performance of
magnesium alloys at elevated temperatures poses challenges, limiting their wider appli-
cation where thermal stability is crucial. To enhance the high-temperature performance
and mechanical properties of magnesium alloys, researchers have explored the addition
of reinforcement materials, demonstrating that magnesium alloys reinforced with rare
earth elements show good results in biomedical applications [4]. However, the use of
two-dimensional (2D) materials such as boron nitride (BN) as reinforcement to enhance the
hot deformation behavior of magnesium alloys remains underexplored [5,6]. BN is known
for its excellent thermal stability and mechanical strength, presenting a promising option
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for reinforcement [7]. Such distinctive attributes could contribute to improvements in wear
resistance, microstructural stability, and high-temperature performance in alloys like AZ80.
As a result, an AZ80 alloy reinforced with BN may hold promise for advanced industrial
applications where precise control of material properties is essential.

Understanding and accurately predicting the flow stress during thermal deforma-
tion is essential for optimizing manufacturing processes such as forging, rolling, and
extrusion [8]. Traditional modeling methods often struggle to capture the complex, nonlin-
ear relationships between process parameters like temperature, strain rate, and material
composition [9]. This limitation highlights the need for advanced, data-driven approaches
to model the thermal deformation behavior of novel composite materials such as AZ80-
BN. Machine learning techniques, particularly Support Vector Regression (SVR), offer
powerful tools for modeling complex material behaviors without relying on predefined
equations [10]. In a comparative study involving constitutive equations, neural networks,
and SVR for modeling the hot deformation of 316L stainless steel, researchers confirmed
that SVR can handle multidimensional data and capture nonlinear relationships, making it
well-suited for predicting flow stress based on multiple influencing factors.

By integrating machine learning with experimental observations, this research pro-
vides a novel approach to understanding and predicting the thermal deformation behavior
of AZ80-BN magnesium composite. The developed SVR model not only enhances the accu-
racy of flow stress predictions but also contributes to the field of intelligent manufacturing
by enabling data-driven optimization of forming processes. This work represents the first
investigation into the thermal deformation behavior of AZ80-BN composite using SVR,
offering valuable insights for future research and industrial applications.

2. Experimental Methodology and Materials
The BN-reinforced magnesium composite used in this study was synthesized by

incorporating BN particles into the AZ80 magnesium alloy. The BN particles used as
reinforcement in the AZ80 magnesium composite were supplied by a commercial source,
with a purity of 99.99%. The average particle size was approximately 5 µm, confirming their
microscale nature. This microscale size facilitates a uniform dispersion within the AZ80
matrix, enhancing the composite’s mechanical and thermal properties. The high aspect ratio
and thermal stability of these BN microparticles contribute significantly to the observed
improvements in peak stress and microstructural stability under elevated temperatures.
The base alloy was melted in a resistive electric furnace under a protective argon gas
mixture to prevent oxidation. Once the alloy reached the melting temperature of 720 ◦C,
BN particles were introduced and thoroughly stirred to ensure homogeneous dispersion
within the composite. The molten composite was poured into a steel mold and allowed to
cool to room temperature. The resulting ingots were divided into cylindrical specimens
measuring 17 mm in diameter and 30 mm in height. These specimens underwent a solution
treatment at 400 ◦C for 9 h, followed by aging at 200 ◦C for 30 min, and were subsequently
air-quenched to room temperature in preparation for hot extrusion. A graphite lubricant
was applied to both the billet and the die to minimize friction and prevent wear during
the extrusion process. An extrusion ratio of 4.52:1 was used to ensure optimal mechanical
properties and a uniform microstructure. Finally, cylindrical samples measuring 8 mm in
diameter and 10 mm in height were machined from the extruded material for compression
testing. Figure 1a provides a schematic of the mold structure and the process workflow,
from casting to machining. The chemical compositions (wt.%) of the experimental materials
are as follows: AZ80 alloy: Al 8.16%, Zn 0.42%, Mn 0.30%, balance Mg; and AZ80-BN
composite: Al 4.55%, Zn 0.25%, BN 0.51%, Mn 0.18%, balance Mg.
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Figure 1. (a) Sample preparation process, (b) testing workflow for AZ80-BN composite.

Hot uniaxial compression tests were conducted using a Gleeble thermomechanical
simulator. The deformation temperatures ranged from 300 ◦C to 400 ◦C, and the strain
rates varied between 0.01 s−1 and 10 s−1. To minimize friction during testing, graphite
lubricant sheets were applied to both ends of the samples. The specimens were inductively
heated to the desired deformation temperature within 30 s and held at this temperature
for 3 min to ensure uniform thermal distribution prior to deformation. Compression was
carried out until a true strain of 0.65 was achieved, followed by immediate water quenching
to room temperature to preserve the deformed microstructure. Force–displacement data
were recorded during testing, and true stress–true strain curves were generated from these
measurements. Dimensional measurements of the deformed samples were also taken to val-
idate deformation consistency. Each test condition (combination of temperature and strain
rate) was repeated three times to ensure the reliability and reproducibility of the results. The
average values from these repetitions were used for analysis. Additionally, the hot uniaxial
compression tests were conducted in accordance with the ASTM E209-18 standard [11],
which provides guidelines for compressive stress–strain testing at elevated temperatures.
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The compressed samples were cut in half along the compression axis, and the cross-
section was taken as the testing surface for microstructure characterization, as illustrated
in Figure 1b. Subsequently, the testing surface was polished using 400–2000# sandpapers
as well as diamond paste and then etched using a 4 vol% nitric acid alcohol solution. To
confirm the incorporation and distribution of BN particles in the AZ80 matrix under specific
deformation conditions, a comprehensive microstructural characterization was performed
on a sample deformed at 400 ◦C and 10 s−1. Scanning electron microscopy (SEM), energy-
dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analyses were performed. The
SEM-secondary electron image revealed detailed microstructural features, confirming the
successful incorporation of BN particles. The EDS element mapping indicated a uniform
distribution of BN throughout the matrix, while the XRD patterns validated the presence of
BN phases, confirming their effective integration into the AZ80 matrix. Figure 2 showcases
these findings, including the spectral data, element mapping, and diffraction patterns that
collectively verify the structural and compositional integrity of the AZ80-BN composite.
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Figure 2. EDS analysis. (a) Element spectrum corresponding to AZ80-BN composite. The inset image
shows the SEM-secondary electron (SE) scan area used for chemical composition analysis, (b) EDS
element mapping image, and (c) X-ray diffraction patterns.

3. Results and Discussion
3.1. True Stress–Strain Curve

The true stress–strain curves obtained from uniaxial compression tests at various
temperatures and strain rates are shown in Figure 3a–c. The flow behavior of the AZ80-BN
composite is strongly influenced by the deformation temperature and strain rate: as the
strain rate increases and the temperature decreases, the flow curves shift to higher stress
levels. Based on the evolving stress response and microstructural changes, the deformation
behavior can be divided into three distinct regions. Initially, the stress increases sharply
to a peak (Figure 3d), primarily driven by pronounced work hardening—consistent with
previous reports [12]. This early hardening stage is mainly attributed to dislocation mul-
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tiplication in the matrix, which elevates dislocation density and enhances the resistance
to plastic flow. As deformation proceeds beyond this peak, the stress gradually decreases,
signaling the onset of dynamic recovery (DRV) and dynamic recrystallization (DRX). No-
tably, the incorporation of BN introduces two-dimensional phases that impede dislocation
motion and grain boundary migration. Consequently, the peak stress of the AZ80-BN
composite exceeds that of the unreinforced AZ80 alloy [13]. Eventually, DRV and DRX
processes facilitate dislocation rearrangement and annihilation, thereby offsetting the initial
work-hardening effect and promoting flow softening.
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3.2. Prediction of Rheological Stresses by the Intrinsic Equations

The thermal deformation process of AZ80-BN magnesium composite is a thermally
activated process influenced by the deformation temperature and strain rate. In thermo-
plastic deformation, according to the model proposed by Sellars and McTegart [14], the
relationship between flow stress, strain rate, and deformation temperature across different
stress levels is described by the following equation:

.
ε = A[sinh(ασ)]n exp

(
−Q
RT

)
(For all ασ) (1)

.
ε = A1σn1 exp

(
−Q
RT

)
(ασ < 0.8) (2)
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.
ε = A2 exp(βσ) exp

(
−Q
RT

)
(ασ > 1.2) (3)

where
.
ε represents the strain rate. Under high strain rate conditions, achieving a steady

state is challenging, so σ is taken as the peak stress (MPa). Q denotes the deformation
activation energy (J/mol), while A, A1, A2, β, n, n1, and α (α = n1/β, MPa−1) are material
parameters. R is the universal gas constant, and T refers to the deformation temperature in
Kelvin (K).

By applying the natural logarithm to both sides of Equations (1)–(3), respectively, to
obtain Equations (4)–(6):

ln
.
ε = ln A + n ln[sinh(ασ)]− Q/RT (4)

ln
.
ε = ln A1 + n1 ln σ − Q/RT (5)

ln
.
ε = ln A2 + βσ − Q/RT (6)

All the aforementioned equations can be generalized into the form of a linear equation,
y = ax + b. Based on Equations (5) and (6), the ln

.
ε − lnσ and ln

.
ε − σ plots were constructed,

as shown in Figure 4a,b. The average slopes of these plots were calculated as n1 = 0.069
and β = 6.191, respectively. Substituting the corresponding values of n1 and β, α was
determined to be 0.011 MPa−1. Based on Equation (4) and by fitting ln

.
ε − ln[sinh(ασ)] in

Figure 4c, the average n was determined to be 4.620.
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The activation energy can be expressed as follows [15]:

Q = Rn

∂ ln[sinh(ασ)]

∂
(

1
T

)
 = R·n·K (7)

where K is the average value of slopes that can be obtained from ln[sinh(ασ)] versus 1/T
plots in Figure 4d. The average value of slope K was found to be 0.215, which gave an
average value of Q as 82.54 kJ/mol. This is lower than the self-diffusion activation energy
of magnesium (135 kJ/mol) [16] and other Mg-based alloys, such as Mg-5Li-3Al-2Zn
(159.8 kJ/mol) [17] and Mg-9Li-3Al-2Y (95.45 kJ/mol) [18]. The lower activation energy in
BN-reinforced AZ80 is due to the BN nanoparticles, which impede dislocation movement
and enhance the material’s strength.

Zener and Hollomon jointly proposed a temperature-compensated strain-rate factor Z
parameter that relates the strain rate to the deformation temperature, which is expressed
as [19]:

Z =
.
ε exp(Q/RT) = A[sinh(ασ)]n (8)

Taking logarithms on both sides of Equation (8) can be obtained:

ln Z = ln A + n ln[sinh(ασ)] (9)

The ln Z − ln[sinh(ασ)] plot gives a slope intercept lnA = 14.10 and A = e14.10 (Figure 5).

Nanomaterials 2025, 15, x FOR PEER REVIEW 7 of 22 
 

 

Finally, the constitutive equation of the AZ80-BN composite can be obtained as fol-
lows: 

[ ]4.62014.10 82.54sinh(0.0112 ) expe
RT

ε σ
 − =   
 

   (10)

The predictive equation for the calculation of true stress is established by rearranging 
Equation (10): 

1/4.6201/
1 1

14.10

1 1sinh sinh
0.0112

n ZZ
eA

σ
α

− −
           = × = ×                 

(11)

 

 

  
Figure 4. Relations for (a) lnσ vs. ln𝜀, (b) σ vs. ln𝜀, (c) ln[sinh(ασ)] vs. ln𝜀, and (d) ln[sinh(ασ)] vs. T−1. 

 

Figure 5. Relation between hyperbolic sinusoidal stress and Zener–Hollomon parameter (Z). 

(a) (b) 

(c) (d) 

Figure 5. Relation between hyperbolic sinusoidal stress and Zener–Hollomon parameter (Z).

Finally, the constitutive equation of the AZ80-BN composite can be obtained as follows:

.
ε = e14.10[sinh(0.0112σ)]4.620 exp

(
−82.54

RT

)
(10)

The predictive equation for the calculation of true stress is established by rearranging
Equation (10):

σ =
1
α
× sinh−1

[(
Z
A

)1/n
]
=

1
0.0112

× sinh−1

[(
Z

e14.10

)1/4.620
]

(11)



Nanomaterials 2025, 15, 195 8 of 21

The average absolute relative error (AARE) and multiple coefficients of determination
(R) computed by Equation (12) are used to value the accuracy between the experimental
data and fitting results. 

R =

√√√√1 − ∑i=1
1 (Qi − qi)

2

∑i=1
1 (Qi − Q)

2

AARE =
1
n

n
∑

i=1

|Qi − qi|
Qi

× 100%

(12)

where Qi is the experimental data, qi is the value calculated by equation, Q is the average
value of the experimental data, and n is the number of data.

Figure 6 shows the correlation between the experiment and calculated flow stress
data. The results reflect that almost all points are located in the region where the relative
error ranges from −10% to 10% and the AARE is 5.48%. These results also confirm that
the Arrhenius-type relation demonstrates excellent accuracy for predicting peak stress;
however, it may not be suitable for applications requiring strain-related predictions.
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The thermal deformation process of the AZ80-BN magnesium composite was mod-
eled using an Arrhenius-type equation to predict flow stress under various deformation
conditions. Figure 7 compares the experimentally measured flow stress curves with the
corresponding Arrhenius model predictions at different temperatures. The results show
that the model achieves reasonable agreement with experimental data, particularly at
lower strain rates (0.01 s−1 and 0.1 s−1), where dynamic recovery (DRV) and dynamic
recrystallization (DRX) dominate.
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At higher strain rates (1 s−1 and 10 s−1), slight deviations between the experimental
and predicted values are observed, likely due to the model’s inability to fully capture
strain-rate-sensitive mechanisms such as dislocation multiplication and grain boundary
sliding. Nevertheless, the Arrhenius model accurately predicts the peak flow stress and
captures the overall flow-softening trends at elevated temperatures, demonstrating its
utility for general flow stress prediction.

3.3. Thermal Processing Map

The thermal processing map is an essential tool for optimizing thermal processing
techniques, documenting the material’s plastic deformation capabilities under various
thermal deformation conditions, including the influence of deformation temperature, strain
rate, and strain, obtained by overlaying power dissipation maps and instability maps [20].
The power dissipated by the alloy during thermal deformation consists of two parts: one
part is dissipated due to plastic deformation (G), and the other part is dissipated due to
microstructural changes (J) [21], expressed as:

P = σ
.
ε = G + J =

∫ σ

0
σd

.
ε +

∫ σ

0

.
εdσ (13)

The power dissipation factor (η) is utilized during the forming stage of materials to depict
the ratio of energy consumed during the processing process, which has a close correlation
with the microstructural evolution of the alloy [22,23]. Its expression is:
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η =
J

Jmax
=

2m
m + 1

(14)

In this equation, Jmax represents the maximum power dissipation, while m denotes the
strain rate sensitivity index, with the expression for m being:

m =
∂J
∂G

=

.
ε∂σ

σ∂
.
ε
=

∂ ln σ

∂ ln
.
ε

(15)

The value of η does not directly reflect the formability of the material; instead, it needs
to be studied in conjunction with instability maps. The formula for the instability map,
obtained using the theory proposed by Prasad et al. [24], is as follows:

ξ(
.
ε) =

∂ ln( m
m+1 )

∂ ln
.
ε

+ m < 0 (16)

where ξ (
.
ε) represents the instability parameter, and when ξ (

.
ε) is less than 0, the alloy

undergoes flow instability. Utilizing the instability parameter can guide the design and
optimization of the processing process.

A thermal 3D processing map of AZ80-BN was generated by superimposing power
dissipation and instability maps at three true strains (0.2, 0.4, and 0.6), as shown in Figure 8.
The contour values in these 3D maps represent the power dissipation efficiency (η), pro-
viding insights into the material’s deformation mechanisms. Regions with higher η values
indicate enhanced energy dissipation, primarily through mechanisms such as dynamic
recrystallization (DRX), whereas highlighted instability zones reveal potential areas of flow
localization or defect formation. At a true strain of 0.2, the instability regions are rela-
tively small, suggesting favorable deformation behavior under these conditions. However,
when the strain increases to 0.4, these regions expand significantly, indicating a height-
ened likelihood of defects or localized flow. By contrast, at a strain of 0.6, the instability
regions decrease somewhat compared to 0.4, reflecting moderate improvements in material
stability. These processing maps also underscore the critical roles of temperature and
strain rate in governing AZ80-BN’s deformation response. As the strain increases, the
evolving instability regions highlight the complex interplay among strain, temperature,
and strain rate in determining alloy workability. Consequently, optimizing these deforma-
tion parameters is essential for achieving stable plastic flow and minimizing the risk of
instability-related defects.

3.4. Machine Learning Approaches

Despite the advancements offered by classical constitutive models in quantifying hot
deformation behavior, these models often operate under simplified assumptions and may
not fully capture the intricate nonlinearities inherent in complex material systems [25].
As the deformation conditions deviate from standard regimes or the underlying physics
becomes too complex to be fully characterized by closed-form equations, machine learning
offers a powerful alternative [26]. In this study, Support Vector Regression (SVR) was
utilized to enhance rheological stress prediction. SVR was selected for its ability to handle
nonlinear relationships effectively, even with limited training data, and for its robustness
against noise, ensuring stable and generalized models [27]. The SVR model ingests the
same input features (e.g., temperature, strain, strain rate) as classical constitutive models
but operates in a data-driven manner. Unlike traditional approaches that rely on curve-
fitting procedures to manually determine model parameters, the SVR algorithm learns
directly from the training data. This enables the model to adapt flexibly and produce
accurate predictions across a wider range of deformation conditions. Subsequent sections
will detail the parameter tuning, kernel selection, and training processes for the SVR
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model. By leveraging this machine learning approach, the study establishes a framework
that significantly improves the predictive capabilities for rheological stress in complex
deformation scenarios, surpassing the limitations of classical constitutive models.
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3.4.1. The Principles of SVR

Support Vector Regression (SVR), introduced by Stitson et al. [28], extends the prin-
ciples of Support Vector Machines (SVMs) to regression tasks. Built on the foundation
of structural risk minimization and statistical learning theory, SVR excels in predicting
continuous variables by prioritizing generalization over exact fitting to the training data.
Unlike traditional regression methods, SVR introduces an ε-insensitive loss function that
establishes a margin of tolerance (ε) within which predictions are not penalized. This
approach enhances the model’s robustness by focusing on significant deviations while
ignoring minor fluctuations.

For nonlinear problems, SVR maps input data into a higher-dimensional feature space
where linear regression can be applied. This transformation is performed using a mapping
function Φ(x), and the process is represented as:

x
Φ(x)→ (ϕ1(x), ϕ2(x), . . . . . . , ϕe(x)) (17)

In Equation (1), x is the input variable, Φ(x) is the mapping function, and e is the dimension
of the transformed feature space. However, computing Φ(x) explicitly can be computation-
ally intensive. Kernel functions, such as the radial basis function (RBF), implicitly perform
this transformation without explicitly computing the mapped features. The RBF kernel is
expressed as:
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k(xi, xj) = exp(−γ
∥∥xi − xj

∥∥2
) (18)

In Equation (2), γ determines the influence of individual data points on the model, balanc-
ing flexibility and generalization.

The regression function f (x) in SVR is defined as:

f (x) = ω·x + b (19)

In Equation (3), ω is the weight vector in the feature space, Φ(x) is the mapping function,
and b is the bias term. The optimization objective for SVR minimizes the regularization
term and the ε-insensitive loss function:

min
ω,b

{
1
2
∥ω∥2 + C

n

∑
i−1

Lε( f (xi)− yi)

}
(20)

In Equation (4), C is the regularization parameter, and the loss function Lε is defined as:

Lε(u) =

{
0 → i f |u| ≤ ε

|u| − ε → otherwise
(21)

By introducing slack variables ξi and ξ∗i , the optimization problem can be rewritten as:

min
ω,b,ξ,ξ∗

{
1
2
∥ω∥2 + C

n

∑
i=1

(ξi + ξ∗i )

}
(22)

subject to: 
yi − f (x) ≤ ε + ξi

f (xi)− yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0

(23)

To simplify the computation, the problem is transformed into its dual form using Lagrange
multipliers αi ≥ 0 and α∗i . The dual form is expressed as:

max
α,α∗

{
n

∑
i=1

(α∗i − αi)yi −
1
2

n

∑
i=1

n

∑
j=1

(α∗i − αi)(α
∗
j − αj)k(xi, xj)

}
(24)

subject to:

n

∑
i=1

(αi − α∗i ) = 0 ⇒ 0 ≤ αi, α∗i ≤ C 0 ≤ αi, α∗i ≤ C (25)

In Equation (8), K (xi, xj) is the kernel function, and the solution depends only on the
support vectors, which are data points lying on or outside the ε-margin.

Figure 9 illustrates the SVR concept, highlighting the ε-margin, support vectors, and
slack variables. Data points within the margin are ignored by the loss function, while those
outside contribute to the optimization objective.

SVR’s ability to combine flexibility, robustness, and scalability makes it ideal for
modeling nonlinear relationships in complex systems [29]. In this study, SVR is applied
to predict the flow stress of AZ80-BN magnesium composite during thermal deformation,
with strain, strain rate, and temperature as input variables. By leveraging the ε-insensitive
loss function and kernel transformations, SVR enables precise and scalable predictions,
which are crucial for optimizing material processing.



Nanomaterials 2025, 15, 195 13 of 21

Nanomaterials 2025, 15, x FOR PEER REVIEW 13 of 22 
 

 

subject to: 

* * *

1
( ) 0 0 , 0 ,

n

i i i i i i
i

C Cα α α α α α
=

− =  ≤ ≤ ≤ ≤   (25)

In Equation (8), K (xi, xj) is the kernel function, and the solution depends only on the sup-
port vectors, which are data points lying on or outside the ε-margin. 

Figure 9 illustrates the SVR concept, highlighting the ε-margin, support vectors, and 
slack variables. Data points within the margin are ignored by the loss function, while those 
outside contribute to the optimization objective. 

SVR’s ability to combine flexibility, robustness, and scalability makes it ideal for 
modeling nonlinear relationships in complex systems [29]. In this study, SVR is applied 
to predict the flow stress of AZ80-BN magnesium composite during thermal deformation, 
with strain, strain rate, and temperature as input variables. By leveraging the ε-insensitive 
loss function and kernel transformations, SVR enables precise and scalable predictions, 
which are crucial for optimizing material processing. 

 

Figure 9. Support Vector Regression, showing the ε-margin, slack variables, and hyperplane fitted 
by SVR. 

3.4.2. Model Performance 

In the previous section, we utilized the hyperbolic sine function model to mathemat-
ically describe and predict the true stress–strain curve obtained from hot compression 
tests. However, it is important to acknowledge that twinning deformation during hot 
compression significantly impacts the alloy’s behavior [30]. To address this limitation and 
more accurately capture the material’s response, we developed a model that precisely de-
scribes and predicts the hot deformation characteristics of the alloy. 

Support Vector Regression (SVR) was selected for this purpose due to its powerful 
capabilities in modeling and predicting continuous target variables, along with its adapt-
ability and strong generalization performance. By inputting the alloy’s temperature, strain 
rate, and strain into the SVR model and applying an appropriate kernel function, the 
model generates the flow stress of the alloy as the output. The training data for the SVR 
model consisted of temperatures ranging from 300 °C to 400 °C in 50 °C increments, strain 
rates from 0.01 s⁻1 to 10 s⁻1, and strains from 0 to 0.85. The dataset was partitioned with 

ξ 

ξ 

ε 

y 

x 
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by SVR.

3.4.2. Model Performance

In the previous section, we utilized the hyperbolic sine function model to mathemat-
ically describe and predict the true stress–strain curve obtained from hot compression
tests. However, it is important to acknowledge that twinning deformation during hot
compression significantly impacts the alloy’s behavior [30]. To address this limitation and
more accurately capture the material’s response, we developed a model that precisely
describes and predicts the hot deformation characteristics of the alloy.

Support Vector Regression (SVR) was selected for this purpose due to its powerful
capabilities in modeling and predicting continuous target variables, along with its adapt-
ability and strong generalization performance. By inputting the alloy’s temperature, strain
rate, and strain into the SVR model and applying an appropriate kernel function, the
model generates the flow stress of the alloy as the output. The training data for the SVR
model consisted of temperatures ranging from 300 ◦C to 400 ◦C in 50 ◦C increments, strain
rates from 0.01 s−1 to 10 s−1, and strains from 0 to 0.85. The dataset was partitioned
with 80% used for training the model. To ensure a robust evaluation and prevent high
variance in the results that can occur with a single train-test split, we employed 5-fold
cross-validation. This approach provides more reliable R2 values and offers a more robust
estimate of performance by testing the model on different subsets, thereby enhancing its
ability to generalize across multiple data subsets. To select the optimal random state for the
kernel models, we tested 11 different random states and compared them using the mean
squared error (MSE), as shown in Table 1. Controlling the random state in the selection
of the training set ensures that results are consistent and reproducible. The performance
of the SVR model in terms of prediction and fitting was evaluated using the coefficient
of determination (R2) and mean squared error (MSE) [31]. By meticulously tuning the
model parameters and employing rigorous validation techniques, we ensured that the
SVR model accurately captures the complex relationships influencing the flow stress of the
AZ80-BN magnesium composite during thermal deformation. This approach addresses the
limitations of traditional models and provides a more reliable tool for predicting material
behavior under various processing conditions.

Figure 10 presents a comparison of the R2 values for three kernel functions (linear,
polynomial (poly), and radial basis function (RBF)) used in the SVR models applied to the
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hot compression curves. It is evident from the figure that the RBF kernel function yields
the highest R2 coefficient among the 12 true stress–strain curves. This indicates that the
RBF kernel function is the most suitable for describing and predicting the hot deformation
behavior of the AZ80-BN magnesium composite.

Table 1. Mean squared error (MSE) for different models using normalized features across various
random states.

Random State Linear MSE Polynomial MSE RBF MSE

42 571.4193 381.1453 207.6735
100 571.1523 381.9096 207.3575
123 571.3632 380.7088 206.3911
321 571.1446 379.9889 208.0404
520 571.9399 380.4232 208.7133
777 570.6064 379.7242 206.5523
888 571.3767 382.1493 209.3180
999 571.3809 380.8332 207.8200

1010 570.6864 380.9306 207.1378
2023 571.2677 380.9256 207.2170
3000 570.7655 382.2015 206.7500
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During the parameter adjustment process, only the values of the penalty factor (C),
the ε-insensitive loss function, and the kernel parameter (gamma, γ) need to be adjusted to
improve the accuracy of the SVR model in describing and predicting the thermal deforma-
tion behavior [32–34]. By utilizing the 3D grid search method, we identified the optimal
combination of C, ε, and γ through the R2 correlation analysis heat map shown in Figure 11,
which maximizes the R2 coefficient of the SVR model for curve fitting [35].

Initially, we set the range of C values from 1000 to 100,000 with a step size of 1000, the
range of γ values from 1 to 11 with a step size of 1, and the range of ε values from 0.1 to 1
with a step size of 0.1. However, we observed that increasing C and testing lower values of
γ and ε could potentially improve the R2 value further. Therefore, we optimized the range
for C from 90,000 to 100,000 in steps of 1000 and refined the γ range to 0.1 to 0.3 in steps of
0.05 and ε range from 0.01 to 0.1 in steps of 0.1, focusing on smaller γ and ε values. The final
optimal combination obtained was C = 95,000, ε = 0.1, and γ = 0.1 with best R2 = 0.9993.
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This combination enabled the SVR model to achieve the highest R2 coefficient in curve
fitting, indicating superior predictive performance.

By fine-tuning these parameters, the SVR model effectively captures the complex
nonlinear relationships inherent in the hot deformation process of the AZ80-BN magnesium
composite. The use of the RBF kernel with the optimized parameters significantly enhances
the model’s ability to predict flow stress under various thermal deformation conditions,
contributing to more accurate and reliable process optimization in manufacturing applications.
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3.4.3. Validation of the Model

Figure 12 compares the experimentally measured flow stress (“Exp”) with the flow
stress predicted by the SVR model (“Pre”) across various strains, strain rates, and tem-
peratures. The predicted data closely follow the experimental hot deformation curves,
underscoring the SVR model’s high predictive accuracy. As illustrated in Figure 13, a statis-
tical comparison between the predicted and experimental values shows an outstanding
coefficient of determination (R2) of 0.99999 and an average absolute relative error (AARE)
of 0.6321%. These results highlight the SVR model’s remarkable precision in capturing the
thermal deformation behavior of the AZ80-BN magnesium composite.

Previous investigations have often employed uniform step sizes (e.g., fixed increments
in strain) for validating predictive models, potentially limiting the demonstration of accu-
racy across the complete experimental domain [36–38]. In this study, we adopted a more
comprehensive approach by randomly selecting 110 stress points spanning the entire strain
range (0.05–0.6) for model evaluation. Furthermore, we used mean squared error (MSE)
instead of AARE to evaluate the model’s performance, as MSE emphasizes larger errors and
provides a more sensitive measure of absolute prediction accuracy, which is critical for cap-
turing deviations in flow stress predictions. Figure 14 presents the SVR model’s predicted
flow stress curve, while Figure 15 provides the corresponding R2 and MSE values when
comparing the predictions with the experimental data under all considered conditions.

As shown in Figure 14, the majority of the predicted stress points closely match the
experimental values, indicating excellent agreement. In Figure 15, the average R2 of 0.9984
and MSE of 0.4876 confirm that the SVR model maintains exceptional prediction accuracy
and minimal error levels across a wide range of processing parameters. These findings
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further validate the SVR model’s effectiveness in representing the thermal deformation
characteristics of the AZ80-BN magnesium composite.
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Overall, the SVR model demonstrates outstanding predictive capabilities, adeptly han-
dling the nonlinear relationships between rheological stress and processing parameters. Its
proven performance and adaptability suggest significant potential for optimizing industrial
forming processes involving lightweight materials.

3.5. Comparison of the SVR Model with Traditional Methods

Conventional constitutive models frequently struggle to account for the intricate,
nonlinear relationships that arise among strain, strain rate, and temperature in advanced



Nanomaterials 2025, 15, 195 18 of 21

composite materials [39,40]. In contrast, the data-driven SVR model leverages its flexibil-
ity and robust generalization capabilities to capture these complexities more accurately.
Figure 16a–c presents the flow-stress curves for the AZ80-BN composite at 300 ◦C, 350 ◦C,
and 400 ◦C, respectively, across four distinct strain rates (0.01, 0.1, 1, and 10 s−1, i.e.,
10−2 s−1 to 101 s−1). A direct comparison among the experimental (EXP) data, the SVR
model, and the Arrhenius constitutive model (ACM) reveals that the SVR-based predictions
track the experimental trend more consistently for all strain rates. While both the ACM and
SVR models capture the overall transition from initial work hardening to subsequent flow
softening, the ACM tends to show noticeable deviations at higher strain rates (1 and 10 s−1)
and elevated temperatures, suggesting it lacks the necessary flexibility to accurately repre-
sent dynamic recrystallization (DRX) and other complex mechanisms at play. By contrast,
the SVR approach, relying on pattern recognition rather than fixed functional forms, effec-
tively learns the complex constitutive response from the experimental data. This advantage
is especially evident in the peak-stress region and the ensuing flow-stress decline, where
the SVR model remains closely aligned with the EXP data at strain rates as high as 10 s−1.
In this way, the SVR method demonstrates a superior capability to predict the combined
effects of strain, strain rate, and temperature, ultimately facilitating a more robust and
accurate characterization of AZ80-BN under diverse thermomechanical conditions. Over-
all, these findings underscore the SVR model’s potential as a powerful, data-driven tool
for predicting the flow-stress behavior of advanced composite materials, outperforming
traditional, equation-based approaches such as the ACM, particularly in settings where
large variations in strain rate and temperature drive complex microstructural evolution.
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Although the Arrhenius-type equation effectively captures peak flow stress, the Sup-
port Vector Regression (SVR) model excels in predicting complex, nonlinear dependen-
cies, achieving an R2 value of 0.9993 and an AARE of 0.6321%. In parallel, three-dimen-
sional thermal processing maps pinpoint optimal deformation conditions and potential 
instability zones, providing valuable guidance for refining processes to produce defect-
free components. 

These findings underscore the advantage of combining data-driven models with tra-
ditional approaches, accelerating materials design, and optimizing processing parame-
ters. Future research should extend this framework to other material systems and inte-
grate microstructural descriptors, further improving model accuracy and enabling intel-
ligent manufacturing of lightweight, high-performance alloys for next-generation engi-
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4. Conclusions
This work presents a comprehensive investigation into the thermal deformation behav-

ior of the AZ80-BN magnesium composite, integrating experimental methods, constitutive
modeling, and machine learning. The addition of boron nitride as a reinforcing agent
significantly enhances high-temperature performance, evidenced by higher peak stress and
improved microstructural stability. Dynamic recovery and recrystallization were identified
as key mechanisms influencing the overall flow behavior.

Although the Arrhenius-type equation effectively captures peak flow stress, the Sup-
port Vector Regression (SVR) model excels in predicting complex, nonlinear dependencies,
achieving an R2 value of 0.9993 and an AARE of 0.6321%. In parallel, three-dimensional
thermal processing maps pinpoint optimal deformation conditions and potential instability
zones, providing valuable guidance for refining processes to produce defect-free components.

These findings underscore the advantage of combining data-driven models with tradi-
tional approaches, accelerating materials design, and optimizing processing parameters.
Future research should extend this framework to other material systems and integrate mi-
crostructural descriptors, further improving model accuracy and enabling intelligent manufac-
turing of lightweight, high-performance alloys for next-generation engineering applications.
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