Stable Field Emissions from Zirconium Carbide Nanoneedle Electron Source
<p>Schematic of (<b>a</b>) the fabrication process of ZrC nanoneedles using the FIB-SEM system. (<b>b</b>) The experimental setup for the field emission test.</p> "> Figure 2
<p>(<b>a</b>) Schematic of the ZrC nanoneedle field emission electron source with hairpin structure. (<b>b</b>) SEM image of ZrC nanoneedle during the process of Ga-ion milling. (<b>c</b>) SEM image of ZrC nanoneedle after fabrication was completed. (<b>d</b>) TEM image and electron diffraction pattern (inset) of the sharpened ZrC nanoneedle tip. (<b>e</b>) High-resolution TEM image near the surface region.</p> "> Figure 3
<p>Field emission characteristics of the ZrC nanoneedle emitter. (<b>a</b>) I-V curve of field emissions and (<b>b</b>) its corresponding F-N plot. (<b>c</b>) FEM pattern of the ZrC nanoneedle with a single emission spot in the axial direction. (<b>d</b>) Field emission intensity following a Gaussian distribution with FWHM of 7.1 mm.</p> "> Figure 4
<p>The 30 min field emission stability before (red line) and after (black line) the ZrC nanoneedle emitter stabilized under emission currents of (<b>a</b>) 3 nA, (<b>b</b>) 10 nA, and (<b>c</b>) 50 nA with fluctuations of 0.30%, 0.31%, and 0.60%, respectively. (<b>d</b>) Long-term stability with a fluctuation of 1.41% after 2.5 h of measurement.</p> ">
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dyke, W.P.; Dolan, W.W. Field emission. Adv. Electron. Electron Phys. 1956, 8, 89–185. [Google Scholar]
- Stratton, R. Theory of field emission from semiconductors. Phys. Rev. 1962, 125, 67–82. [Google Scholar] [CrossRef]
- Milne, W.I.; Teo, K.B.K.; Amaratunga, G.A.J.; Legagneux, P.; Gangloff, L.; Schnell, J.-P.; Semet, V.; Binh, V.T.; Groening, O. Carbon nanotubes as field emission sources. J. Mater. Chem. 2004, 14, 933–943. [Google Scholar] [CrossRef]
- Xu, N.; Huq, S.E. Novel cold cathode materials and applications. Mater. Sci. Eng. 2005, 48, 47–189. [Google Scholar] [CrossRef]
- Lilienfeld, J.E. The auto-electronic discharge and its application to the construction of a new form of X-ray tube. Am. J. Roentgenol. 1922, 9, 172–179. [Google Scholar]
- Fowler, R.H.; Nordheim, L. Electron emission in intense electric fields. Proc. R. Soc. Lond. Ser. A 1928, 199, 173–181. [Google Scholar]
- Skolnik, M. Role of radar in microwaves. IEEE Trans. Microw. Theory Techn. 2002, 50, 625–632. [Google Scholar] [CrossRef]
- Spindt, C.; Armstrong, C.; Smith, C.; Gannon, B.; Whaley, D. Application of field emitter arrays to microwave power amplifiers. IEEE Trans. Plasma Sci. 2000, 28, 727–747. [Google Scholar] [CrossRef]
- Milne, W.I.; Teo, K.B.K.; Minoux, E.; Groening, O.; Gangloff, L.; Hudanski, L.; Schnell, J.-P.; Dieumegard, D.; Peauger, F.; Bu, I.Y.Y. Aligned carbon nanotubes/fibers for applications in vacuum microwave amplifiers. J. Vac. Sci. Technol. 2006, 24, 345–348. [Google Scholar] [CrossRef]
- Adachi, H. Approach to a stable field emission electron source. Microscopy 1985, 2, 473–487. [Google Scholar]
- Feist, A.; Echternkamp, K.E.; Schauss, J.; Yalunin, S.V.; Schäfer, S.; Ropers, C. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 2015, 521, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Pimpin, A.; Srituravanich, W. Review on micro- and nanolithography techniques and their applications. Chem. Eng. J. 2012, 16, 38–55. [Google Scholar] [CrossRef]
- Melngailis, J.; Mondelli, A.A.; Berry, I.L.; Mohondro, R. A review of ion projection lithography. J. Vac. Sci. Technol. 1998, 16, 927–957. [Google Scholar] [CrossRef]
- Murphy, E.L.; Good, R.H. Thermionic emission, field emission, and the transition region. Phys. Rev. 1956, 102, 1464–1473. [Google Scholar] [CrossRef]
- Jensen, K.L. A tutorial on electron sources. IEEE Trans. Plasma Sci. 2018, 46, 1881–1899. [Google Scholar] [CrossRef]
- Crewe, A.V.; Eggenberger, D.N.; Wall, J.; Welter, L.M. Electron gun using a field emission source. Rev. Sci. Instrum. 1968, 39, 576–583. [Google Scholar] [CrossRef]
- Gadzuk, J.W.; Plummer, E.W. Field emission energy distribution (FEED). Rev. Mod. Phys. 1973, 45, 487–545. [Google Scholar] [CrossRef]
- Kumikov, V.K.; Khokonov, K.B. On the measurement of surface free energy and surface tension of solid metals. J. Appl. Phys. 1983, 54, 1346–1350. [Google Scholar] [CrossRef]
- Brodie, I.; Spindt, C.A. Vacuum microelectronics. Adv. Electron. Electron Phys. 1992, 83, 1–106. [Google Scholar]
- Fursey, G.N. Field emission in vacuum micro-electronics. Appl. Surf. Sci. 2003, 215, 113–134. [Google Scholar] [CrossRef]
- Muller, E.W.; Bahader, K. Field ionization of gases at a metal surface and the resolution of the field ion microscope. Phys. Rev. 1956, 102, 624–631. [Google Scholar] [CrossRef]
- Grifoni, M.; Hänggi, P. Driven quantum tunneling. Phys. Rep. 1998, 304, 229–354. [Google Scholar] [CrossRef]
- Gatteschi, D.; Sessoli, R. Quantum tunneling of magnetization and related phenomena in molecular materials. Angew. Chem. Int. Ed. 2003, 42, 268–297. [Google Scholar] [CrossRef] [PubMed]
- Kuchibhatla, S.V.; Karakoti, A.; Bera, D.; Seal, S. One dimensional nanostructured materials. Prog. Mater. Sci. 2007, 52, 699–913. [Google Scholar] [CrossRef]
- Gudiksen, M.S.; Lauhon, L.J.; Wang, J.; Smith, D.C.; Lieber, C.M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617–620. [Google Scholar] [CrossRef] [PubMed]
- de Heer, W.A.; Châtelain, A.; Ugarte, D. A carbon nanotube field-emission electron source. Science 1995, 270, 1179–1180. [Google Scholar] [CrossRef]
- Sankaran, K.J.; Afsal, M.; Lou, S.; Chen, H.; Chen, C.; Lee, C.; Chen, L.; Tai, N.; Lin, I. Electron field emission enhancement of vertically aligned ultrananocrystalline diamond-coated ZnO core–shell heterostructured nanorods. Small 2014, 10, 179–185. [Google Scholar] [CrossRef]
- Xu, J.; Hou, G.; Li, H.; Zhai, T.; Dong, B.; Yan, H.; Yu, B.; Bando, Y.; Golberg, D. Fabrication of vertically aligned single-crystalline lanthanum hexaboride nanowire arrays and investigation of their field emission. NPG Asia Mater. 2013, 5, 53–62. [Google Scholar] [CrossRef]
- Tang, S.; Tang, J.; Chiu, T.-W.; Uzuhashi, J.; Tang, D.-M.; Ohkubo, T.; Mitome, M.; Uesugi, F.; Takeguchi, M.; Qin, L.-C. A controllable and efficient method for the fabrication of a single HfC nanowire field-emission point electron source aided by low keV FIB milling. Nanoscale 2020, 12, 16770–16774. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Tang, J.; Uzuhashi, J.; Ohkubo, T.; Hayami, W.; Yuan, J.; Takeguchi, M.; Mitome, M.; Qin, L.-C. A stable LaB6 nanoneedle field-emission point electron source. Nanoscale Adv. 2021, 3, 2787–2792. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Tang, J.; Wu, Y.; Chen, Y.-H.; Uzuhashi, J.; Ohkubo, T.; Qin, L.-C. Stable field-emission from a CeB6 nanoneedle point electron source. Nanoscale 2021, 13, 17156–17161. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Dong, S.; Hu, P.; Zhao, X.; Hong, C. Recent progress in synthesis, growth mechanisms, properties, and applications of silicon nitride nanowires. Ceram. Int. 2021, 47, 14944. [Google Scholar] [CrossRef]
- Grossman, L.N. High-temperature thermophysical properties of zirconium carbide. J. Am. Ceram. Soc. 1965, 45, 236–242. [Google Scholar] [CrossRef]
- Holleck, H. Material selection for hard coatings. J. Vac. Sci. Technol. A 1986, 4, 2661–2669. [Google Scholar] [CrossRef]
- Landwehr, S.E.; Hilmas, G.E.; Fahrenholtz, W.G.; Talmy, I.G.; Wang, H. Thermal properties and thermal shock resistance of liquid phase sintered ZrC–Mo cermets. Mater. Chem. Phys. 2009, 115, 690–695. [Google Scholar] [CrossRef]
- Mackie, W.A.; Hartman, R.L.; Anderson, M.A.; Davis, P.R. Transition metal carbides for use as field emission cathodes. J. Vac. Sci. Technol. B 1994, 12, 722–726. [Google Scholar] [CrossRef]
- Mackie, W.; Hinrichs, C.; Davis, P. Preparation and characterization of zirconium carbide field emitters. IEEE Trans. Electron Devices 1989, 36, 2697–2702. [Google Scholar] [CrossRef]
- Wu, Y.; Tang, J.; Tang, S.; Chen, Y.-H.; Chiu, T.-W.; Takeguchi, M.; Qin, L.-C. Stable field emission from single-crystalline zirconium carbide nanowires. Nanomaterials 2024, 1567, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Young, R.D. Theoretical total-energy distribution of field-emitted electrons. Phys. Rev. 1959, 113, 110–114. [Google Scholar] [CrossRef]
- Bronsgeest, M.S.; Barth, J.E.; Swanson, L.W.; Kruit, P. Probe current, probe size, and the practical brightness for probe forming systems. J. Vac. Sci. Technol. 2008, 26, 949–955. [Google Scholar] [CrossRef]
- Grillo, A.; Passacantando, M.; Zak, A.; Pelella, A.; Di Bartolomeo, A. WS2 Nanotubes: Electrical Conduction and Field Emission Under Electron Irradiation and Mechanical Stress. Small 2020, 16, 2002880. [Google Scholar] [CrossRef] [PubMed]
- Giubileo, F.; Passacantando, M.; Urban, F.; Grillo, A.; Iemmo, L.; Pelella, A.; Goosney, C.; LaPierre, R.; Di Bartolomeo, A. Field Emission Characteristics of InSb Patterned Nanowires. Adv. Electron. Mater. 2020, 6, 2000402. [Google Scholar] [CrossRef]
- Kasuya, K.; Katagiri, S.; Ohshima, T.; Kokubo, S. Stabilization of a tungsten ⟨310⟩ cold field emitter. J. Vac. Sci. Technol. B 2010, 28, 55–60. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Turchetti, M.; Keathley, P.D.; Berggren, K.K.; Browning, J. Long term field emission current stability characterization of planar field emitter devices. J. Vac. Sci. Technol. 2021, 39, 053201. [Google Scholar] [CrossRef]
- Calderón-Colón, X.; Geng, H.; Gao, B.; An, L.; Cao, G.; Zhou, O. A carbon nanotube field emission cathode with high current density and long-term stability. Nanotechnology 2009, 20, 325707. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Tang, J.; Tang, S.; Chen, Y.-H.; Chiu, T.-W.; Takeguchi, M.; Hashimoto, A.; Qin, L.-C. Stable Field Emissions from Zirconium Carbide Nanoneedle Electron Source. Nanomaterials 2025, 15, 93. https://doi.org/10.3390/nano15020093
Wu Y, Tang J, Tang S, Chen Y-H, Chiu T-W, Takeguchi M, Hashimoto A, Qin L-C. Stable Field Emissions from Zirconium Carbide Nanoneedle Electron Source. Nanomaterials. 2025; 15(2):93. https://doi.org/10.3390/nano15020093
Chicago/Turabian StyleWu, Yimeng, Jie Tang, Shuai Tang, You-Hu Chen, Ta-Wei Chiu, Masaki Takeguchi, Ayako Hashimoto, and Lu-Chang Qin. 2025. "Stable Field Emissions from Zirconium Carbide Nanoneedle Electron Source" Nanomaterials 15, no. 2: 93. https://doi.org/10.3390/nano15020093
APA StyleWu, Y., Tang, J., Tang, S., Chen, Y.-H., Chiu, T.-W., Takeguchi, M., Hashimoto, A., & Qin, L.-C. (2025). Stable Field Emissions from Zirconium Carbide Nanoneedle Electron Source. Nanomaterials, 15(2), 93. https://doi.org/10.3390/nano15020093