Chalcogenides in Perovskite Solar Cells with a Carbon Electrode: State of the Art and Future Prospects
<p>(<b>a</b>) The structure and energy diagrams of a carbon counter electrode perovskite solar cell [<a href="#B12-nanomaterials-14-01783" class="html-bibr">12</a>]; (<b>b</b>) the evolution of the power conversion efficiency of carbon counter electrode perovskite solar cells, from 2013 to 2023 [<a href="#B13-nanomaterials-14-01783" class="html-bibr">13</a>].</p> "> Figure 2
<p>Classification of chalcogenides [<a href="#B18-nanomaterials-14-01783" class="html-bibr">18</a>] (Reprinted from Ref. [<a href="#B18-nanomaterials-14-01783" class="html-bibr">18</a>] DOI:10.5772/intechopen.1005357, 2023, Priya and Sagadevan, under Creative Commons Attribution 3.0 License).</p> "> Figure 3
<p>Evolution of cell performance for a variety of thin-film photovoltaic materials [<a href="#B74-nanomaterials-14-01783" class="html-bibr">74</a>] (Reproduced from Ref. [<a href="#B74-nanomaterials-14-01783" class="html-bibr">74</a>] doi:10.1039/D2FD00085G with permission from the Royal Society of Chemistry).</p> "> Figure 4
<p>(<b>a</b>) Different photovoltaic materials and their bandgaps [<a href="#B78-nanomaterials-14-01783" class="html-bibr">78</a>] (Reproduced from Ref. [<a href="#B78-nanomaterials-14-01783" class="html-bibr">78</a>] doi:10.3389/fchem.2021.632021 under the terms of the Creative Commons Attribution License (CC BY)); (<b>b</b>) Historic record efficiencies of major types of thin-film solar cells (lab scale) [<a href="#B79-nanomaterials-14-01783" class="html-bibr">79</a>].</p> "> Figure 5
<p>(<b>a</b>) Antimony chalcogenide solar cell configurations: (A), illustration of mesoporous sensitized-type antimony chalcogenide-based solar cells; (B), superstrate planar structure chalcogenide-based solar cells; and (C), a substrate planar structure chalcogenide-based solar cell. (<b>b</b>) The main achievements in antimony chalcogenide solar cells [<a href="#B81-nanomaterials-14-01783" class="html-bibr">81</a>] (reproduced from Ref. [<a href="#B81-nanomaterials-14-01783" class="html-bibr">81</a>] doi:10.1002/nano.202000288, 2021, Dong, Liu, wang and Zhang, under the terms of the Creative Commons CC BY license).</p> "> Figure 6
<p>(<b>a</b>) Schematic representation of the synthesis of colloidal QDs via various approaches and their emission range. A synthetic apparatus used in the preparation of various structured QDs. The bare QDs can be synthesized via a cation exchange approach. The core-shell structure can be obtained via both a cation exchange approach and SILAR approach; (<b>b</b>) The emission range for representative QDs [<a href="#B82-nanomaterials-14-01783" class="html-bibr">82</a>]; (<b>c</b>) PCEs for quantum dot photovoltaics (QD PV) over the years [<a href="#B83-nanomaterials-14-01783" class="html-bibr">83</a>] (reprinted with permission from ACS Energy Lett. 2020, 5, 9, 3069–3100, Copyright 2020 American Chemical Society).</p> "> Figure 7
<p>A summary graph with some representative PCEs obtained with various chalcogenides, employed as ETMs, in 3 types of solar cells.</p> "> Figure 8
<p>(<b>a</b>) J–V curves of the all-inorganic PSCs based on spraying-assisted deposition; (<b>b</b>) IPCE spectra and integrated current densities of the PSCs with and without MoS<sub>2</sub> QDs; (<b>c</b>) PL emission spectra; (<b>d</b>) Schematic diagrams of an inorganic PSC; and (<b>e</b>) charge transportation processes [<a href="#B92-nanomaterials-14-01783" class="html-bibr">92</a>] (reprinted with permission from ACS Appl. Mater. Interfaces 2023, 15, 48, 55895–55902. Copyright 2023, American Chemical Society).</p> "> Figure 9
<p>(<b>A</b>) J–V curves and (<b>B</b>) box-line graphs of C-PSCs (1 cm<sup>2</sup>) based on the absorber of CsPbBr<sub>3</sub> and CsPbBr<sub>3</sub>–MoS<sub>2</sub> with MoS<sub>2</sub> concentrations of 0.2, 0.4, and 0.6 mg/mL; (<b>B</b>) variation of PCE of C-PSCs with time based on the absorber of CsPbBr<sub>3</sub> and CsPbBr<sub>3</sub>–MoS<sub>2</sub> (0.4 mg/mL) in outdoor conditions and under 1 sun continuous illumination; (<b>C</b>) schematic diagram of energy level alignment and (<b>D</b>) of C-PSCs with the structure of FTO/SnO<sub>2</sub>/CsPbBr<sub>3</sub>–MoS<sub>2</sub>/C [<a href="#B94-nanomaterials-14-01783" class="html-bibr">94</a>].</p> "> Figure 10
<p>(<b>a</b>) Cross-sectional SEM image of MoS<sub>2</sub>–MoP/NPCE assembled HTL-free CsPbBr<sub>3</sub> PSCs; (<b>b</b>) Schematic diagram of the function of MoS<sub>2</sub>–MoP/NPCE; (<b>c</b>) J–V curves and (<b>d</b>) steady-state output curves of HTL-free CsPbBr<sub>3</sub> PSCs based on various carbon electrodes; (<b>e</b>) TRPL spectra of Glass/CsPbBr<sub>3</sub>/various carbon electrodes [<a href="#B95-nanomaterials-14-01783" class="html-bibr">95</a>].</p> "> Figure 11
<p>(<b>a</b>) J–V curves for the best-performing solar cells (inset table: maximum PCE values of three devices); (<b>b</b>) The EQE/integrated current densities and (<b>c</b>) PCE stability of three different devices [<a href="#B96-nanomaterials-14-01783" class="html-bibr">96</a>].</p> "> Figure 12
<p>(<b>a</b>) Schematic diagram of an all-inorganic CsPbBr<sub>3</sub> PSC; (<b>b</b>) Schematic diagram of residual strain distribution in CsPbBr<sub>3</sub> grains with and without WS<sub>2</sub>; (<b>c</b>) Photostability of PSC devices with and without WS<sub>2</sub> interlayer under one sun illumination; (<b>d</b>) Voc, Jsc, PCE, and FF stability of the device with a WS<sub>2</sub> interlayer free of encapsulation at 25 °C and 80% humidity interlayer; (<b>e</b>) J–V curves of PSCs with and without WS<sub>2</sub> interlayer [<a href="#B97-nanomaterials-14-01783" class="html-bibr">97</a>].</p> "> Figure 13
<p>(<b>a</b>) A cross-sectional SEM image of CsPbBr<sub>3</sub> PSCs; (<b>b</b>) Schematic diagram of WS<sub>2</sub>/AgIn<sub>5</sub>S<sub>8</sub> QDs-based CsPbBr<sub>3</sub> PSCs; (<b>c</b>) Energy level diagram of the charge transfer process in various CsPbBr<sub>3</sub> PSCs [<a href="#B98-nanomaterials-14-01783" class="html-bibr">98</a>].</p> "> Figure 14
<p>(<b>a</b>) J–V characteristic measured under the AM 1.5G simulated solar light; (<b>b</b>) the corresponding IPCE spectra for the best-performing PEN/ITO/CdS/PCBM/Perovskite/CuPc/C flexible device; (<b>c</b>) PCEs of flexible PSC for bending cycles. The inset shows the flexible device’s photograph [<a href="#B100-nanomaterials-14-01783" class="html-bibr">100</a>].</p> "> Figure 15
<p>(<b>a</b>) Schematic diagram of CuS–MXene-based all-inorganic CsPbBr<sub>3</sub> PSCs; (<b>b</b>) EDS elemental mapping images of the CsPbBr<sub>3</sub>/CuS–MXene film; (<b>c</b>) The J–V curves of various PSCs [<a href="#B103-nanomaterials-14-01783" class="html-bibr">103</a>].</p> "> Figure 16
<p>(<b>a</b>) UPS spectra of the NiS NPs layer; (<b>b</b>) Energy level alignment of the functional layers in the CsPbI<sub>2</sub>Br PSCs with NiS modification. The schematic diagram of quasi-Fermi level splitting (<b>c</b>) of pristine CsPbI<sub>2</sub>Br PSC and (<b>d</b>) of CsPbI<sub>2</sub>Br/NiS PSC; (<b>e</b>) schematic diagrams of band bending of CsPbI<sub>2</sub>Br/Carbon and (<b>f</b>) CsPbI<sub>2</sub>Br/NiS/Carbon interfaces [<a href="#B105-nanomaterials-14-01783" class="html-bibr">105</a>].</p> "> Figure 17
<p>(<b>a</b>) Schematic view of the inorganic cell structure; (<b>b</b>) Energy-level diagram of the PSC; (<b>c</b>) J–V curves of inorganic PSCs with and without the MnS intermediate layer [<a href="#B106-nanomaterials-14-01783" class="html-bibr">106</a>] (reprinted with permission from ACS Appl. Mater. Interfaces 2019, 11, 33, 29746–29752. Copyright 2019 American Chemical Society).</p> "> Figure 18
<p>(<b>a</b>) J–V characteristics of the device FTO/L-TiO<sub>2</sub>:TMDCs QDs/C under dark and illumination (AM 1.5G); (<b>b</b>) Schematic diagram of the electron transfer from TMDCs QDs to TiO<sub>2</sub> under illumination; (<b>c</b>) band alignment diagram of an all-inorganic CsPbBr<sub>3</sub> PSC based on L-TiO<sub>2</sub>:TMDCs QDs ETLs; (<b>d</b>) J–V curves of various PSCs with and without TMDCs QDs; (<b>e</b>) statistical distribution of PCE for FTO/L-TiO<sub>2</sub>/CsPbBr<sub>3</sub>/C (black box), FTO/L-TiO<sub>2</sub>:MoS<sub>2</sub>/CsPbBr<sub>3</sub>/C (red box), and FTO/L-TiO<sub>2</sub>:MoSe<sub>2</sub>/CsPbBr<sub>3</sub>/C solar cells (blue box) [<a href="#B93-nanomaterials-14-01783" class="html-bibr">93</a>].</p> "> Figure 19
<p>(<b>a</b>) Planar device structure; (<b>b</b>) Energy band diagram of FTO/ETM/Perovskite/C structure; (<b>c</b>) J–V curves for different ETMs [<a href="#B108-nanomaterials-14-01783" class="html-bibr">108</a>].</p> "> Figure 20
<p>(<b>a</b>) Energy diagram of each layer in the device with energy levels given in eV; (<b>b</b>) J–V curves of inorganic PSCs with and without CuInS<sub>2</sub>/ZnS QDs under air mass 1.5 global (AM 1.5G, 100 mW cm<sup>−2</sup>) illumination; (<b>c</b>) Photovoltaic characteristics for 20 random PSC devices [<a href="#B110-nanomaterials-14-01783" class="html-bibr">110</a>].</p> "> Figure 21
<p>(<b>a</b>) Current density–voltage curves (in the reverse direction) related to glass/FTO/TiO<sub>2</sub>/perovskite/CuInS<sub>2</sub>/C structures; (<b>b</b>) Steady-state PL spectra of glass/mesoporous-TiO<sub>2</sub>/perovskite samples with mesoporous TiO<sub>2</sub> layers cured under the H-lamp and M-lamp for optimized times of 5 and 20 min, respectively, in comparison with those of the samples that are cured in the furnace at temperatures of 300, 400, and 500 °C or do not have any ETL (ETL-free); (<b>c</b>) Steady-state PCE over 120 s for C-PSCs with both of their compact and mesoporous TiO<sub>2</sub> layers cured using the H-lamp (H-5 min) and M-lamp (M-20 min) in comparison with samples with their compact and mesoporous TiO<sub>2</sub> layers prepared in the furnace in temperatures of 400 and 500 °C [<a href="#B117-nanomaterials-14-01783" class="html-bibr">117</a>] (reprinted with permission from ACS Appl. Energy Mater. 2021, 4, 8, 7800–7810. Copyright 2021 American Chemical Society).</p> "> Figure 22
<p>(<b>a</b>–<b>c</b>) Schematic illustration of direct lamination of carbon foil counter electrode on CIS HTL by conductive adhesive ink [<a href="#B119-nanomaterials-14-01783" class="html-bibr">119</a>].</p> "> Figure 23
<p>(<b>a</b>) J–V curves and (<b>b</b>,<b>c</b>) ambient long-term stability (25 °C; RH of 10 %) of PSCs based on laminated carbon with optimized ink layer and PSCs with Au electrode, respectively [<a href="#B119-nanomaterials-14-01783" class="html-bibr">119</a>].</p> "> Figure 24
<p>(<b>a</b>) Band diagram of mixed-perovskite devices with NPB post-treatment; (<b>b</b>) Current density–voltage (J–V) characteristic of devices; (<b>c</b>) Stability of respective photovoltaic devices out of glovebox and in ambient (RH = 45%) tracked by measurement of PCE for 4000 h [<a href="#B122-nanomaterials-14-01783" class="html-bibr">122</a>].</p> "> Figure 25
<p>Statistical distribution of photovoltaic parameters of reference and 4BrZnP devices: (<b>a</b>) PCE; (<b>b</b>) FF; (<b>c</b>) Voc; (<b>d</b>) Jsc [<a href="#B123-nanomaterials-14-01783" class="html-bibr">123</a>].</p> "> Figure 26
<p>Schematic diagram of the preparation of Cu<sub>2</sub>SnS<sub>3</sub> Ink and the fabrication process for the corresponding C-PSCs [<a href="#B124-nanomaterials-14-01783" class="html-bibr">124</a>] (reprinted with permission from ACS Appl. Nano Mater. 2022, 5, 8, 10755–10762. Copyright 2022 American Chemical Society).</p> "> Figure 27
<p>Planar-view SEM images of (<b>a</b>) FAPbI<sub>3</sub> perovskite film and (<b>b</b>) Cu<sub>2</sub>SnS<sub>3</sub> nanocrystal HTL; (<b>c</b>) Schematic device structures of a PSC; (<b>d</b>) J–V curves for PSCs with champion PCEs [<a href="#B124-nanomaterials-14-01783" class="html-bibr">124</a>] (reprinted with permission from ACS Appl. Nano Mater. 2022, 5, 8, 10755–10762. Copyright 2022 American Chemical Society).</p> "> Figure 28
<p>(<b>a</b>) Jsc and (<b>b</b>) Voc as a function of illuminated light intensity for the PSCs; (<b>c</b>) Energy diagram of each layer in the device with energy levels given in eV [<a href="#B125-nanomaterials-14-01783" class="html-bibr">125</a>].</p> "> Figure 29
<p>(<b>a</b>) Schematic device structure of the paintable carbon electrode-based perovskite solar cell; (<b>b</b>) Cross-sectional SEM image of a typical solar cell without a carbon electrode; (<b>c</b>) Planar SEM image of the perovskite film; (<b>d</b>) Planar SEM image of the CZTS film [<a href="#B129-nanomaterials-14-01783" class="html-bibr">129</a>].</p> "> Figure 30
<p>(<b>a</b>) Champion J–V curves; (<b>b</b>) Steady-state output current densities at maximum power point; (<b>c</b>) IPCE spectrum for perovskite solar cells employing gs-Cu<sub>2</sub>ZnSnS<sub>4</sub> nanocrystals; (<b>d</b>) Typical J–V curves of a C-PSC employing gs-Cu<sub>2</sub>ZnSnS<sub>4</sub> hole conducting layer with an effective area of 1.00 cm<sup>2</sup>. The inset shows the photograph of a 1.00 cm<sup>2</sup> perovskite solar cell [<a href="#B131-nanomaterials-14-01783" class="html-bibr">131</a>].</p> "> Figure 31
<p>Stability diagrams of HTM-free-PSC and PSC-with-kesterite. The variation of (<b>a</b>) Jsc, (<b>b</b>) Voc, (<b>c</b>) FF, and (<b>d</b>) PCE with storing time. The samples were stored at room temperature, in the dark, and without encapsulation [<a href="#B132-nanomaterials-14-01783" class="html-bibr">132</a>].</p> "> Figure 32
<p>(<b>a</b>) Tauc plots of CZTS NPs measured from the transmittance spectra; (<b>b</b>) Cyclic voltammetry plots to estimate energy levels of CZTS NPs using 0.1 M TBAPF<sub>6</sub> in acetonitrile as an electrolyte; (<b>c</b>) Schematic of the energy-level alignment between the PSK layer and different HTMs; (<b>d</b>) Electrical conductivity of CZTS thin films with different Zn/Sn ratios [<a href="#B133-nanomaterials-14-01783" class="html-bibr">133</a>] (reprinted with permission from ACS Appl. Mater. Interfaces 2022, 14, 15, 17296–17311. Copyright 2022 American Chemical Society).</p> "> Figure 33
<p>(<b>a</b>–<b>d</b>) Statistical box charts of photovoltaic parameters of PSCs based on CZTS HTMs with different ratios of Zn/Sn and CIS as the reference (efficiency, open-circuit voltage, short-circuit current density, and fill factor) [<a href="#B133-nanomaterials-14-01783" class="html-bibr">133</a>] (reprinted with permission from ACS Appl. Mater. Interfaces 2022, 14, 15, 17296–17311. Copyright 2022 American Chemical Society).</p> "> Figure 34
<p>(<b>a</b>) Schematic energy-level diagram of the C-PSC; (<b>b</b>) J–V curves for the champion C-PSC with CZGS HTM and the reference HTM-free C-PSC; and (<b>c</b>) Summary of the PCE for the fabricated C-PSCs [<a href="#B135-nanomaterials-14-01783" class="html-bibr">135</a>].</p> ">
Abstract
:1. Introduction
2. Perovskite Solar Cells (PSCs)
3. Chalcogenides
3.1. Definition and Properties
- According to the type of cation in their structure, they are classified in three main categories: alkali or alkaline earth, transition metal, and main-group chalcogenides.
- According to the number of their components, they are classified as binary, ternary, and quaternary structures.
- According to the number of chalcogen ions, they are classified as monochalcogenide, dichalcogenide, and trichalcogenide.
3.2. Implementation in Solar Cells
- Transition metal chalcogenides (TMDs), such as molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2), and tungsten diselenide (WSe2), have a superior hole mobility while they can also produce homogeneous films with tunable properties [50]. They have been, therefore, mainly used as hole transport materials (HTMs) to prepare the hole transport layers (HTLs) for organic photovoltaics (OPVs) and perovskite solar cells (PSCs).
- Metal chalcogenides, such as lead (Pb)-based and copper (Cu)-based ternary and quaternary, together with transition metal cadmium (Cd)-based and the semi-metal antimony (Sb)-based chalcogenides, have exhibited excellent performance as absorbers for thin-film solar cells and quantum dot solar cells (QDSSCs).
- Transition metal cadmium (Cd)-based sulfides and selenides have exhibited satisfactory performance as electron transport layers (ETLs) applied in perovskite solar cells (PSCs), organic photovolatics (OPVs), and antimony chalcogenide solar cells (Sb-CSCs).
- Transition metal cobalt (Co) and nickel (Ni) sulfides, along with metal copper (Cu) sulfide chalcogenides, have achieved high-performance photoelectrochemical solar cells, which include dye sensitized solar cells (DSSCs) and quantum dot sensitized solar cells (QDSSCs), when applied as counter electrodes.
3.2.1. Chalcogenides as Hole Transport Materials (HTMs)
3.2.2. Chalcogenides as Light Absorbers
3.2.3. Chalcogenides as Electron Transport Materials (ETMs)
3.2.4. Chalcogenides as Counter Electrodes
4. Incorporation in Carbon Electrode PSCs (C-PSCs)
4.1. Sulfides
4.1.1. Molybdenum Disulfide (MoS2)
4.1.2. Tungsten Disulfide (WS2)
4.1.3. Cadmium Sulfide (CdS)
4.1.4. Copper Sulfide (CuS)
4.1.5. Other Structures
4.2. Selenides
4.3. Ternary
4.3.1. Copper Indium Sulfide (CuInS2-CIS)
4.3.2. Other Structures
4.4. Quaternary
4.4.1. Copper Indium Gallium Sulfide (CuInGaS-CIGS)
4.4.2. Copper Zinc Tin Sulfide (CuZnSnS-CZTS)
4.4.3. Other Structures
5. Prospects and Challenges
6. Conclusions
Funding
Conflicts of Interest
References
- NREL. Champion Photovoltaic Module Efficiency Chart. Available online: https://www.nrel.gov/pv/module-efficiency.html (accessed on 12 September 2024).
- Bidikoudi, M.; Kalarakis, A.N.; Stathatos, E. A Facile, Low-Cost and Industrially Feasible Method to Implement Complex Structured Perovskites, in Stable, C-Based Perovskite Solar Cells. Sol. Energy 2021, 220, 660–670. [Google Scholar] [CrossRef]
- Saparov, B. Next Generation Thin-Film Solar Absorbers Based on Chalcogenides. Chem. Rev. 2022, 122, 10575–10577. [Google Scholar] [CrossRef]
- Wang, C.; Nie, R.; Dai, Y.; Tai, H.; Zhu, B.; Zhao, L.; Wu, Y.; Guo, W.; Seok, S.I. Enhancing the Inherent Stability of Perovskite Solar Cells through Chalcogenide-Halide Combinations. Energy Environ. Sci. 2024, 17, 1368–1386. [Google Scholar] [CrossRef]
- Sopiha, K.V.; Comparotto, C.; Márquez, J.A.; Scragg, J.J.S. Chalcogenide Perovskites: Tantalizing Prospects, Challenging Materials. Adv. Opt. Mater. 2022, 10, 2101704. [Google Scholar] [CrossRef]
- Raj, R.; Singh, R.; Guin, M. Chalcogenide Perovskite, An Emerging Photovoltaic Material: Current Status and Future Perspectives. ChemistrySelect 2023, 8, e202303550. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- NREL. Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 12 September 2024).
- Sharma, R.; Sharma, A.; Agarwal, S.; Dhaka, M.S. Stability and Efficiency Issues, Solutions and Advancements in Perovskite Solar Cells: A Review. Sol. Energy 2022, 244, 516–535. [Google Scholar] [CrossRef]
- Ansari, M.I.H.; Qurashi, A.; Nazeeruddin, M.K. Frontiers, Opportunities, and Challenges in Perovskite Solar Cells: A Critical Review. J. Photochem. Photobiol. C Photochem. Rev. 2018, 35, 1–24. [Google Scholar] [CrossRef]
- Bidikoudi, M.; Stathatos, E. Carbon Electrodes: The Rising Star for PSC Commercialization. Electronics 2023, 12, 992. [Google Scholar] [CrossRef]
- Zong, B.; Fu, W.; Guo, Z.; Wang, S.; Huang, L.; Zhang, B.; Bala, H.; Cao, J.; Wang, X.; Sun, G.; et al. Highly Stable Hole-Conductor-Free Perovskite Solar Cells Based upon Ammonium Chloride and a Carbon Electrode. J. Colloid Interface Sci. 2019, 540, 315–321. [Google Scholar] [CrossRef]
- Gan, Y.; Sun, J.; Guo, P.; Jiang, H.; Li, J.; Zhu, H.; Fan, X.; Huang, L.; Wang, Y. Advances in the Research of Carbon Electrodes for Perovskite Solar Cells. Dalton Trans. 2023, 52, 16558–16577. [Google Scholar] [CrossRef] [PubMed]
- Hadadian, M.; Smått, J.-H.; Correa-Baena, J.-P. The Role of Carbon-Based Materials in Enhancing the Stability of Perovskite Solar Cells. Energy Environ. Sci. 2020, 13, 1377–1407. [Google Scholar] [CrossRef]
- Passatorntaschakorn, W.; Khampa, W.; Musikpan, W.; Ngamjarurojana, A.; Gardchareon, A.; Kanjanaboos, P.; Kaewprajak, A.; Kumnorkaew, P.; Ruankham, P.; Wongratanaphisan, D. Sustainable Planar Hole-Transporting Material-Free Carbon Electrode-Based Perovskite Solar Cells: Stability Beyond Two Years. ACS Appl. Energy Mater. 2024, 7, 6972–6985. [Google Scholar] [CrossRef]
- Bogachuk, D.; Zouhair, S.; Wojciechowski, K.; Yang, B.; Babu, V.; Wagner, L.; Xu, B.; Lim, J.; Mastroianni, S.; Pettersson, H.; et al. Low-Temperature Carbon-Based Electrodes in Perovskite Solar Cells. Energy Environ. Sci. 2020, 13, 3880–3916. [Google Scholar] [CrossRef]
- González, L.M.; Ramirez, D.; Jaramillo, F. Current Status and Trends of Carbon-Based Electrodes for Fully Solution-Processed Perovskite Solar Cells. J. Energy Chem. 2022, 68, 222–246. [Google Scholar] [CrossRef]
- Arunkumar Priya, S.S. Chalcogenides-Based Nanomaterials for Contaminant Removal in Wastewater Treatment. In Structural and Chemical Features of Chalcogenides; Intechopen: London, UK, 2024; p. 44. ISBN 978-0-85466-184-8. [Google Scholar]
- Chen, S.; Li, W.-H.; Jiang, W.; Yang, J.; Zhu, J.; Wang, L.; Ou, H.; Zhuang, Z.; Chen, M.; Sun, X.; et al. MOF Encapsulating N-Heterocyclic Carbene-Ligated Copper Single-Atom Site Catalyst towards Efficient Methane Electrosynthesis. Angew. Chem. Int. Ed. 2022, 61, e202114450. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, Z.; Jiang, W.; Zhang, S.; Zhu, J.; Wang, L.; Ou, H.; Zaman, S.; Tan, L.; Zhu, P.; et al. Engineering Water Molecules Activation Center on Multisite Electrocatalysts for Enhanced CO2 Methanation. J. Am. Chem. Soc. 2022, 144, 12807–12815. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, J.; Chen, S.; Sun, W.; Wang, D. Liquid Fluxional Ga Single Atom Catalysts for Efficient Electrochemical CO2 Reduction. Angew. Chem. Int. Ed. 2023, 62, e202215136. [Google Scholar] [CrossRef]
- Tang, T.; Wang, Z.; Guan, J. Achievements and Challenges of Copper-Based Single-Atom Catalysts for the Reduction of Carbon Dioxide to C2+ Products. Exploration 2023, 3, 20230011. [Google Scholar] [CrossRef]
- Kanatzidis, M.G. Chalcogenides: Solid-State Chemistry. In Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; ISBN 978-1-119-95143-8. [Google Scholar]
- Perera, S.; Hui, H.; Zhao, C.; Xue, H.; Sun, F.; Deng, C.; Gross, N.; Milleville, C.; Xu, X.; Watson, D.F.; et al. Chalcogenide Perovskites—An Emerging Class of Ionic Semiconductors. Nano Energy 2016, 22, 129–135. [Google Scholar] [CrossRef]
- Njema, G.G.; Kibet, J.K. A Review of Chalcogenide-Based Perovskites as the next Novel Materials: Solar Cell and Optoelectronic Applications, Catalysis and Future Perspectives. Next Nanotechnol. 2025, 7, 100102. [Google Scholar] [CrossRef]
- Sun, Y.-Y.; Agiorgousis, M.L.; Zhang, P.; Zhang, S. Chalcogenide Perovskites for Photovoltaics. Nano Lett. 2015, 15, 581–585. [Google Scholar] [CrossRef]
- Yang, C.; Kneiß, M.; Schein, F.-L.; Lorenz, M.; Grundmann, M. Room-Temperature Domain-Epitaxy of Copper Iodide Thin Films for Transparent CuI/ZnO Heterojunctions with High Rectification Ratios Larger than 109. Sci. Rep. 2016, 6, 21937. [Google Scholar] [CrossRef]
- Parreira, P.; Lavareda, G.; Valente, J.; Nunes, F.T.; Amaral, A.; de Carvalho, C.N. Optoelectronic Properties of Transparent P-Type Semiconductor CuS Thin Films. Phys. Status Solidi (A) 2010, 207, 1652–1654. [Google Scholar] [CrossRef]
- Wang, B.; Iocozzia, J.; Zhang, M.; Ye, M.; Yan, S.; Jin, H.; Wang, S.; Zou, Z.; Lin, Z. The Charge Carrier Dynamics, Efficiency and Stability of Two-Dimensional Material-Based Perovskite Solar Cells. Chem. Soc. Rev. 2019, 48, 4854–4891. [Google Scholar] [CrossRef]
- Özuğur Uysal, B.; Nayır, Ş.; Açba, M.; Çıtır, B.; Durmaz, S.; Koçoğlu, Ş.; Yıldız, E.; Pekcan, Ö. 2D Materials (WS2, MoS2, MoSe2) Enhanced Polyacrylamide Gels for Multifunctional Applications. Gels 2022, 8, 465. [Google Scholar] [CrossRef]
- Roy, S.; Bermel, P. Electronic and Optical Properties of Ultra-Thin 2D Tungsten Disulfide for Photovoltaic Applications. Sol. Energy Mater. Sol. Cells 2018, 174, 370–379. [Google Scholar] [CrossRef]
- Allain, A.; Kis, A. Electron and Hole Mobilities in Single-Layer WSe2. ACS Nano 2014, 8, 7180–7185. [Google Scholar] [CrossRef]
- Bangolla, H.K.; Nallapureddy, R.R.; MC, S.K. Cu-Rich Copper Indium Sulfide Thin Films Deposited by Co-Evaporation for Photovoltaic Applications. J. Mater. Sci. Mater. Electron. 2023, 34, 341. [Google Scholar] [CrossRef]
- Vasekar, P.S.; Jahagirdar, A.H.; Dhere, N.G. Photovoltaic Characterization of Copper–Indium–Gallium Sulfide (CIGS2) Solar Cells for Lower Absorber Thicknesses. Thin Solid Film. 2010, 518, 1788–1790. [Google Scholar] [CrossRef]
- Vijayan, K.; Vijayachamundeeswari, S.P. Effect of Temperature and Improving the Optoelectrical Attributes of Copper Gallium Sulfide (CuGaS2) Thin Films. Phase Transit. 2023, 96, 350–360. [Google Scholar] [CrossRef]
- Aydin, E.; Sankir, M.; Sankir, N.D. Conventional and Rapid Thermal Annealing of Spray Pyrolyzed Copper Indium Gallium Sulfide Thin Films. J. Alloys Compd. 2014, 615, 461–468. [Google Scholar] [CrossRef]
- Lee, J.; Cohen, J.D.; Shafarman, W.N. The Determination of Carrier Mobilities in CIGS Photovoltaic Devices Using High-Frequency Admittance Measurements. Thin Solid Films 2005, 480–481, 336–340. [Google Scholar] [CrossRef]
- Eya, H.I.; Dzade, N.Y. Density Functional Theory Insights into the Structural, Electronic, Optical, Surface, and Band Alignment Properties of BaZrS3 Chalcogenide Perovskite for Photovoltaics. ACS Appl. Energy Mater. 2023, 6, 5729–5738. [Google Scholar] [CrossRef]
- Buffiere, M.; Dhawale, D.S.; El-Mellouhi, F. Chalcogenide Materials and Derivatives for Photovoltaic Applications. Energy Technol. 2019, 7, 1900819. [Google Scholar] [CrossRef]
- Kassa, M.D.; Debelo, N.G.; Woldemariam, M.M. Woldemariam Computational Study of Structural, Elastic, Electronic, Phonon Dispersion Relation and Thermodynamic Properties of Orthorhombic CaZrS3 for Optoelectronic Applications. CMP 2023, 26, 23701. [Google Scholar] [CrossRef]
- Sharma, S.; Ward, Z.D.; Bhimani, K.; Sharma, M.; Quinton, J.; Rhone, T.D.; Shi, S.-F.; Terrones, H.; Koratkar, N. Machine Learning-Aided Band Gap Engineering of BaZrS3 Chalcogenide Perovskite. ACS Appl. Mater. Interfaces 2023, 15, 18962–18972. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Xu, J.; Liang, Y.; Chen, X.; Jia, M.; Zhang, J.; Lian, L.; Liu, Y.; Li, X.; Shi, Z. P-Type Conductive BaZrS3 Thin Film and Its Band Gap Tunning via Ruddlesden-Popper Ba3Zr2S7 and Titanium Alloying. Chem. Eng. J. 2023, 473, 145351. [Google Scholar] [CrossRef]
- Xiao, J.-R.; Yang, S.-H.; Feng, F.; Xue, H.-G.; Guo, S.-P. A Review of the Structural Chemistry and Physical Properties of Metal Chalcogenide Halides. Coord. Chem. Rev. 2017, 347, 23–47. [Google Scholar] [CrossRef]
- Hasan, S.; Baral, K.; Li, N.; Ching, W.-Y. Structural and Physical Properties of 99 Complex Bulk Chalcogenides Crystals Using First-Principles Calculations. Sci. Rep. 2021, 11, 9921. [Google Scholar] [CrossRef]
- Jing, Y.; Liu, B.; Zhu, X.; Ouyang, F.; Sun, J.; Zhou, Y. Tunable Electronic Structure of Two-Dimensional Transition Metal Chalcogenides for Optoelectronic Applications. Nanophotonics 2020, 9, 1675–1694. [Google Scholar] [CrossRef]
- Liu, D.; Yin, Y.-X.; Liu, F.-J.; Miao, C.-C.; Zhuang, X.-M.; Pang, Z.-Y.; Xu, M.-S.; Chen, M.; Yang, Z.-X. Thickness-Dependent Highly Sensitive Photodetection Behavior of Lead-Free All-Inorganic CsSnBr3 Nanoplates. Rare Met. 2022, 41, 1753–1760. [Google Scholar] [CrossRef]
- Hong, E.; Li, Z.; Zhang, X.; Fan, X.; Fang, X. Deterministic Fabrication and Quantum-Well Modulation of Phase-Pure 2D Perovskite Heterostructures for Encrypted Light Communication. Adv. Mater. 2024, 36, 2400365. [Google Scholar] [CrossRef] [PubMed]
- More, M.P.; Nangare, S.S.; Patil, P.O.; Deshmukh, P.K. Chapter 7—Nanostructures Used in Cancer Imaging. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Cruz, J.N., Altalhi, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 169–191. ISBN 978-0-323-95171-5. [Google Scholar]
- Muslih, E.Y.; Munir, B.; Khan, M.M. 2—Advances in Chalcogenides and Chalcogenides-Based Nanomaterials Such as Sulfides, Selenides, and Tellurides. In Chalcogenide-Based Nanomaterials as Photocatalysts; Khan, M.M., Ed.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2021; pp. 7–31. ISBN 978-0-12-820498-6. [Google Scholar]
- Xiong, Z.; Tang, J. 15—Two-Dimensional Materials and Hybrid Systems for Photodetection. In Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures; Yang, E.-H., Datta, D., Ding, J., Hader, G., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 325–349. ISBN 978-0-12-818475-2. [Google Scholar]
- Bellani, S.; Bartolotta, A.; Agresti, A.; Calogero, G.; Grancini, G.; Di Carlo, A.; Kymakis, E.; Bonaccorso, F. Solution-Processed Two-Dimensional Materials for next-Generation Photovoltaics. Chem. Soc. Rev. 2021, 50, 11870–11965. [Google Scholar] [CrossRef]
- Bidikoudi, M.; Kymakis, E. Novel Approaches and Scalability Prospects of Copper Based Hole Transporting Materials for Planar Perovskite Solar Cells. J. Mater. Chem. C 2019, 7, 13680–13708. [Google Scholar] [CrossRef]
- Wang, J.; Yu, H.; Hou, C.; Zhang, J. Solution-Processable 2D α-In2Se3 as an Efficient Hole Transport Layer for High-Performance and Stable Polymer Solar Cells. Sol. RRL 2020, 4, 1900428. [Google Scholar] [CrossRef]
- Kakavelakis, G.; Del Rio Castillo, A.E.; Pellegrini, V.; Ansaldo, A.; Tzourmpakis, P.; Brescia, R.; Prato, M.; Stratakis, E.; Kymakis, E.; Bonaccorso, F. Size-Tuning of WSe2 Flakes for High Efficiency Inverted Organic Solar Cells. ACS Nano 2017, 11, 3517–3531. [Google Scholar] [CrossRef]
- Adilbekova, B.; Lin, Y.; Yengel, E.; Faber, H.; Harrison, G.; Firdaus, Y.; El-Labban, A.; Anjum, D.H.; Tung, V.; Anthopoulos, T.D. Liquid Phase Exfoliation of MoS2 and WS2 in Aqueous Ammonia and Their Application in Highly Efficient Organic Solar Cells. J. Mater. Chem. C 2020, 8, 5259–5264. [Google Scholar] [CrossRef]
- Lin, Y.; Adilbekova, B.; Firdaus, Y.; Yengel, E.; Faber, H.; Sajjad, M.; Zheng, X.; Yarali, E.; Seitkhan, A.; Bakr, O.M.; et al. 17% Efficient Organic Solar Cells Based on Liquid Exfoliated WS2 as a Replacement for PEDOT:PSS. Adv. Mater. 2019, 31, 1902965. [Google Scholar] [CrossRef]
- Ram, K.S.; Singh, J. Over 20% Efficient and Stable Non-Fullerene-Based Ternary Bulk-Heterojunction Organic Solar Cell with WS2 Hole-Transport Layer and Graded Refractive Index Antireflection Coating. Adv. Theory Simul. 2020, 3, 2000047. [Google Scholar] [CrossRef]
- Peng, Y.; Yaacobi-Gross, N.; Perumal, A.K.; Faber, H.A.; Vourlias, G.; Patsalas, P.A.; Bradley, D.D.C.; He, Z.; Anthopoulos, T.D. Efficient Organic Solar Cells Using Copper(I) Iodide (CuI) Hole Transport Layers. Appl. Phys. Lett. 2015, 106, 243302. [Google Scholar] [CrossRef]
- Bhargav, R.; Patra, A.; Dhawan, S.K.; Gairola, S.P. Solution Processed Hole Transport Layer towards Efficient and Cost Effective Organic Solar Cells. Sol. Energy 2018, 165, 131–135. [Google Scholar] [CrossRef]
- Kohnehpoushi, S.; Nazari, P.; Nejand, B.A.; Eskandari, M. MoS2: A Two-Dimensional Hole-Transporting Material for High-Efficiency, Low-Cost Perovskite Solar Cells. Nanotechnology 2018, 29, 205201. [Google Scholar] [CrossRef]
- Koo, D.; Jung, S.; Oh, N.K.; Choi, Y.; Seo, J.; Lee, J.; Kim, U.; Park, H. Improved Charge Transport via WSe2-Mediated Hole Transporting Layer toward Efficient Organic Solar Cells. Semicond. Sci. Technol. 2018, 33, 125020. [Google Scholar] [CrossRef]
- Rao, H.; Sun, W.; Ye, S.; Yan, W.; Li, Y.; Peng, H.; Liu, Z.; Bian, Z.; Huang, C. Solution-Processed CuS NPs as an Inorganic Hole-Selective Contact Material for Inverted Planar Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2016, 8, 7800–7805. [Google Scholar] [CrossRef]
- Lei, H.; Yang, G.; Zheng, X.; Zhang, Z.-G.; Chen, C.; Ma, J.; Guo, Y.; Chen, Z.; Qin, P.; Li, Y.; et al. Incorporation of High-Mobility and Room-Temperature-Deposited CuS as a Hole Transport Layer for Efficient and Stable Organo-Lead Halide Perovskite Solar Cells. Sol. RRL 2017, 1, 1700038. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Jiang, Q.; Chu, W.; Zhang, D.; Zhou, Z.; Xin, J. Synergistic Effect to High-Performance Perovskite Solar Cells with Reduced Hysteresis and Improved Stability by the Introduction of Na-Treated TiO2 and Spraying-Deposited CuI as Transport Layers. ACS Appl. Mater. Interfaces 2017, 9, 41354–41362. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Wu, B.; Peng, J.; Feng, X.; Li, C.; Tang, Y. Copper-Copper Iodide Hybrid Nanostructure as Hole Transport Material for Efficient and Stable Inverted Perovskite Solar Cells. Sci. China Chem. 2019, 62, 363–369. [Google Scholar] [CrossRef]
- Ye, S.; Rao, H.; Zhao, Z.; Zhang, L.; Bao, H.; Sun, W.; Li, Y.; Gu, F.; Wang, J.; Liu, Z.; et al. A Breakthrough Efficiency of 19.9% Obtained in Inverted Perovskite Solar Cells by Using an Efficient Trap State Passivator Cu(Thiourea)I. J. Am. Chem. Soc. 2017, 139, 7504–7512. [Google Scholar] [CrossRef]
- Bertolazzi, S.; Gobbi, M.; Zhao, Y.; Backes, C.; Samorì, P. Molecular Chemistry Approaches for Tuning the Properties of Two-Dimensional Transition Metal Dichalcogenides. Chem. Soc. Rev. 2018, 47, 6845–6888. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, Y.; Tang, B.; Yu, Z.G.; Li, M.; Lin, F.; Zhang, S.; Zhang, Y.-W.; Ouyang, J.; Gong, H. Shallow Defects Levels and Extract Detrapped Charges to Stabilize Highly Efficient and Hysteresis-Free Perovskite Photovoltaic Devices. Nano Energy 2020, 71, 104556. [Google Scholar] [CrossRef]
- Zhu, X.; Cheng, B.; Li, X.; Zhang, J.; Zhang, L. Enhanced Efficiency of Perovskite Solar Cells by PbS Quantum Dot Modification. Appl. Surf. Sci. 2019, 487, 32–40. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Jiang, Q.; Lai, H.; Li, S.; Tan, Y.; Chen, Y.; Li, S. Perovskite Solar Cells Employing an Eco-Friendly and Low-Cost Inorganic Hole Transport Layer for Enhanced Photovoltaic Performance and Operational Stability. J. Mater. Chem. A 2019, 7, 7065–7073. [Google Scholar] [CrossRef]
- Li, J.; Kuang, C.; Zhao, M.; Zhao, C.; Liu, L.; Lu, F.; Wang, N.; Huang, C.; Duan, C.; Jian, H.; et al. Ternary CuZnS Nanocrystals: Synthesis, Characterization, and Interfacial Application in Perovskite Solar Cells. Inorg. Chem. 2018, 57, 8375–8381. [Google Scholar] [CrossRef]
- Khanzada, L.S.; Levchuk, I.; Hou, Y.; Azimi, H.; Osvet, A.; Ahmad, R.; Brandl, M.; Herre, P.; Distaso, M.; Hock, R.; et al. Effective Ligand Engineering of the Cu2ZnSnS4 Nanocrystal Surface for Increasing Hole Transport Efficiency in Perovskite Solar Cells. Adv. Funct. Mater. 2016, 26, 8300–8306. [Google Scholar] [CrossRef]
- Tseng, C.-C.; Wu, G.; Chang, L.-B.; Jeng, M.-J.; Feng, W.-S.; Chen, D.W.; Chen, L.-C.; Lee, K.-L. Effects of Annealing on Characteristics of Cu2ZnSnSe4/CH3NH3PbI3/ZnS/IZO Nanostructures for Enhanced Photovoltaic Solar Cells. Nanomaterials 2020, 10, 521. [Google Scholar] [CrossRef]
- Unold, T. Accelerating Research on Novel Photovoltaic Materials. Faraday Discuss. 2022, 239, 235–249. [Google Scholar] [CrossRef]
- Richhariya, G.; Kumar, A. Samsher Chapter 2—Solar Cell Technologies. In Photovoltaic Solar Energy Conversion; Gorjian, S., Shukla, A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 27–50. ISBN 978-0-12-819610-6. [Google Scholar]
- Werlinger, F.; Segura, C.; Martínez, J.; Osorio-Roman, I.; Jara, D.; Yoon, S.J.; Gualdrón-Reyes, A.F. Current Progress of Efficient Active Layers for Organic, Chalcogenide and Perovskite-Based Solar Cells: A Perspective. Energies 2023, 16, 5868. [Google Scholar] [CrossRef]
- Makita, K.; Kamikawa, Y.; Mizuno, H.; Oshima, R.; Shoji, Y.; Ishizuka, S.; Müller, R.; Beutel, P.; Lackner, D.; Benick, J.; et al. III-V//CuIn1−GaSe2 Multijunction Solar Cells with 27.2% Efficiency Fabricated Using Modified Smart Stack Technology with Pd Nanoparticle Array and Adhesive Material. Prog. Photovolt. Res. Appl. 2021, 29, 887–898. [Google Scholar] [CrossRef]
- Jagadamma, L.K.; Wang, S. Wide-Bandgap Halide Perovskites for Indoor Photovoltaics. Front. Chem. 2021, 9, 632021. [Google Scholar] [CrossRef]
- Kowsar, A.; Farhad, S.F.U.; Rahaman, M.; Islam, M.; Imam, A.; Debnath, S.; Sultana, M.; Hoque, M.; Sharmin, A.; Mahmood, Z. Progress in Major Thin-Film Solar Cells: Growth Technologies, Layer Materials and Efficiencies. Int. J. Renew. Energy Res. 2019, 9, 579–597. [Google Scholar]
- Choi, Y.C.; Jung, K.-W. Recent Progress in Fabrication of Antimony/Bismuth Chalcohalides for Lead-Free Solar Cell Applications. Nanomaterials 2020, 10, 2284. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Liu, Y.; Wang, Z.; Zhang, Y. Boosting VOC of Antimony Chalcogenide Solar Cells: A Review on Interfaces and Defects. Nano Sel. 2021, 2, 1818–1848. [Google Scholar] [CrossRef]
- Zhao, H.; Rosei, F. Colloidal Quantum Dots for Solar Technologies. Chem 2017, 3, 229–258. [Google Scholar] [CrossRef]
- Kirmani, A.R.; Luther, J.M.; Abolhasani, M.; Amassian, A. Colloidal Quantum Dot Photovoltaics: Current Progress and Path to Gigawatt Scale Enabled by Smart Manufacturing. ACS Energy Lett. 2020, 5, 3069–3100. [Google Scholar] [CrossRef]
- Kottayi, R.; Maurya, D.K.; Sittaramane, R.; Angaiah, S. Recent Developments in Metal Chalcogenides Based Quantum Dot Sensitized Solar Cells. ES Energy Environ. 2022, 18, 1–40. [Google Scholar] [CrossRef]
- Zhao, E.; Gao, L.; Yang, S.; Wang, L.; Cao, J.; Ma, T. In Situ Fabrication of 2D SnS2 Nanosheets as a New Electron Transport Layer for Perovskite Solar Cells. Nano Res. 2018, 11, 5913–5923. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, S.; Zhang, H.; Chang, S.-Y.; Huang, W.; Zhu, B.; Shen, Y.; Shen, C.; Wang, D.; Yang, Y.; et al. 20% Efficient Perovskite Solar Cells with 2D Electron Transporting Layer. Adv. Funct. Mater. 2019, 29, 1805168. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, H.; Wang, Y.; Shibayama, N.; Kubo, T.; Liu, Y.; Zhang, X.; Segawa, H. High-Performance Electron-Transport-Layer-Free Quantum Junction Solar Cells with Improved Efficiency Exceeding 10%. ACS Energy Lett. 2021, 6, 493–500. [Google Scholar] [CrossRef]
- Sheela, S.E.; Sekar, R.; Maurya, D.K.; Paulraj, M.; Angaiah, S. Progress in Transition Metal Chalcogenides-Based Counter Electrode Materials for Dye-Sensitized Solar Cells. Mater. Sci. Semicond. Process. 2023, 156, 107273. [Google Scholar] [CrossRef]
- Tapa, A.R.; Xiang, W.; Zhao, X. Metal Chalcogenides (MxEy; E = S, Se, and Te) as Counter Electrodes for Dye–Sensitized Solar Cells: An Overview and Guidelines. Adv. Energy Sustain. Res. 2021, 2, 2100056. [Google Scholar] [CrossRef]
- Kharboot, L.H.; Fadil, N.A.; Bakar, T.A.; Najib, A.S.; Nordin, N.H.; Ghazali, H. A Review of Transition Metal Sulfides as Counter Electrodes for Dye-Sensitized and Quantum Dot-Sensitized Solar Cells. Materials 2023, 16, 2881. [Google Scholar] [CrossRef]
- Chung, N.T.; Nguyen, P.T.; Tung, H.T.; Phuc, D.H. Quantum Dot Sensitized Solar Cell: Photoanodes, Counter Electrodes, and Electrolytes. Molecules 2021, 26, 2638. [Google Scholar] [CrossRef]
- Duan, J.; Dou, D.; Zhao, Y.; Wang, Y.; Yang, X.; Yuan, H.; He, B.; Tang, Q. Spray-Assisted Deposition of CsPbBr3 Films in Ambient Air for Large-Area Inorganic Perovskite Solar Cells. Mater. Today Energy 2018, 10, 146–152. [Google Scholar] [CrossRef]
- Zhou, Q.; Du, J.; Duan, J.; Wang, Y.; Yang, X.; Duan, Y.; Tang, Q. Photoactivated Transition Metal Dichalcogenides to Boost Electron Extraction for All-Inorganic Tri-Brominated Planar Perovskite Solar Cells. J. Mater. Chem. A 2020, 8, 7784–7791. [Google Scholar] [CrossRef]
- Han, J.; Zhao, S.; Liu, X.; Wang, Z.; Yan, H.; Lin, H. Robust and Efficient Carbon-Based Planar Perovskite Solar Cells with a CsPbBr3–MoS2 Hybrid Absorber. ACS Appl. Mater. Interfaces 2023, 15, 55895–55902. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; He, B.; Mao, J.; Liu, W.; Wang, Z.; Chen, H.; Tang, Q. Back Interface Management by Multifunctional Composite Carbon Nanospheres Electrode for Efficient and Stable HTL-Free Carbon-Based Perovskite Solar Cells. Carbon 2023, 215, 118482. [Google Scholar] [CrossRef]
- Pang, B.; Chen, X.; Bao, F.; Liu, Y.; Feng, T.; Dong, H.; Yu, L.; Dong, L. Improved Charge Extraction and Atmospheric Stability of All-Inorganic Cs2AgBiBr6 Perovskite Solar Cells by MoS2 Nanoflakes. Sol. Energy Mater. Sol. Cells 2022, 246, 111932. [Google Scholar] [CrossRef]
- Zhou, Q.; Duan, J.; Yang, X.; Duan, Y.; Tang, Q. Interfacial Strain Release from the WS2/CsPbBr3 van Der Waals Heterostructure for 1.7 V Voltage All-Inorganic Perovskite Solar Cells. Angew Chem Int Ed 2020, 59, 21997–22001. [Google Scholar] [CrossRef]
- Sui, H.; He, B.; Ti, J.; Sun, S.; Jiao, W.; Chen, H.; Duan, Y.; Yang, P.; Tang, Q. Sulfur Vacancy Defects Healing of WS2 Quantum Dots Boosted Hole Extraction for All-Inorganic Perovskite Solar Cells. Chem. Eng. J. 2023, 455, 140728. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Liu, K.; Chen, M.; Peng, W.; Zhang, C.; Yang, Y.; Li, X. Laser Generated WS2 Quantum Dots for Effective Charge Transport in High-Performance Carbon-Based Perovskite Solar Cells. J. Power Sources 2022, 518, 230766. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, X.; Sun, B.; Tan, X.; Ye, H.; Tu, Y.; Shi, T.; Tang, Z.; Liao, G. Fully Low-Temperature Processed Carbon-Based Perovskite Solar Cells Using Thermally Evaporated Cadmium Sulfide as Efficient Electron Transport Layer. Org. Electron. 2019, 74, 152–160. [Google Scholar] [CrossRef]
- Xu, Y.; Li, G.; Li, R.; Jing, Y.; Zhang, H.; Wang, X.; Du, Z.; Wu, J.; Lan, Z. PbS/CdS Heterojunction Thin Layer Affords High-Performance Carbon-Based All-Inorganic Solar Cells. Nano Energy 2022, 95, 106973. [Google Scholar] [CrossRef]
- Hu, R.; Zhang, R.; Ma, Y.; Liu, W.; Chu, L.; Mao, W.; Zhang, J.; Yang, J.; Pu, Y.; Li, X. Enhanced Hole Transfer in Hole-Conductor-Free Perovskite Solar Cells via Incorporating CuS into Carbon Electrodes. Appl. Surf. Sci. 2018, 462, 840–846. [Google Scholar] [CrossRef]
- Liu, W.; Yao, X.; He, B.; Sui, H.; Wei, M.; Chen, H.; Duan, J.; Tang, Q. A Self-Assembled CuS–MXene Bridge for Hole-Boosting 10.51%-Efficiency All-Inorganic Tri-Brominated Perovskite Solar Cells. J. Mater. Chem. A 2023, 11, 20206–20214. [Google Scholar] [CrossRef]
- Pitchaiya, S.; Natarajan, M.; Santhanam, A.; Ramakrishnan, V.M.; Asokan, V.; Palanichamy, P.; Rangasamy, B.; Sundaram, S.; Velauthapillai, D. Nickel Sulphide-Carbon Composite Hole Transporting Material for (CH3NH3PbI3) Planar Heterojunction Perovskite Solar Cell. Mater. Lett. 2018, 221, 283–288. [Google Scholar] [CrossRef]
- Jing, Y.; Liu, X.; Li, R.; Liu, F.; Wang, S.; Xu, Y.; Wang, X.; Sun, W.; Wu, J.; Lan, Z. Htl-Free Carbon-Based CsPbI2Br Perovskite Solar Cells with Efficiency Over 14% by Using Nickel Sulfide Nanoparticles Modification. SSRN J. 2022. [Google Scholar] [CrossRef]
- Li, X.; Tan, Y.; Lai, H.; Li, S.; Chen, Y.; Li, S.; Xu, P.; Yang, J. All-Inorganic CsPbBr 3 Perovskite Solar Cells with 10.45% Efficiency by Evaporation-Assisted Deposition and Setting Intermediate Energy Levels. ACS Appl. Mater. Interfaces 2019, 11, 29746–29752. [Google Scholar] [CrossRef]
- Jing, Y.; Liu, X.; Xu, Y.; Zhang, M.; Li, R.; Wang, S.; Yan, Z.; Sun, W.; Wu, J.; Lan, Z. Amorphous Antimony Sulfide Nanoparticles Construct Multi-Contact Electron Transport Layers for Efficient Carbon-Based All-Inorganic CsPbI2Br Perovskite Solar Cells. Chem. Eng. J. 2023, 455, 140871. [Google Scholar] [CrossRef]
- Ijaz, S.; Raza, E.; Ahmad, Z.; Zubair, M.; Mehmood, M.Q.; Mehmood, H.; Massoud, Y.; Rehman, M.M. Numerical Simulation to Optimize the Efficiency of HTM-Free Perovskite Solar Cells by ETM Engineering. Sol. Energy 2023, 250, 108–118. [Google Scholar] [CrossRef]
- Palilis, L.C.; Vasilopoulou, M.; Verykios, A.; Soultati, A.; Polydorou, E.; Argitis, P.; Davazoglou, D.; Yusoff, A.R.b.M.; Nazeeruddin, M.K. Inorganic and Hybrid Interfacial Materials for Organic and Perovskite Solar Cells. Adv. Energy Mater. 2020, 10, 2000910. [Google Scholar] [CrossRef]
- Ding, J.; Duan, J.; Guo, C.; Tang, Q. Toward Charge Extraction in All-Inorganic Perovskite Solar Cells by Interfacial Engineering. J. Mater. Chem. A 2018, 6, 21999–22004. [Google Scholar] [CrossRef]
- Duan, J.; Wang, Y.; Yang, X.; Tang, Q. Alkyl-Chain-Regulated Charge Transfer in Fluorescent Inorganic CsPbBr3 Perovskite Solar Cells. Angew. Chem. Int. Ed. 2020, 59, 4391–4395. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Hu, T.; Zhao, Y.; He, B.; Tang, Q. Carbon-Electrode-Tailored All-Inorganic Perovskite Solar Cells To Harvest Solar and Water-Vapor Energy. Angew. Chem. 2018, 130, 5848–5851. [Google Scholar] [CrossRef]
- Teimouri, R.; Mehrvarz, S.; Kolahdouz, M.; Heydari, Z. Electrodeposited Formamidinium (Fa)-Doped Triple Cation Perovskite for Solar Application Based on Planar SnO2/Carbon Architecture. SSRN J. 2022. [Google Scholar] [CrossRef]
- Teimouri, R.; Keshtmand, R.; Mehrvarz, S.; Ghasemi, F.; Mahjoory, A.; Kolahdouz, M.; Taghavinia, N. Enhancing Planar Perovskite Solar Cell Performance by SnO2 Interface Treatment Using Urea as an Additive: A Comparative Study of Simple, Low-Temperature Approaches. ACS Appl. Electron. Mater. 2023, 5, 6014–6025. [Google Scholar] [CrossRef]
- Hoseinpour, V.; Shariatinia, Z.; Echegoyen, L. Thickness Optimization of SnO2 Electron Transporting Layer in Perovskite Solar Cells Assembled under Ambient Atmosphere. Synth. Met. 2023, 297, 117395. [Google Scholar] [CrossRef]
- Noori, L.; Hoseinpour, V.; Shariatinia, Z. Optimization of TiO2 Paste Concentration Employed as Electron Transport Layers in Fully Ambient Air Processed Perovskite Solar Cells with a Low-Cost Architecture. Ceram. Int. 2022, 48, 320–336. [Google Scholar] [CrossRef]
- Zamanpour, F.; Behrouznejad, F.; Ghavaminia, E.; Khosroshahi, R.; Zhan, Y.; Taghavinia, N. Fast Light-Cured TiO2 Layer for Low-Cost Carbon-Based Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 7800–7810. [Google Scholar] [CrossRef]
- Mahmoodpour, S.; Heydari, M.; Shooshtari, L.; Khosroshahi, R.; Mohammadpour, R.; Taghavinia, N. Slot-Die Coated Copper Indium Disulfide as Hole-Transport Material for Perovskite Solar Cells. Sustainability 2023, 15, 6562. [Google Scholar] [CrossRef]
- Baghestani, E.; Tajabadi, F.; Saki, Z.; Heidariramsheh, M.; Ghasemi, F.; Darbari, S.; Mashhoun, S.; Taghavinia, N. A Conductive Adhesive Ink for Carbon-Laminated Perovskite Solar Cells with Enhanced Stability and High Efficiency. Sol. Energy 2023, 266, 112165. [Google Scholar] [CrossRef]
- Kassem, H.; Salehi, A.; Kahrizi, M.; Jamali, Z. CuInS2/Poly(Triarylamine) (PTAA) Binary Composite as an Efficient Hole Transporter for Carbon Electrode-Based Perovskite Solar Cells. Mater. Res. Bull. 2024, 170, 112557. [Google Scholar] [CrossRef]
- Hoseinpour, V.; Shariatinia, Z.; Mahmoodpour, S. Surface Passivation Boosted Performances of Perovskite Solar Cells Assembled under Ambient Conditions. Opt. Mater. 2022, 131, 112746. [Google Scholar] [CrossRef]
- Heydari, M.; Mohammadi, M.; Baghestani, E.; Tajabadi, F.; Bowman, A.R.; Roose, B.; Forouzandeh, M.; Heidariramsheh, M.; Stranks, S.D.; Abdi, Y.; et al. Charged Defect Healing by N,N′–Di (Naphthalene-1-Yl)-N,N′ Diphenyl Benzidine at the Interface of CuInS2 Nanoparticle Hole Transporting Materials in Carbon-Based Halide Perovskite Solar Cells. J. Power Sources 2023, 581, 233498. [Google Scholar] [CrossRef]
- Malek Mohammadi, N.; Mehdipour Naiem, S.; Hosseini Alast, F.; Mohajerani, E.; Safari, N. Brominated Zinc Porphyrin Assisted Grain Boundary Defects Passivation in Carbon-Based Planar Perovskite Solar Cells. Mater. Today Sustain. 2024, 25, 100685. [Google Scholar] [CrossRef]
- Yu, Z.; Li, W.; Cheng, N.; Liu, Z.; Lei, B.; Xiao, Z.; Zi, W.; Zhao, Z.; Tu, Y. Cu2SnS3 Nanocrystal-Based Hole-Transport Layer for Carbon Electrode-Based Perovskite Solar Cells. ACS Appl. Nano Mater. 2022, 5, 10755–10762. [Google Scholar] [CrossRef]
- Li, Q.; Bai, J.; Zhang, T.; Nie, C.; Duan, J.; Tang, Q. CdZnSe@ZnSe Colloidal Alloy Quantum Dots for High-Efficiency All-Inorganic Perovskite Solar Cells. Chem. Commun. 2018, 54, 9575–9578. [Google Scholar] [CrossRef] [PubMed]
- Behrouznejad, F.; Forouzandeh, M.; Khosroshahi, R.; Meraji, K.; Badrabadi, M.N.; Dehghani, M.; Li, X.; Zhan, Y.; Liao, Y.; Ning, Z.; et al. Effective Carbon Composite Electrode for Low-Cost Perovskite Solar Cell with Inorganic CuIn0.75Ga0.25S2 Hole Transport Material. Sol. RRL 2020, 4, 1900564. [Google Scholar] [CrossRef]
- Forouzandeh, M.; Behrouznejad, F.; Ghavaminia, E.; Khosroshahi, R.; Li, X.; Zhan, Y.; Liao, Y.; Ning, Z.; Taghavinia, N. Effect of Indium Ratio in CuInxGa1-xS2/Carbon Hole Collecting Electrode for Perovskite Solar Cells. J. Power Sources 2020, 475, 228658. [Google Scholar] [CrossRef]
- Khosroshahi, R.; Tehrani, N.A.; Forouzandeh, M.; Behrouznejad, F.; Taghavinia, N.; Bagherzadeh, M. Engineering of CIGS Nanoparticle Inks for Colloidal Stability, Uniform Film Formation and Application as HTL for Perovskite Solar Cells. J. Ind. Eng. Chem. 2022, 106, 253–261. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, H.; Li, W.; Zhao, Z.; Xiao, Z.; Zi, W.; Cheng, N.; Liu, J.; Tu, Y. Cu2ZnSnS4 as an Efficient Hole Transporting Material for Low Temperature Paintable Carbon Electrode Based Perovskite Solar Cells. Org. Electron. 2020, 76, 105455. [Google Scholar] [CrossRef]
- Cao, Y.; Li, W.; Liu, Z.; Zhao, Z.; Xiao, Z.; Zi, W.; Cheng, N. Ligand Modification of Cu2ZnSnS4 Nanoparticles Boosts the Performance of Low Temperature Paintable Carbon Electrode Based Perovskite Solar Cells to 17.71%. J. Mater. Chem. A 2020, 8, 12080–12088. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, Z.; Li, W.; Zhao, Z.; Xiao, Z.; Lei, B.; Zi, W.; Cheng, N.; Liu, J.; Tu, Y. Scalable One-Step Heating up Synthesis of Cu2ZnSnS4 Nanocrystals Hole Conducting Materials for Carbon Electrode Based Perovskite Solar Cells. Sol. Energy 2021, 224, 51–57. [Google Scholar] [CrossRef]
- Mashreghi, A.; Maleki, K.; Moradzadeh, M. Two-Phase Synthesized Cu2ZnSnS4 Nanoparticles as Inorganic Hole-Transporting Material of Paintable Carbon-Based Perovskite Solar Cells. Sol. Energy 2020, 201, 547–554. [Google Scholar] [CrossRef]
- Heidariramsheh, M.; Forouzandeh, M.; Taghavinia, N.; Mahdavi, S.M. Effect of Zn/Sn Ratio on Perovskite Solar Cell Performance Applying Off-Stoichiometric Cu2ZnSnS4/Carbon Hole-Collecting Electrodes. ACS Appl. Mater. Interfaces 2022, 14, 17296–17311. [Google Scholar] [CrossRef]
- Li, F.; Wei, J.; Liao, G.; Guo, C.; Huang, Y.; Zhang, Q.; Jin, X.; Jiang, S.; Tang, Q.; Li, Q. Quaternary Quantum Dots with Gradient Valence Band for All-Inorganic Perovskite Solar Cells. J. Colloid Interface Sci. 2019, 549, 33–41. [Google Scholar] [CrossRef]
- Cheng, N.; Liu, Z.; Li, W.; Yu, Z.; Lei, B.; Zi, W.; Xiao, Z.; Sun, S.; Zhao, Z.; Zong, P.-A. Cu2ZnGeS4 as a Novel Hole Transport Material for Carbon-Based Perovskite Solar Cells with Power Conversion Efficiency above 18%. Chem. Eng. J. 2023, 454, 140146. [Google Scholar] [CrossRef]
- Panneerselvam, P.; Angaiah, S. The Hole Transporting Behaviour of Cu2AgInS4 and Cu2AgInSe4 for a Carbon Electrode-Based Perovskite Solar Cell. New J. Chem. 2021, 45, 423–430. [Google Scholar] [CrossRef]
- Panneerselvam, P.; Guo, J.; Angaiah, S. Fabrication of a Hole Transporting Cu2AgIn(S0.5Se0.5)4 Nanoparticles Deposited Carbon Counter Electrode for Perovskite Solar Cell. Mater. Sci. Semicond. Process. 2022, 147, 106686. [Google Scholar] [CrossRef]
- Pescetelli, S.; Agresti, A.; Viskadouros, G.; Razza, S.; Rogdakis, K.; Kalogerakis, I.; Spiliarotis, E.; Leonardi, E.; Mariani, P.; Sorbello, L.; et al. Integration of Two-Dimensional Materials-Based Perovskite Solar Panels into a Stand-Alone Solar Farm. Nat. Energy 2022, 7, 597–607. [Google Scholar] [CrossRef]
- Karimipour, M.; Khazraei, S.; Kim, B.J.; Boschloo, G.; Johansson, E.M.J. Efficiency and Stability Enhancement of Perovskite Solar Cells Utilizing a Thiol Ligand and MoS2 (100) Nanosheet Surface Modification. ACS Appl. Energy Mater. 2021, 4, 14080–14092. [Google Scholar] [CrossRef]
- Agresti, A.; Pescetelli, S.; Palma, A.L.; Martín-García, B.; Najafi, L.; Bellani, S.; Moreels, I.; Prato, M.; Bonaccorso, F.; Di Carlo, A. Two-Dimensional Material Interface Engineering for Efficient Perovskite Large-Area Modules. ACS Energy Lett. 2019, 4, 1862–1871. [Google Scholar] [CrossRef]
- Agresti, A.; Giacomo, F.D.; Pescetelli, S.; Carlo, A.D. Scalable Deposition Techniques for Large-Area Perovskite Photovoltaic Technology: A Multi-Perspective Review. Nano Energy 2024, 122, 109317. [Google Scholar] [CrossRef]
Material | Energy Band Gap (eV) | Band Type | Carrier Mobility (cm2 V−1 s−1) | Reference |
---|---|---|---|---|
CuI | 3.1 | Direct | 43.9 (h+) | [27] |
CuxS | 1.6–2.2 | Direct | 1.17 | [28] |
MoS2 | 0.88–1.71 (bulk) | Indirect | 30–500 (h+) | [29] |
1.72 (monolayer) | Direct | 10–130 (e−) | ||
MoSe2 | 1.1 (bulk) | Indirect | 90 (h+) | [30] |
1.5 (monolayer) | Direct | 25 (e−) | ||
WS2 | 1.29 (bulk) | Indirect | 50(h+) | [31] |
2.2 (monolayer) | Direct | 200 (e−) | ||
WSe2 | 1.2 (bulk) | Indirect | 250 (h+) | [29,32] |
1.7 (monolayer) | Direct | 142 (e−) | ||
CuInS2 | 1.32–1.43 | Direct | 10.09 | [33] |
CuIn1−xGaxS2 | 1.49–1.54 | Direct | 1.6–30.9 | [34,35,36] |
CuInxGa(1−x)Se2 | 1–1.7 | Direct | 3–22 | [37] |
BaZrS3 | 1.7 | Direct | 35 | [38] |
BaTiS3 | 1.3 | Direct | 25 | [39] |
CaZrS3 | 1.3 | Direct | 32 | [40] |
BaZrSe3 | 1.7 | Direct | 20 | [41,42] |
Chalcogenide | Solar Cell Type | Solar Cell Structure | PCE(%) | Reference |
---|---|---|---|---|
CuS | OPV | ITO/CuS/PTB7:PC71BM/Al | 4.32 | [59] |
CuI | OPV | ITO/CuI/PBDTTPD:PC61BM/Sm/Al | 5.54 | [58] |
WSe2 | OPV | ITO/PEDOT:PSS/WSe2/PTB7:PC71BM/Al | 8.5 | [61] |
In2Se3 | OPV | ITO/In2Se3/PBDB-T:ITIC/Ca/Al | 9.58 | [53] |
MoS2 | OPV | ITO/MoS2/PBDB-T-2F:Y6:PC71BM/PFN-Br/Al | 14.9 | [55] |
WS2 | OPV | ITO/WS2/PBDB-T-2F:Y6/PFN-Br/Al | 15.8 | [56] |
WS2 | OPV | ITO/WS2/PBDB-T-2F:Y6:PC71BM/PFN-Br/Al | 17 | [56] |
WS2 | OPV | ITO/WS2/PBDB-T-2F:Y6:SF(BR)4/PFN-Br/Al | 20.87 | [57] |
CuS | PSC | ITO/CuS/MAPbI3/C60/BCP/Ag | 16.2 | [62] |
CuS | PSC | FTO/SnO2/MAPbI3/spiro-OMeTAD/CuxS/Au | 18.58 | [63] |
CuI | PSC | FTO/Na-TiO2/MAPbI3/CuI/Au | 17.6 | [64] |
CuI | PSC | FTO/Cu@CuI/(CsFAMA)Pb(BrI)3/PC61BM/ZnO/Ag | 18.8 | [65] |
CuI | PSC | ITO/Cu(Tu)I/MAPbI3−xClx/C60/BCP/Ag | 19.9 | [66] |
WS2 | PSC | ITO/WS2/MAPbI3/PCBM/BCP/Al | 15 | [67] |
WS2 | PSC | ITO/PTAA/WS2/(Rb0.05Cs0.05 FA0.9PbI3)0.85(MAPbBr3)0.15/C60/ZnSe/Cu(Ag) | 20.92 | [68] |
MoS2 | PSC | ITO/MoS2/MAPbI3/TiO2/Ag | 20.43 | [60] |
PbS | PSC | FTO/TiO2/MAPbI3/PbS/Spiro-OMeTAD/Au | 19.24 | [69] |
MnS | PSC | FTO/TiO2/MAPbI3/MnS/Au | 19.86 | [70] |
CuZnS | PSC | ITO/P3CT-K/CuZnS/MAPbI3/PCBM/ZnO/Al | 18.3 | [71] |
Cu2ZnSnS4 | PSC | ITO/Cu2ZnSnS4/MAPbI3/PCBM/PrCMA/Ag | 15.4 | [72] |
Cu2ZnSnSe4 | PSC | FTO/Mo/Cu2ZnSnSe4/MAPbI3/ZnS/IZO/Ag | 17.4 | [73] |
Power Conversion Efficiency (PCE) % | Device Configuration | Perovskite | Novelty–Highlights | Reference |
---|---|---|---|---|
18.5 | FTO/SnO2/perovskite/CIS/C | Cs0.05(MA0.17FA0.83)0.95 Pb(I0.83 Br0.17)3 | 4BrZnP porphyrin additive in the perovskite | [123] |
17.2 | FTO/c-TiO2/m-TiO2/perovskite/CIS/conductive adhesive ink/C | Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 |
| [119] |
16.5 | FTO/SnO2/perovskite/CIS/C | Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 | Treatment of SnO2 ETL with urea | [114] |
16.3 | FTO/c-TiO2/m-TiO2/perovskite/CIS/C | Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 |
| [117] |
16.11 | FTO/TiO2/perovskite/NPB/CIS/C | Cs0.05 (MA0.16FA0.79)0.95 Pb (I0.84Br0.16)3 |
| [122] |
16 | FTO/c-TiO2/m-TiO2/perovskite/CIS/C | Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17) |
| [120] |
13.14 | FTO/c-TiO2/m-TiO2/perovskite/CIS/C | CH3NH3PbI3 | Multilayered SnO2-TiO2 ETL | [115] |
13.09 | FTO/c-TiO2/m-TiO2/perovskite/CIS/C | CH3NH3PbI3 |
| [116] |
11.24 | FTO/c-TiO2/m-TiO2/perovskite/PTSAx-y/CIS/C | MAPbI3 | p-toluene sulfonamide (PTSA) passivation layer | [121] |
10.85 | FTO/c-TiO2/m-TiO2/CIS-Zn QDs/C | CsPbBr3 |
| [111] |
10.16 | FTO/SnO2/perovskite/CIS/C | Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 | Electrochemical deposition of perovskite | [113] |
9.93 | FTO/c-TiO2/m-TiO2/perovskite/CIS/C | Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 |
| [118] |
9.43 | FTO/c-TiO2/m-TiO2/GQDs/perovskite/CIS-ZnS/C | CsPbBr3 |
| [112] |
8.42 | FTO/cTiO2/m-TiO2/CIS-ZnS/C | CsPbBr3 |
| [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bidikoudi, M.; Stathatos, E. Chalcogenides in Perovskite Solar Cells with a Carbon Electrode: State of the Art and Future Prospects. Nanomaterials 2024, 14, 1783. https://doi.org/10.3390/nano14221783
Bidikoudi M, Stathatos E. Chalcogenides in Perovskite Solar Cells with a Carbon Electrode: State of the Art and Future Prospects. Nanomaterials. 2024; 14(22):1783. https://doi.org/10.3390/nano14221783
Chicago/Turabian StyleBidikoudi, Maria, and Elias Stathatos. 2024. "Chalcogenides in Perovskite Solar Cells with a Carbon Electrode: State of the Art and Future Prospects" Nanomaterials 14, no. 22: 1783. https://doi.org/10.3390/nano14221783
APA StyleBidikoudi, M., & Stathatos, E. (2024). Chalcogenides in Perovskite Solar Cells with a Carbon Electrode: State of the Art and Future Prospects. Nanomaterials, 14(22), 1783. https://doi.org/10.3390/nano14221783