Liposomes and Their Therapeutic Applications in Enhancing Psoriasis and Breast Cancer Treatments
<p>Pathogenesis of psoriasis showing cross talk and interactions among cells of the immune system, keratinocytes and skin microbiome at the lesional site with the release of different cytokines or chemokines. The altered skin microbiota disrupts the skin barrier and acts on the innate immune system that activates the inflammatory cascades. Skin microbiota is considered a key trigger in the psoriatic inflammation loop. Figure adapted from [<a href="#B8-nanomaterials-14-01760" class="html-bibr">8</a>].</p> "> Figure 2
<p>Cell biology models for the study of psoriasis. (<b>A</b>) Keratinocyte monolayer culture is a technically simple and versatile model for most applications. (<b>B</b>) Keratinocyte co-culture models with other cell types, including fibroblasts, endothelial cells and immune cells, are also performed in 2D monolayers but are more complex, requiring media optimization for multicellular culture. (<b>C</b>) Organ-on-a-chip models use microfluidics to maintain a consistent homeostatic microenvironment for continuous skin culture. (<b>D</b>) Organoids are another versatile model that can self-assemble or be bio-printed with keratinocytes only or multiple cell types, with or without stromal matrix added. (<b>E</b>) Full-thickness organotypic skin models are the most physiologically relevant models but require the most time and expertise to perform. (<b>F</b>) Biopsy skin explants can provide patient-specific drug response data, but sample size is a limiting factor in their use.</p> "> Figure 3
<p>Psoriasis treatment ladder with representative drug classes updated from [<a href="#B25-nanomaterials-14-01760" class="html-bibr">25</a>].</p> "> Figure 4
<p>Schematic representation of endocytic pathways involved in the internalization of amphiphilic copolymers and the associated factors modulating their uptake pathways and intracellular fate. Figure adapted from [<a href="#B64-nanomaterials-14-01760" class="html-bibr">64</a>].</p> "> Figure 5
<p>Schematic representation of structure of liposomal drug delivery systems: (<b>A</b>) unilamellar liposome, (<b>B</b>) multilamellar liposome, (<b>C</b>) liposome loaded with a hydrophobic drug, (<b>D</b>) liposome loaded with a hydrophobic drug in the bilayer membrane and a hydrophilic drug in the aqueous core, (<b>E</b>) pegylated liposome with surface PEG polymer chains, (<b>F</b>) liposome loaded with mRNA, (<b>G</b>) liposome with a surface-conjugated drug, targeting ligands and PEG, hydrophilic and hydrophobic drugs, (<b>H</b>) liposome with a surface-conjugated drug, targeting ligands, PEG polymer chains, hydrophilic drugs, hydrophobic drugs, mRNA-loaded. Figure adapted from [<a href="#B67-nanomaterials-14-01760" class="html-bibr">67</a>].</p> ">
Abstract
:1. Introduction
2. Psoriasis
2.1. Mechanisms Underlying Psoriasis and Cell Biology Models for Psoriasis
2.2. Current Treatment for Psoriasis
2.3. Issues with Current Psoriasis Treatments
3. Breast Cancer
3.1. Hallmarks of Breast Cancer
3.2. Cell Biology Models in Breast Cancer
3.3. Current Treatment for Breast Cancer
3.4. Issues with Current Breast Cancer Treatment
4. Roles of Nanomedicines with Inclusion of Combinational Therapy for Treating Psoriasis and Breast Cancer
4.1. Nanomedicines in Psoriasis
4.2. Nanomedicines in Breast Cancer
4.3. Combinational Therapy
5. Liposomes Formulations for Drug Delivery
5.1. Liposomes and Psoriasis
Liposomes with Combined Anti-Psoriatic Therapy
5.2. Liposomes and Breast Cancer
Formulation/Method | Drug Candidates | Model | Study Outcomes | Reference |
---|---|---|---|---|
Psoriasis Treatment | ||||
Flexible liposomes by thin-film hydration then dispersed in Carbopol gel | All-trans retinoic acid + Betamethasone | HaCaT cell line and imiquimod-induced mouse skin model | Dual agents loaded liposomal gel showed time-dependent cellular uptake and lowered levels of inflammatory cytokines more than single agent gel | [87] |
Cationic cerosomes in hyaluronic acid by thin-film hydration | Ciclosporin + Dithranol | HSE-2 Cells, Ex-vivo mice skin and imiquimod-induced psoriatic mice skin model | Cerosomes lowered level of proinflammatory cytokines in cell culture, enhanced the skin penetration of both drugs by 66.7% compared to drug solution and reduced PASI score and cytokine levels when compared to marketed ointment and free drug preparations in vivo | [88] |
Anionic liposomes by ethanol injection then dispersed in Carbopol gel | Zedoary turmeric oil + Tretinoin | Mouse vaginal and tail models | Liposomal gel showed gradual penetration of drugs into the hair follicles when compared to conventional gel. It inhibited mitosis of mouse vaginal epithelium and promoted the formation of stratum granulosum in mouse tail in a dose-dependent manner | [89] |
Cationic liposomes by solvent injection then dispersed in Carbopol gel | Ibrutinib + Curcumin | Imiquimod-induced psoriatic mouse model | Better histological features, PASI index and lower levels of inflammatory cytokines when compared with individual drug formulation and plain drug gel | [90] |
Breast cancer treatment | ||||
PEGylated liposomes by thin-film hydration | Paclitaxel + Rapamycin | 4T1 cell line, BALB/c mice | In vitro and in vivo results showed that liposomes co-loaded with both drugs had higher cytotoxic effect compared to the free drugs | [96] |
PEGylated liposomes by thin-film hydration method. | Simvastatin + Doxorubicin | MDA-MB-231, MCF-7, and SK-BR-3 human breast cancer cell lines | Liposomes exhibited pH responsive drug release; co-loading Simvastatin and Doxorubicin in liposomal form significantly increased the inhibition of cell proliferation | [97] |
PEGylated liposomes by film hydration method | Resveratrol + Paclitaxel | MCF-7/Adr tumor cells BALB/c nude mice | Liposomes showed a potent cytotoxicity against the drug-resistant MCF-7/Adr tumor cells in vitro, enhanced bioavailability and tumor-retention of the drugs in vivo. Systemic therapy effectively inhibited drug-resistant tumor in mice significantly without any notable increase in the toxicity | [98] |
Anionic liposomes by ethanol injection method | Docetaxel + Curcumin | MCF-7 tumor-bearing mice | Liposomes co-loading dual agents showed the highest cytotoxicity, tumor volume reduction and with less systemic toxicity than liposome loaded with Docetaxel alone | [99] |
Anionic liposomes by high-pressure homogenization method | Rapamycin + Resveratrol | MCF-7 breast cancer cell line | In vitro studies indicated that liposomes were internalized in an estrogen receptor-positive human breast cancer cell line and improved cytotoxicity when compared with free drugs | [100] |
Anionic liposomes by thin-film hydration method | Docetaxel + Palmitoyl ascorbate | MCF-7 breast cancer cell line, liver (HepG2), and prostate (PC-3) cancer cell lines | Co-delivery of Docetaxel+ Palmitoyl ascorbate in the liposomal system enhanced the antitumor therapy when high ratio of Palmitoyl ascorbate was used | [101] |
Anionic liposomes by thin-film hydration method | Paclitaxel + Alpha-Linolenic Acid | MCF-7 breast cancer cell line | Liposomes with dural agents showed enhanced cellular uptake and superior anticancer efficacy compared to liposomal Paclitaxel only. | [102] |
Cationic liposomes by ultrasonication | Doxorubicin + Sulforaphane | 4T1 mouse model of triple-negative breast cancer, MDA-MB-231 breast cancer cell line | Incorporation of sulforaphane resulted in a two-fold inhibition of tumor growth and up to a four-folds reduction in doxorubicin concentration. Sulforaphane was shown to increase the accumulation of doxorubicin in the nuclei of cancer cells | [103] |
Folic acid-modified anionic liposome by thin-film hydration | Folic acid + Curcumin | MCF-7 breast cancer cell line (2D and 3D cell culture models) | Significant cytotoxicity effect and higher cellular internalization compared to free curcumin and liposomal curcumin | [104] |
Anionic liposomes loaded with single agent by thin-film hydration. Combined therapy was blend of two types of liposomes | Mycophenolic Acid + Quercetin | MCF-7 breast cancer cell line, Sprague-Dawley rat model | Combination of liposomal (Mycophenolic Acid) + liposomal (Quercetin) showed higher cellular uptake, cytotoxicity and anti-cancer effect compared to individual formulation or free drugs | [105] |
6. Conclusions
Funding
Conflicts of Interest
References
- Sala, M.; Elaissari, A.; Fessi, H. Advances in psoriasis physiopathology and treatments: Up to date of mechanistic insights and perspectives of novel therapies based on innovative skin drug delivery systems (ISDDS). J. Control. Release 2016, 239, 182–202. [Google Scholar] [CrossRef] [PubMed]
- Lowes, M.A.; Russell, C.B.; Martin, D.A.; Towne, J.E.; Krueger, J.G. The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends Immunol. 2013, 34, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Ammar, M.; Souissi-Bouchlaka, C.; Gati, A.; Zaraa, I.; Bouhaha, R.; Kouidhi, S.; Ben Ammar-Gaied, A.; Doss, N.; Mokni, M.; Marrakchi, R. Le psoriasis: Physiopathologie et immunogénétique. Pathol. Biol. 2014, 62, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Ansel, J.C.; Tiesman, J.P.; Olerud, J.E.; Krueger, J.G.; Krane, J.F.; Tara, D.C.; Shipley, G.D.; Gilbertson, D.; Usui, M.L.; Hart, C.E. Human keratinocytes are a major source of cutaneous platelet-derived growth factor. J. Clin. Investig. 1993, 92, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Johnson-Huang, L.M.; Lowes, M.A.; Krueger, J.G. Putting together the psoriasis puzzle: An update on developing targeted therapies. Dis. Models Mech. 2012, 5, 423–433. [Google Scholar] [CrossRef]
- Kamata, M.; Tada, Y. Crosstalk: Keratinocytes and immune cells in psoriasis. Front. Immunol. 2023, 14, 1286344. [Google Scholar] [CrossRef]
- Proksch, E.; Brandner, J.M.; Jensen, J. The skin: An indispensable barrier. Exp. Dermatol. 2008, 17, 1063–1072. [Google Scholar] [CrossRef]
- Liang, X.; Ou, C.; Zhuang, J.; Li, J.; Zhang, F.; Zhong, Y.; Chen, Y. Interplay Between Skin Microbiota Dysbiosis and the Host Immune System in Psoriasis: Potential Pathogenesis. Front. Immunol. 2021, 12, 764384. [Google Scholar] [CrossRef]
- Prast-Nielsen, S.; Tobin, A.-M.; Adamzik, K.; Powles, A.; Hugerth, L.W.; Sweeney, C.; Kirby, B.; Engstrand, L.; Fry, L. Investigation of the skin microbiome: Swabs vs. biopsies. Br. J. Dermatol. 2019, 181, 572–579. [Google Scholar] [CrossRef]
- Visser, M.J.E.; Kell, D.B.; Pretorius, E. Bacterial Dysbiosis and Translocation in Psoriasis Vulgaris. Front. Cell. Infect. Microbiol. 2019, 9, 7. [Google Scholar] [CrossRef]
- Luger, T.A.; Loser, K. Novel insights into the pathogenesis of psoriasis. Clin. Immunol. 2018, 186, 43–45. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.A.; Towne, J.E.; Kricorian, G.; Klekotka, P.; Gudjonsson, J.E.; Krueger, J.G.; Russell, C.B. The Emerging Role of IL-17 in the Pathogenesis of Psoriasis: Preclinical and Clinical Findings. J. Investig. Dermatol. 2013, 133, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Gu, L.; Wang, Z.; Zhou, H.; Zhang, C.; Teng, X.; Hu, Z.; Wei, X.; Liu, X.; Zeng, F.; et al. Establishing Transcription Profile of Psoriasiform Cutaneous In Vitro using HaCaT Cells Stimulated with Combination of Cytokines. J. Vis. Exp. 2021, 169, 61537. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Huang, L.; Wong, Y.; Burd, A. HA modulation of epidermal morphogenesis in an organotypic keratinocyte-fibroblast co-culture model. Exp. Dermatol. 2010, 19, e336–e339. Available online: https://onlinelibrary.wiley.com/doi/10.1111/j.1600-0625.2009.01052.x (accessed on 27 September 2024). [CrossRef]
- Peters, J.H.; Tjabringa, G.S.; Fasse, E.; de Oliveira, V.L.; Schalkwijk, J.; Koenen, H.J.P.M.; Joosten, I. Co-culture of healthy human keratinocytes and T-cells promotes keratinocyte chemokine production and RORγt-positive IL-17 producing T-cell populations. J. Dermatol. Sci. 2013, 69, 44–53. [Google Scholar] [CrossRef]
- Sutterby, E.; Thurgood, P.; Baratchi, S.; Khoshmanesh, K.; Pirogova, E. Microfluidic Skin-on-a-Chip Models: Toward Biomimetic Artificial Skin. Small 2020, 16, 2002515. [Google Scholar] [CrossRef]
- Randall, M.J.; Jüngel, A.; Rimann, M.; Wuertz-Kozak, K. Advances in the Biofabrication of 3D Skin in vitro: Healthy and Pathological Models. Front. Bioeng. Biotechnol. 2018, 6, 154. [Google Scholar] [CrossRef]
- Ren, Y.; Yang, X.; Ma, Z.; Sun, X.; Zhang, Y.; Li, W.; Yang, H.; Qiang, L.; Yang, Z.; Liu, Y.; et al. Developments and Opportunities for 3D Bioprinted Organoids. IJB 2024, 7, 364. [Google Scholar] [CrossRef]
- Ahmed, M.; Hill, D.; Ahmed, S.; Przyborski, S.; Dalgarno, K.; Dickinson, A. Bioprinted autologous human skin equivalents for in vitro testing of therapeutic antibodies. IJB 2024, 0, 1851. [Google Scholar] [CrossRef]
- Ahn, M.; Cho, W.; Lee, H.; Park, W.; Lee, S.; Back, J.W.; Gao, Q.; Gao, G.; Cho, D.; Kim, B.S. Engineering of Uniform Epidermal Layers via Sacrificial Gelatin Bioink-Assisted 3D Extrusion Bioprinting of Skin. Adv. Healthc. Mater. 2023, 12, 2301015. [Google Scholar] [CrossRef]
- Hill, D.S.; Robinson, N.D.P.; Caley, M.P.; Chen, M.; O’Toole, E.A.; Armstrong, J.L.; Przyborski, S.; Lovat, P.E. A Novel Fully Humanized 3D Skin Equivalent to Model Early Melanoma Invasion. Mol. Cancer Ther. 2015, 14, 2665–2673. [Google Scholar] [CrossRef] [PubMed]
- Reijnders, C.M.A.; van Lier, A.; Roffel, S.; Kramer, D.; Scheper, R.J.; Gibbs, S. Development of a Full-Thickness Human Skin Equivalent In Vitro Model Derived from TERT-Immortalized Keratinocytes and Fibroblasts. Tissue Eng. Part A 2015, 21, 2448–2459. [Google Scholar] [CrossRef] [PubMed]
- Tokuda, J.M.; Xie, J.; Jawa, V.; Hawkins, J.M.; Ferbas, J.; Joh, N.H.; Joubert, M.K. Use of In Vitro Human Skin Models to Assess Potential Immune Activation In Response to Biotherapeutic Attributes and Process-related Impurities. J. Pharm. Sci. 2022, 111, 1012–1023. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Kim, D.H.; Shin, J.U. In Vitro Models Mimicking Immune Response in the Skin. Yonsei Med. J. 2021, 62, 969. [Google Scholar] [CrossRef] [PubMed]
- Iskandar, I.Y.K. Examining the Use of Biologic Therapies in the Management of Psoriasis: Understanding Drug Utilisation, Impact on Quality of Life and Drug Survival. Ph.D. Thesis, Manchester University, Manchester, UK, 2017. Available online: https://research.manchester.ac.uk/en/studentTheses/examining-the-use-of-biologic-therapies-in-the-management-of-psor (accessed on 8 October 2024).
- Rendon, A.; Schäkel, K. Psoriasis Pathogenesis and Treatment. Int. J. Mol. Sci. 2019, 20, 1475. [Google Scholar] [CrossRef]
- Dattola, A.; Silvestri, M.; Bennardo, L.; Del Duca, E.; Longo, C.; Bianchi, L.; Nisticò, S. Update of calcineurin inhibitors to treat inverse psoriasis: A systematic review. Dermatol. Ther. 2018, 31, e12728. [Google Scholar] [CrossRef]
- Torsekar, R.; Gautam, M. Topical therapies in psoriasis. Indian Dermatol. Online J. 2017, 8, 235. [Google Scholar] [CrossRef]
- Chiricozzi, A.; Pimpinelli, N.; Ricceri, F.; Bagnoni, G.; Bartoli, L.; Bellini, M.; Brandini, L.; Caproni, M.; Castelli, A.; Fimiani, M.; et al. Treatment of psoriasis with topical agents: Recommendations from a Tuscany Consensus. Dermatol. Ther. 2017, 30, e12549. [Google Scholar] [CrossRef]
- Yan, B.-X.; Chen, X.-Y.; Ye, L.-R.; Chen, J.-Q.; Zheng, M.; Man, X.-Y. Cutaneous and Systemic Psoriasis: Classifications and Classification for the Distinction. Front. Med. 2021, 8, 649408. [Google Scholar] [CrossRef]
- Gisondi, P.; Del Giglio, M.; Girolomoni, G. Treatment Approaches to Moderate to Severe Psoriasis. Int. J. Mol. Sci. 2017, 18, 2427. [Google Scholar] [CrossRef]
- Nast, A.; Smith, C.; Spuls, P.I.; Avila Valle, G.; Bata-Csörgö, Z.; Boonen, H.; De Jong, E.; Garcia-Doval, I.; Gisondi, P.; Kaur-Knudsen, D.; et al. EuroGuiDerm Guideline on the systemic treatment of Psoriasis vulgaris—Part 1: Treatment and monitoring recommendations. Acad. Dermatol. Venereol. 2020, 34, 2461–2498. [Google Scholar] [CrossRef] [PubMed]
- Ávalos-Viveros, M.; Esquivel-García, R.; García-Pérez, M.; Torres-García, E.; Bartolomé-Camacho, M.; Santes, V.; García-Pérez, M. Updated view of tars for psoriasis: What have we learned over the last decade? Int. J. Dermatol. 2023, 62, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Mohd Nordin, U.U.; Ahmad, N.; Salim, N.; Mohd Yusof, N.S. Lipid-based nanoparticles for psoriasis treatment: A review on conventional treatments, recent works, and future prospects. RSC Adv. 2021, 11, 29080–29101. [Google Scholar] [CrossRef]
- Aziz Hazari, S.; Kaur, H.; Karwasra, R.; Abourehab, M.A.S.; Ali Khan, A.; Kesharwani, P. An overview of topical lipid-based and polymer-based nanocarriers for treatment of psoriasis. Int. J. Pharm. 2023, 638, 122938. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Awasthi, R. Breakthroughs and bottlenecks of psoriasis therapy: Emerging trends and advances in lipid based nano-drug delivery platforms for dermal and transdermal drug delivery. J. Drug Deliv. Sci. Technol. 2023, 84, 104548. [Google Scholar] [CrossRef]
- Saha, T.; Solomon, J.; Samson, A.O.; Gil-Henn, H. Invasion and Metastasis as a Central Hallmark of Breast Cancer. J. Clin. Med. 2021, 10, 3498. [Google Scholar] [CrossRef]
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef]
- Nounou, M.I.; ElAmrawy, F.; Ahmed, N.; Abdelraouf, K.; Goda, S.; Syed-Sha-Qhattal, H. Breast Cancer: Conventional Diagnosis and Treatment Modalities and Recent Patents and Technologies. Breast Cancer 2015, 9s2, BCBCR.S29420. [Google Scholar] [CrossRef]
- Sharma, A.; Boise, L.; Shanmugam, M. Cancer Metabolism and the Evasion of Apoptotic Cell Death. Cancers 2019, 11, 1144. [Google Scholar] [CrossRef]
- Ashkenazi, A.; Dixit, V.M. Death receptors: Signaling and modulation. Science 1998, 281, 1305–1308. [Google Scholar] [CrossRef]
- Wang, S.; El-Deiry, W.S. TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 2003, 22, 8628–8633. [Google Scholar] [CrossRef] [PubMed]
- Gutschner, T.; Diederichs, S. The hallmarks of cancer: A long non-coding RNA point of view. RNA Biol. 2012, 9, 703–719. [Google Scholar] [CrossRef] [PubMed]
- Habanjar, O.; Bingula, R.; Decombat, C.; Diab-Assaf, M.; Caldefie-Chezet, F.; Delort, L. Crosstalk of Inflammatory Cytokines within the Breast Tumor Microenvironment. Int. J. Mol. Sci. 2023, 24, 4002. [Google Scholar] [CrossRef]
- Yang, L.; Liu, B.; Chen, H.; Gao, R.; Huang, K.; Guo, Q.; Li, F.; Chen, W.; He, J. Progress in the application of organoids to breast cancer research. J. Cell. Mol. Med. 2020, 24, 5420–5427. [Google Scholar] [CrossRef]
- Kalot, R.; Mhanna, R.; Talhouk, R. Organ-on-a-chip platforms as novel advancements for studying heterogeneity, metastasis, and drug efficacy in breast cancer. Pharmacol. Ther. 2022, 237, 108156. [Google Scholar] [CrossRef]
- Guillen, K.P.; Fujita, M.; Butterfield, A.J.; Scherer, S.D.; Bailey, M.H.; Chu, Z.; DeRose, Y.S.; Zhao, L.; Cortes-Sanchez, E.; Yang, C.-H.; et al. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology. Nat. Cancer 2022, 3, 232–250. [Google Scholar] [CrossRef]
- Regua, A.T.; Arrigo, A.; Doheny, D.; Wong, G.L.; Lo, H.-W. Transgenic mouse models of breast cancer. Cancer Lett. 2021, 516, 73–83. [Google Scholar] [CrossRef]
- Sharma, G.N.; Dave, R.; Sanadya, J.; Sharma, P.; Sharma, K.K. Various types and management of breast cancer: An overview. J. Adv. Pharm. Technol. Res. 2010, 1, 109–126. [Google Scholar] [CrossRef]
- Harbeck, N.; Gnant, M. Breast cancer. Lancet 2017, 389, 1134–1150. [Google Scholar] [CrossRef]
- Matsen, C.B.; Neumayer, L.A. Breast Cancer: A Review for the General Surgeon. JAMA Surg. 2013, 148, 971. [Google Scholar] [CrossRef]
- Selli, C.; Sims, A.H. Neoadjuvant Therapy for Breast Cancer as a Model for Translational Research. Breast Cancer 2019, 13, 117822341982907. [Google Scholar] [CrossRef] [PubMed]
- Anjum, F.; Razvi, N.; Masood, M.A. Breast Cancer Therapy: A Mini Review. MOJ Drug Des. Dev. Ther. 2017, 1, 00006. Available online: https://medcraveonline.com/MOJDDT/breast-cancer-therapy-a-mini-review.html (accessed on 27 September 2024). [CrossRef]
- Swain, S.M.; Tang, G.; Geyer, C.E.; Rastogi, P.; Atkins, J.N.; Donnellan, P.P.; Fehrenbacher, L.; Azar, C.A.; Robidoux, A.; Polikoff, J.A.; et al. Definitive Results of a Phase III Adjuvant Trial Comparing Three Chemotherapy Regimens in Women With Operable, Node-Positive Breast Cancer: The NSABP B-38 Trial. J. Clin. Oncol. 2013, 31, 3197–3204. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Lin, W.; Bao, J.; Cai, Q.; Pan, X.; Bai, M.; Yuan, Y.; Shi, J.; Sun, Y.; Han, M.-R.; et al. A Comprehensive cis-eQTL Analysis Revealed Target Genes in Breast Cancer Susceptibility Loci Identified in Genome-wide Association Studies. Am. J. Hum. Genet. 2018, 102, 890–903. [Google Scholar] [CrossRef]
- Marrone, M.; Stewart, A.; Dotson, W.D. Clinical utility of gene-expression profiling in women with early breast cancer: An overview of systematic reviews. Genet. Med. 2015, 17, 519–532. [Google Scholar] [CrossRef]
- Ullah, I.; Karthik, G.-M.; Alkodsi, A.; Kjällquist, U.; Stålhammar, G.; Lövrot, J.; Martinez, N.-F.; Lagergren, J.; Hautaniemi, S.; Hartman, J.; et al. Evolutionary history of metastatic breast cancer reveals minimal seeding from axillary lymph nodes. J. Clin. Investig. 2018, 128, 1355–1370. [Google Scholar] [CrossRef]
- Antoniou, A.C. Breast and ovarian cancer risks to carriers of the BRCA1 5382insC and 185delAG and BRCA2 6174delT mutations: A combined analysis of 22 population based studies. J. Med. Genet. 2005, 42, 602–603. [Google Scholar] [CrossRef]
- Davis, S.; Mirick, D.K. Circadian Disruption, Shift Work and the Risk of Cancer: A Summary of the Evidence and Studies in Seattle. Cancer Causes Control 2006, 17, 539–545. [Google Scholar] [CrossRef]
- Williams, P.A.; Zaidi, S.K.; Sengupta, R. AACR Cancer Progress Report 2023: Advancing the Frontiers of Cancer Science and Medicine. Clin. Cancer Res. 2023, 29, 3850–3851. [Google Scholar] [CrossRef]
- Nassif, A.B.; Talib, M.A.; Nasir, Q.; Afadar, Y.; Elgendy, O. Breast cancer detection using artificial intelligence techniques: A systematic literature review. Artif. Intell. Med. 2022, 127, 102276. [Google Scholar] [CrossRef]
- De Freitas, A.J.A.; Causin, R.L.; Varuzza, M.B.; Calfa, S.; Hidalgo Filho, C.M.T.; Komoto, T.T.; de P. Souza, C.; Marques, M.M.C. Liquid Biopsy as a Tool for the Diagnosis, Treatment, and Monitoring of Breast Cancer. Int. J. Mol. Sci. 2022, 23, 9952. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Axup, J.Y.; Ma, J.S.Y.; Wang, R.E.; Choi, S.; Tardif, V.; Lim, R.K.V.; Pugh, H.M.; Lawson, B.R.; Welzel, G.; et al. Multiformat T-Cell-Engaging Bispecific Antibodies Targeting Human Breast Cancers. Angew. Chem. Int. Ed. 2015, 54, 7022–7027. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, S.; Chitkara, D.; Mittal, A. Exploration and insights into the cellular internalization and intracellular fate of amphiphilic polymeric nanocarriers. Acta Pharm. Sin. B 2021, 11, 903–924. [Google Scholar] [CrossRef] [PubMed]
- Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015, 6, 286. [Google Scholar] [CrossRef]
- Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomed. 2015, 10, 975. [Google Scholar] [CrossRef]
- Attia, M.A.; Essa, E.A.; Elebyary, T.T.; Faheem, A.M.; Elkordy, A.A. Brief on Recent Application of Liposomal Vaccines for Lower Respiratory Tract Viral Infections: From Influenza to COVID-19 Vaccines. Pharmaceuticals 2021, 14, 1173. [Google Scholar] [CrossRef]
- Olusanya, T.; Haj Ahmad, R.; Ibegbu, D.; Smith, J.; Elkordy, A. Liposomal Drug Delivery Systems and Anticancer Drugs. Molecules 2018, 23, 907. [Google Scholar] [CrossRef]
- Al Badri, Y.N.; Chaw, C.S.; Elkordy, A.A. Insights into Asymmetric Liposomes as a Potential Intervention for Drug Delivery Including Pulmonary Nanotherapeutics. Pharmaceutics 2023, 15, 294. [Google Scholar] [CrossRef]
- Gomes, G.S.; Frank, L.A.; Contri, R.V.; Longhi, M.S.; Pohlmann, A.R.; Guterres, S.S. Nanotechnology-based alternatives for the topical delivery of immunosuppressive agents in psoriasis. Int. J. Pharm. 2023, 631, 122535. [Google Scholar] [CrossRef]
- Lu, Y.; Cheng, L.; Ren, L.; Chen, D.; Guan, S.; Zhu, S.; Xu, X.; Zhang, B.; Tang, M.; Zhang, C.; et al. Therapeutic Effect and Mechanism of Glabridin Liposome on Imiquimod-induced Mice Psoriasis. Pharmacogn. Mag. 2024, 20, 72–80. [Google Scholar] [CrossRef]
- Lu, B.; Zhang, J.; Zhang, J. Enhancing Transdermal Delivery of Curcumin-Based Ionic Liquid Liposomes for Application in Psoriasis. ACS Appl. Bio Mater. 2023, 6, 5864–5873. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Kang, R.S.; Bagnowski, K.; Yu, J.M.; Radecki, S.; Daniel, W.L.; Anderson, B.R.; Nallagatla, S.; Schook, A.; Agarwal, R.; et al. Targeting the IL-17 Receptor Using Liposomal Spherical Nucleic Acids as Topical Therapy for Psoriasis. J. Investig. Dermatol. 2020, 140, 435–444.e4. [Google Scholar] [CrossRef] [PubMed]
- Javia, A.; Misra, A.; Thakkar, H. Liposomes encapsulating novel antimicrobial peptide Omiganan: Characterization and its pharmacodynamic evaluation in atopic dermatitis and psoriasis mice model. Int. J. Pharm. 2022, 624, 122045. [Google Scholar] [CrossRef] [PubMed]
- Saka, R.; Jain, H.; Kommineni, N.; Chella, N.; Khan, W. Enhanced penetration and improved therapeutic efficacy of bexarotene via topical liposomal gel in imiquimod induced psoriatic plaque model in BALB/c mice. J. Drug Deliv. Sci. Technol. 2020, 58, 101691. [Google Scholar] [CrossRef]
- Walunj, M.; Doppalapudi, S.; Bulbake, U.; Khan, W. Preparation, characterization, and in vivo evaluation of cyclosporine cationic liposomes for the treatment of psoriasis. J. Liposome Res. 2020, 30, 68–79. [Google Scholar] [CrossRef]
- Liu, L.; Ji, F.; Zhao, Y.; Hai, X. Arsenic trioxide liposome gels for the treatment of psoriasis in mice. J. Liposome Res. 2024, 34, 264–273. [Google Scholar] [CrossRef]
- Bhat, L.; Bhat, S.R.; Ramakrishnan, A.; Amirthalingam, M. Brilaroxazine lipogel displays antipsoriatic activity in imiquimod-induced mouse model. Ski. Res. Technol. 2024, 30, e13606. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, S.; Liu, L.; Shen, H.; Liu, E.; Pan, L.; Gao, N.; Chen, R.; Huang, Y. Cyclodextrin-Coordinated Liposome-in-Gel for Transcutaneous Quercetin Delivery for Psoriasis Treatment. ACS Appl. Mater. Interfaces 2023, 15, 40228–40240. [Google Scholar] [CrossRef]
- Xi, L.; Lin, Z.; Qiu, F.; Chen, S.; Li, P.; Chen, X.; Wang, Z.; Zheng, Y. Enhanced uptake and anti-maturation effect of celastrol-loaded mannosylated liposomes on dendritic cells for psoriasis treatment. Acta Pharm. Sin. B 2022, 12, 339–352. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, Y.; Yang, C.; Li, F.; Qiu, B.; Ding, W. Enhanced transdermal efficiency of curcumin-loaded peptide-modified liposomes for highly effective antipsoriatic therapy. J. Mater. Chem. B 2021, 9, 4846–4856. [Google Scholar] [CrossRef]
- Nakamura, S.; Ozono, M.; Yanagi, K.; Kogure, K. Development of an Effective Psoriasis Treatment by Combining Tacrolimus-Encapsulated Liposomes and Iontophoresis. Biol. Pharm. Bull. 2024, 47, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Sun, Y.; Bi, D.; Peng, S.; Li, M.; Liu, H.; Zhang, L.; Tao, J.; Liu, Y.; Zhu, J. Regulating Size and Charge of Liposomes in Microneedles to Enhance Intracellular Drug Delivery Efficiency in Skin for Psoriasis Therapy. Adv. Healthc. Mater. 2023, 12, 2302314. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Zheng, X.; Dong, X.; Fang, M.; Wan, A.; Zhu, T.; Yang, Q.; Xie, J.; Yan, Q. Methotrexate-loaded hyaluronan-modified liposomes integrated into dissolving microneedles for the treatment of psoriasis. Eur. J. Pharm. Sci. 2024, 195, 106711. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Gou, K.; Yue, X.; Zhao, S.; Zeng, R.; Qu, Y.; Zhang, C. A novel hyaluronic acid-based dissolving microneedle patch loaded with ginsenoside Rg3 liposome for effectively alleviate psoriasis. Mater. Des. 2022, 224, 111363. [Google Scholar] [CrossRef]
- Alam, M.; Rizwanullah, M.; Mir, S.R.; Amin, S. Promising prospects of lipid-based topical nanocarriers for the treatment of psoriasis. OpenNano 2023, 10, 100123. [Google Scholar] [CrossRef]
- Wang, W.; Shu, G.; Lu, K.; Xu, X.; Sun, M.; Qi, J.; Huang, Q.; Tan, W.; Du, Y. Flexible liposomal gel dual-loaded with all-trans retinoic acid and betamethasone for enhanced therapeutic efficiency of psoriasis. J. Nanobiotechnol. 2020, 18, 80. [Google Scholar] [CrossRef]
- Elhabal, S.; Abdelaal, N.; Al-Zuhairy, S.; Mohamed Elrefai, M.; Khalifa, M.; Khasawneh, M.; Elsaid Hamdan, A.; Mohie, P.; Gad, R.; Kabil, S.; et al. Revolutionizing Psoriasis Topical Treatment: Enhanced Efficacy Through Ceramide/Phospholipid Composite Cerosomes Co-Delivery of Cyclosporine and Dithranol: In-Vitro, Ex-Vivo, and in-Vivo Studies. Int. J. Nanomed. 2024, 19, 1163–1187. [Google Scholar] [CrossRef]
- Chen, J.; Ma, Y.; Tao, Y.; Zhao, X.; Xiong, Y.; Chen, Z.; Tian, Y. Formulation and evaluation of a topical liposomal gel containing a combination of zedoary turmeric oil and tretinoin for psoriasis activity. J. Liposome Res. 2021, 31, 130–144. [Google Scholar] [CrossRef]
- Jain, H.; Geetanjali, D.; Dalvi, H.; Bhat, A.; Godugu, C.; Srivastava, S. Liposome mediated topical delivery of Ibrutinib and Curcumin as a synergistic approach to combat imiquimod induced psoriasis. J. Drug Deliv. Sci. Technol. 2022, 68, 103103. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef]
- Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Al Bawab, A.; Alshaer, W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022, 8, e09394. [Google Scholar] [CrossRef] [PubMed]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Drummond, D.C.; Noble, C.O.; Guo, Z.; Hong, K.; Park, J.W.; Kirpotin, D.B. Development of a Highly Active Nanoliposomal Irinotecan Using a Novel Intraliposomal Stabilization Strategy. Cancer Res. 2006, 66, 3271–3277. [Google Scholar] [CrossRef]
- Wang-Gillam, A.; Li, C.-P.; Bodoky, G.; Dean, A.; Shan, Y.-S.; Jameson, G.; Macarulla, T.; Lee, K.-H.; Cunningham, D.; Blanc, J.F.; et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): A global, randomised, open-label, phase 3 trial. Lancet 2016, 387, 545–557. [Google Scholar] [CrossRef]
- Eloy, J.O.; Petrilli, R.; Topan, J.F.; Antonio, H.M.R.; Barcellos, J.P.A.; Chesca, D.L.; Serafini, L.N.; Tiezzi, D.G.; Lee, R.J.; Marchetti, J.M. Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy. Colloids Surf. B Biointerfaces 2016, 141, 74–82. [Google Scholar] [CrossRef]
- Duarte, J.A.; Gomes, E.R.; De Barros, A.L.B.; Leite, E.A. Co-Encapsulation of Simvastatin and Doxorubicin into pH-Sensitive Liposomes Enhances Antitumoral Activity in Breast Cancer Cell Lines. Pharmaceutics 2023, 15, 369. [Google Scholar] [CrossRef]
- Meng, J.; Guo, F.; Xu, H.; Liang, W.; Wang, C.; Yang, X.-D. Combination Therapy using Co-encapsulated Resveratrol and Paclitaxel in Liposomes for Drug Resistance Reversal in Breast Cancer Cells in vivo. Sci. Rep. 2016, 6, 22390. [Google Scholar] [CrossRef]
- Ye, X.; Chen, X.; He, R.; Meng, W.; Chen, W.; Wang, F.; Meng, X. Enhanced anti-breast cancer efficacy of co-delivery liposomes of docetaxel and curcumin. Front. Pharmacol. 2022, 13, 969611. [Google Scholar] [CrossRef]
- dos Reis, L.R.; Luiz, M.T.; Sábio, R.M.; Marena, G.D.; Di Filippo, L.D.; Duarte, J.L.; de Souza Fernandes, L.; Sousa Araújo, V.H.; Oliveira Silva, V.A.; Chorilli, M. Design of Rapamycin and Resveratrol Coloaded Liposomal Formulation for Breast Cancer Therapy. Nanomedicine 2023, 18, 789–801. [Google Scholar] [CrossRef]
- Li, J.; Guo, C.; Feng, F.; Fan, A.; Dai, Y.; Li, N.; Zhao, D.; Chen, X.; Lu, Y. Co-delivery of docetaxel and palmitoyl ascorbate by liposome for enhanced synergistic antitumor efficacy. Sci. Rep. 2016, 6, 38787. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, A.; Kumar, D.; Yadav, S.; Shrivastava, N.K.; Singh, J.; Sonkar, A.B.; Verma, P.; Arya, D.K.; Kaithwas, G.; et al. Harnessing Potential of ω-3 Polyunsaturated Fatty Acid with Nanotechnology for Enhanced Breast Cancer Therapy: A Comprehensive Investigation into ALA-Based Liposomal PTX Delivery. Pharmaceutics 2024, 16, 913. [Google Scholar] [CrossRef] [PubMed]
- Pogorzelska, A.; Mazur, M.; Świtalska, M.; Wietrzyk, J.; Sigorski, D.; Fronczyk, K.; Wiktorska, K. Anticancer effect and safety of doxorubicin and nutraceutical sulforaphane liposomal formulation in triple-negative breast cancer (TNBC) animal model. Biomed. Pharmacother. 2023, 161, 114490. [Google Scholar] [CrossRef] [PubMed]
- Luiz, M.T.; Dutra, J.A.P.; de Cássia Ribeiro, T.; Carvalho, G.C.; Sábio, R.M.; Marchetti, J.M.; Chorilli, M. Folic acid-modified curcumin-loaded liposomes for breast cancer therapy. Colloids Surf. A Physicochem. Eng. Asp. 2022, 645, 128935. [Google Scholar] [CrossRef]
- Patel, G.; Thakur, N.S.; Kushwah, V.; Patil, M.D.; Nile, S.H.; Jain, S.; Banerjee, U.C.; Kai, G. Liposomal Delivery of Mycophenolic Acid With Quercetin for Improved Breast Cancer Therapy in SD Rats. Front. Bioeng. Biotechnol. 2020, 8, 631. [Google Scholar] [CrossRef]
- Kurian, M.; Patell, K.; Sekaran, K. Psoriasis Flare-Up in a Patient Treated with Docetaxel for Metastatic Prostate Cancer. Cureus [Internet]. 2023 February 7. Available online: https://www.cureus.com/articles/130560-psoriasis-flare-up-in-a-patient-treated-with-docetaxel-for-metastatic-prostate-cancer (accessed on 24 October 2024).
- Politi, A.; Angelos, D.; Mauri, D.; Zarkavelis, G.; Pentheroudakis, G. A case report of psoriasis flare following immunotherapy: Report of an important entity and literature review. SAGE Open Med. Case Rep. 2020, 8, 2050313X19897707. [Google Scholar] [CrossRef]
- Li, X.; Huang, L.; Yan, Y.; Rong, Y.; Chen, X.; Gao, M.; Huang, J. Deciphering the causal association and co-disease mechanisms between psoriasis and breast cancer. Front. Immunol. 2024, 15, 1304888. [Google Scholar] [CrossRef]
- Trafford, A.M.; Parisi, R.; Kontopantelis, E.; Griffiths, C.E.M.; Ashcroft, D.M. Association of Psoriasis With the Risk of Developing or Dying of Cancer: A Systematic Review and Meta-analysis. JAMA Dermatol. 2019, 155, 1390. [Google Scholar] [CrossRef]
- Vaengebjerg, S.; Skov, L.; Egeberg, A.; Loft, N.D. Prevalence, Incidence, and Risk of Cancer in Patients With Psoriasis and Psoriatic Arthritis: A Systematic Review and Meta-analysis. JAMA Dermatol. 2020, 156, 421. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkordy, A.A.; Hill, D.; Attia, M.; Chaw, C.S. Liposomes and Their Therapeutic Applications in Enhancing Psoriasis and Breast Cancer Treatments. Nanomaterials 2024, 14, 1760. https://doi.org/10.3390/nano14211760
Elkordy AA, Hill D, Attia M, Chaw CS. Liposomes and Their Therapeutic Applications in Enhancing Psoriasis and Breast Cancer Treatments. Nanomaterials. 2024; 14(21):1760. https://doi.org/10.3390/nano14211760
Chicago/Turabian StyleElkordy, Amal Ali, David Hill, Mohamed Attia, and Cheng Shu Chaw. 2024. "Liposomes and Their Therapeutic Applications in Enhancing Psoriasis and Breast Cancer Treatments" Nanomaterials 14, no. 21: 1760. https://doi.org/10.3390/nano14211760
APA StyleElkordy, A. A., Hill, D., Attia, M., & Chaw, C. S. (2024). Liposomes and Their Therapeutic Applications in Enhancing Psoriasis and Breast Cancer Treatments. Nanomaterials, 14(21), 1760. https://doi.org/10.3390/nano14211760