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Abstract: Background: Skin and soft tissue infections (SSTIs) present significant treatment challenges.
These infections often require systemic antibiotics such as vancomycin, which poses a risk for
increased bacterial resistance. Topical treatments are hindered by the barrier function of the skin,
and microneedles (MNs) offer a promising solution, increasing patient compliance and negating
the need for traditional needles. Methods: This study focused on the use of sodium alginate MNs
for vancomycin delivery directly to the site of infection via a cost-effective micromolding technique.
Dissolving polymeric MNs made of sodium alginate and loaded with vancomycin were fabricated
and evaluated in terms of their physical properties, delivery ability, and antimicrobial activity. Results:
The MNs achieved a 378 µm depth of insertion into ex vivo skin and a 5.0 ± 0 mm zone of inhibition
in agar disc diffusion assays. Furthermore, in ex vivo Franz cell experiments, the MNs delivered
34.46 ± 11.31 µg of vancomycin with around 35% efficiency, with 9.88 ± 0.57 µg deposited in the skin
after 24 h. Conclusions: These findings suggest that sodium alginate MNs are a viable platform for
antimicrobial agent delivery in SSTIs. Future in vivo studies are essential to confirm the safety and
effectiveness of this innovative method for clinical use.
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1. Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) is a strain of the common bacterium
Staphylococcus aureus that is a gram-positive bacterium [1,2]. This strain of bacteria typically
results in infections of varying severity upon ingress into the skin, underlying tissues, or
bloodstream. This could occur in the case of wounds, chronic skin conditions, or surgical
intervention [3,4]. Shortly after the discovery of the narrow-spectrum β-lactam antibiotic
methicillin, MRSA infection emerged in England in 1961 as a result of poor antimicrobial
stewardship [5]. MRSA is considered one of the most common pathogenic strains of
Staphylococcus aureus and has severe clinical efficacy in patients with compromised immune
systems [6,7]. However, the reach of MRSA extended beyond the limits of hospitals, as it
infected otherwise healthy individuals with no previous hospital admission. This has raised
alarm bells among medical professionals, urging them to intensify efforts in understanding
and combating this pathogen [8].

MRSA has evolved remarkably owing to the selective evolutionary pressure imposed
by the impetuous use of antibiotics, culminating in an increase in the number of bacterial
strains that are capable of resisting several classes of antibiotics [9]. This resistance is
challenging and a threat to public health at the global scale. In addition, MRSA ingress into
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the skin as a result of trauma or injury can lead to skin and soft tissue infections (SSTIs),
which can range from mild and manageable to life-threatening and debilitating [10].

Several types of antibiotics, which are glycopeptide antibiotics, have been indicated
for the treatment of SSTIs caused by MRSA caused by vancomycin; these antibiotics are
used as a first-line choice for severe or complicated SSTIs when MRSA is suspected or
confirmed [11]. Vancomycin exhibits high potency against MRSA by inhibiting bacterial
cell wall synthesis [12]. This is achieved as the antibiotic molecule binds to the D-Ala-D-Ala
terminus of the peptidoglycan precursors, preventing their incorporation into the cell
wall. This unique mechanism makes vancomycin effective against MRSA strains that have
acquired resistance to other beta-lactam antibiotics [13].

With the rise of MRSA and concerns about vancomycin resistance, researchers continue
to explore new treatment avenues for SSTIs. This includes the development of novel
antibiotics and combination therapies. Vancomycin is a hydrophilic glycopeptide with
a molecular weight of 1449 kDa and a Log P of −3.1 [14]. The inherent physiochemical
properties of vancomycin prevent passive permeation of the glycopeptide through the
skin layers, thus preventing the antibiotic from reaching the desired target site. Owing to
this limitation, alternative formulation strategies that could augment the permeation of
vancomycin into the skin for the treatment of MRSA-based SSTIs with minimal toxicity are
needed [15]. One approach involves the use of MNs. MNs are micron-scale projections on
a flat baseplate that are capable of breaching the outermost layer of the skin, the stratum
corneum, in a minimally invasive and transient fashion [16]. This allows the antibiotic to
reach the site of infection effectively and minimises systemic exposure [17]. This targeted
delivery of vancomycin eliminates the risk of several toxicities associated with intravenous
vancomycin, including nephrotoxicity and ototoxicity [18].

Vancomycin-loaded MNs should be formulated considering several aspects, including
maintaining drug activity after release from the MNs and using biocompatible materials to
avoid adverse reactions or tissue damage [19]. Sodium alginate is a natural biopolymer
extracted from brown algae. It has been widely applied in various applications, including
the pharmaceutical and biomedical fields, owing to its biocompatibility, nontoxicity, and
ease of gelation [20]. Additionally, it has been used to formulate MNs due to several
advantages, including its ability to encapsulate a wide range of molecules by forming a
stable hydrogel [21]. These hydrogels entrap drugs within the MN structure while releasing
them upon contact with body fluids from the hydrogel network in a sustained fashion [22].
Sodium alginate is a biocompatible and biodegradable polymer that is commonly com-
bined with other polymers to enhance the physical properties of MNs. The addition of
sodium alginate in the preparation of MNs endows the formulation with increased me-
chanical strength, increased drug loading capacity, and the ability to tailor the rate of drug
release [23]. In this study, sodium alginate was used to formulate dissolving MNs loaded
with vancomycin. A light microscope was used to visualise and evaluate the physical
appearance of the MNs. Furthermore, a TA-X2 Texture Analyser was used to evaluate
the mechanical and insertion ability of the MNs. Finally, the antimicrobial activity of the
vancomycin MNs was inspected via a disk diffusion test. This work aimed to determine
the feasibility of applying MNs for the treatment of skin infections.

2. Materials

Vancomycin hydrochloride was purchased from Alfa Aesar (Lancashire, UK). Alginic
acid sodium salt powder, citric acid, gelatin, Muller Hinton broth (MHB), Muller Hinton
agar (MHA), polyethylene glycol (PEG) (M.W. 400 D), polyvinyl alcohol (PVA) (M.W.
9–10 kDa), polyvinyl alcohol (PVA) (M.W. 85–124 kDa), sodium chloride, acetonitrile
(ACN) (>99.9%), and methanol (MeOH) (>99.9%) were purchased from Sigma-Aldrich
(Dorset, UK). Glycerol (99.5%) was purchased from VWR International (Leicestershire,
UK). Phosphate-buffered saline (PBS) tablets (pH 7.4) were purchased from Oxoid Limited
(Hampshire, UK). Phosphoric acid (85%) and triethylamine anhydrous were purchased
from Fluorochem (Hadfield, Old Glossop, UK). Staphylococcus aureus 29213, Streptococcus
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epidermidis 11047, and MRSA 33592 were purchased from ATCC. HPLC-grade water was
obtained from a water purification system (Elga PURELAB® DV 25, Veolia Water Systems,
Kilkenny, Ireland). All the other chemicals were of analytical reagent grade.

3. Methods
3.1. MNs Preparation Method

Circular MNs moulds (600 pyramidal MNs per array with areas of 0.75 cm2 and
750 µm MN heights) were used to prepare MNs via the casting method. As shown in
Figure 1, 300 µL of an aqueous solution containing 40% w/w vancomycin, 20% w/w
sodium alginate, 12% w/w polyvinyl alcohol (PVA) 9–10 kDa, and 1% w/w glycerin was
cast into the MN moulds. The MNs were subsequently centrifuged at 6000× g for 5 min
and left to dry at room temperature (RT) for 24 h after the excess formulation was removed.
A base plate was formulated by adding a drug-free polymeric solution of 20% w/w sodium
alginate, 12% w/w polyvinyl alcohol (PVA) 9–10 kDa, and 1% w/w glycerin into the MN
moulds. The MNs were subsequently centrifuged at 6000× g for 5 min and left to dry at
room temperature for 24 h.
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Figure 1. Preparation method of sodium alginate microneedles loaded with vancomycin.

3.2. MN Characterisation

MNs were characterised in terms of their morphology, needle length, strength, inser-
tion ability, and drug content. A light microscope was used to visualize the microneedles
and to check their full formation. MN lengths were also recorded, and the average length
was calculated.

A TA-X2 Texture Analyser (Stable Microsystem, Haslmere, UK) was used to perform
compression force tests and penetration tests. These tests are commonly conducted to eval-
uate the mechanical strength and penetration ability of MNs [24]. The movable cylindrical
probe of the texture analyser was used to move the MNs at a speed of 0.5 mm per second
downward into a metallic surface, and a force of 32 N was applied for 30 s [25]. The height
reduction percentage was calculated according to Equation (1).

Height reduction% =
Hb − Ha

Hb
× 100% (1)

Hb: The original average length of the MNs before compression.
Ha: Average length of MNs after compression.
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To evaluate the insertion ability of the MNs, Parafilm®M was folded into eight layers
to obtain an average thickness of approximately 1 mm. The same movable cylinder with
the same settings was used to move the MNs toward the eight layers of Parafilm®M. A
stereomicroscope was used to count the holes in each layer. The percentage of insertion
was calculated according to Equation (2).

Holes created% =
Number of holes in each Parafilm®.M layer

Total number of MNs
× 100% (2)

To quantify vancomycin in this work, a previously described pharmaceutical ana-
lytical method was validated via ultraviolet-HPLC [26]. A Phenomenex® C18 column
(4.6 cm × 150 mm, 5.0 µm) was used as the stationary phase, while the mobile phase was
composed of phosphate buffer and a mixture of methanol and acetonitrile. Detection was
carried out at a wavelength of 240 nm at 20 ◦C with a flow rate of 0.4 mL/min and an
injection volume of 50 µL. The vancomycin content was determined by dissolving the
MNs in 20 mL of PBS at 37 ◦C. The solution was then filtered through a 0.22 µm filter
membrane and diluted with PBS. Finally, the samples were analysed using a validated
ultraviolet-high-performance liquid chromatography (UV-HPLC) method.

3.3. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy

An attached total reflection-Fourier transform infrared (ATR-FTIR) instrument with
MIRacle™ software (Pike Technologies Ltd., Madison, WI, USA). was used to evaluate the
possible interactions between vancomycin, sodium alginate, and the other polymers used.
The samples (vancomycin, physical mixture, and MNs) were placed independently under
a digital torque controller on the sample stage holder, with wavenumbers ranging between
600 cm−1 and 4000 cm−1 with a resolution of 4.0 cm−1. MIRacle™ software was used to
obtain the infrared spectrum.

3.4. Ex Vivo Skin Deposition Study

An ex vivo skin deposition study using a Franz diffusion cell apparatus was performed
to evaluate the ability of MNs to deposit vancomycin into full-thickness neonatal porcine
skin [27]. Vancomycin quantities in the reservoir compartment of the Franz diffusion
cells and in the neonatal porcine skin were determined via validated UV-HPLC methods.
Piglets were provided by the Agri-Food and Bioscience Institute (Hillsborough, Northern
Ireland, UK). The reservoir compartment was filled with PBS solution (pH = 7.4). Before
the experiment was performed, the skin was equilibrated in PBS (pH = 7.4), the skin hair
was shaved, and the skin was rinsed again with PBS (pH = 7.4). The skin pieces were
dried on paper towels. The skin was attached to the donor compartment of Franz cells
with cyanoacrylate® glue. The MN arrays were inserted into the centre of the skin and
gently pressed with fingers for 30 s by pushing the flat end of the syringe plunger onto the
base plate of the MNs. A cylindrical metal with a diameter of 11.0 mm and a weight of
5.0 g was placed on the top of the MNs for fixation during the experiment. One layer of
Parafilm®M was placed on top of the donor chamber and on the receptor arm to prevent
fluid evaporation from the 12 mL receptor compartment. The temperature was maintained
at 37 ± 1 ◦C. At predetermined time intervals (3, 5 and 24 h), a 200 µL sample was taken
from the sampling arm, and the sample volume was replaced with fresh release media
to maintain the sink condition. The samples were mixed with 0.5 mL of methanol and
centrifuged for 30 min for analysis via the validated HPLC method. After 24 h, the skin
was removed from the Franz cell compartment, the MNs on the surface were scraped off,
and the skin was placed in an Eppendorf® tube containing 1 mL of water with a metal
bead. The drug was extracted at 50 Hz by using Tissue Lysser® for 15 min and centrifuged
at 6000× g for 10 min. The supernatants were collected and filtered through a 0.2 µL filter.
All the samples were appropriately diluted and analysed using HPLC.
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3.5. Antimicrobial Activity
3.5.1. Inoculum Preparation

The bacterial cells were maintained on cryoconervative beads at −80 ◦C in 10% glyc-
erol. The day before the experiment, a few beads were inoculated in MHB and cultured in
a shaker incubator at 37 ◦C at 100 rpm overnight. The supernatant was discarded after the
bacterial culture was centrifuged at 3000 rpm for 12 min. The pellets were subsequently
suspended in PBS, such that the optical density at 550 nm (OD550) was 0.3 for S. aureus,
S. epidermidis, and MRSA; the approximate inoculum density was 1 × 108 CFU/mL, as
verified by the viable count. Then, 5 mL was added to 99.5 mL of MHB and incubated in
a shaker incubator at 37 ◦C at 100 rpm for 3 h until the bacteria reached the exponential
phase of growth.

3.5.2. Determination of Antimicrobial Activity of Vancomycin

The minimum inhibitory concentration (MIC) and minimum biocidal concentration
(MBC) were determined according to the CLSI broth microdilution method [28].

Stock solutions of vancomycin were prepared in MHB at a concentration of 100 µg/mL.
Bacterial cultures were prepared as previously described. After reaching the logarithmic
phase of growth, the cultures were cultured in PBS to an OD550 of 0.3, and then diluted
again in MHB to obtain a concentration of 1 × 106 CFU/mL, as verified by a viable count.
MHB (50 µL) was added to the wells of round-bottomed 96-well plates (rows 2 to 10) in
triplicate. The vancomycin stock solution (100 µL) was added to the first row of the plate.
After that, twofold serial dilutions were performed through the tenth row, and 50 µL was
discarded from the final wells. Then, 50 µL of diluted bacterial culture was added to each
well for a final inoculum density of 5 × 105 CFU/mL. A positive control mixture containing
50 µL of MHB and 50 µL of bacterial inoculum was included in this experiment, and a
negative control mixture containing 100 µL of free MHB was also included. The plates were
incubated overnight at 37 ◦C at 100 rpm in a shaker incubator, after which the MIC was
determined as the lowest concentration at which negative growth was observed visually.
Each test was repeated three separate times. MBC values were determined by spreading
10 µL from each well. The agar plates were incubated for 24 h in a static incubator at 37 ◦C,
after which 99.9% of the bacteria were killed. The lowest concentration showing no growth
was considered the MBC.

3.5.3. Evaluating the Antimicrobial Activities of the Vancomycin MNs via the Disk
Diffusion Method

The zones of inhibition were determined according to the CLSI broth microdilution
method [29,30]. Bacterial cultures were prepared as previously described and diluted in
PBS to 1 × 108 CFU/mL. The cultures were streaked and placed on sterile cotton swabs
on sterile MHA plates. The MN arrays were placed on the middle of the MHA plates and
gently pressed via sterile tweezers. Plates with negative controls were also included, and
unloaded MNs were used to exclude any antimicrobial activity for free MNs. The plates
were incubated inverted in a static incubator for 24 h at 37 ◦C. The next day, the zones
of inhibition were measured via a ruler, and the diameters were recorded in cm. Each
experiment was carried out on three separate occasions.

3.6. Statistical Analysis

The statistical analysis in this study was performed via SPSS 23 software. The data
were processed via Microsoft® Excel® 2016. Independent sample t tests were used for
comparing groups, and the significance level was set at p < 0.05.

4. Results and Discussion
4.1. MN Characterisation

In the present work, sodium-alginate-based MNs loaded with vancomycin were
fabricated via two-step micromolding techniques, which are commonly employed in MN
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fabrication [31]. As illustrated in Figure 2, visual inspection via light microscopy revealed
that the MNs were fully formed with no bubbles, precipitation, or separation. The MNs
were uniform and clear, with an average length of 724 ± 130 µm. These findings indicate
the reproducibility of the proposed preparation method. When subjected to an axial force of
32 N, analogous to thumb pressure applied for 30 sec on MNs, the fabricated MNs exhibited
a height reduction of 10.23 ± 4.82%. This height reduction percentage is comparable to that
reported for other MNs. This finding indicated that the fabricated MNs would not fracture
or buckle upon application into the skin [32,33]. The penetration profile of the MNs was
subsequently evaluated via a Parafilm®M insertion test [24]. A light microscope was used
to determine the percentage of holes created in each of the Parafilm®M groups, as shown
in Figure 2. All the MNs were able to penetrate the first layer of Parafilm®M, resulting in
100% of the holes being created in the first layer. Approximately 68% of the holes were
found in the second layer, whereas 10% of the holes were created in the third layer. The
MNs were able to pierce the third layer of Parafilm®M. Each layer of Parafilm®M has a
thickness of approximately 126 µm, and three layers penetrate to an estimated insertion
depth of 378 µm. There were no observable holes within the remaining layers. These
findings are in parallel with several studies reporting MNs with similar insertion abilities
and successful insertion in vivo. This insertion profile indicates that MNs are capable of
piercing the outermost layer of the skin, the stratum corneum, with high reproducibility
and efficiency, enabling the implantation of drug-laden shafts into the aqueous dermis
where they are deposited and released [34]. In addition, vancomycin concentrations were
quantified via a previously described UV-HPLC method [35]. Vancomycin was loaded only
in the tips of the MNs with a drug-free baseplate, resulting in an overall drug loading of
100 ± 0.165 µg per MN array.
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sion force test. (B): Light microscope image showing the length of the microneedles after performing
the compression force test. (C): Microneedle length before and after reduction. (D): % Holes created
in each layer of Parafilm®M upon conducting the Parafilm®M insertion test.

4.2. Attenuated Total Reflectance—Fourier Transform Infrared Spectroscopy

An ATR-FTIR study was carried out to investigate the interaction between vancomycin
and the excipients used to fabricate the MNs. Figure 3 displays the FTIR spectra of the
MNs, vancomycin, sodium alginate, PVA 9–10 kDa, and physical mixture of the polymers.
On the basis of these spectra, the characteristic functional groups of each compound are
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summarised in Table 1. For sodium alginate, the peak at 1591 cm−1 is attributed to the
asymmetric stretching of carboxylate O-C-O vibrations, the peak at 1401 cm−1 may be the
deformation vibration of C-OH or the symmetric stretching of carboxylate O-C-O, and the
peak at 1 may be the stretching vibration of C-O [36,37]. For PVA, the peak at 1699 cm−1 is
the stretching vibration of C=O, the asymmetric stretching vibration of C-O-C at 1246 cm−1,
and the peak at 1035 cm−1 is the stretching vibration of C-O or the symmetric stretching
vibration of C-O-C [38,39]. For vancomycin, 1651 cm−1 is the stretching vibration of C=O,
1488 cm−1 is the skeleton vibration of benzene C=C, and the peaks of phenol at 1225 cm−1

and 1035 cm−1 are the stretching vibrations of C-O [40,41]. The MNs and the physical
mixture have characteristic peaks of all the components, as demonstrated below. These
findings indicate that MN fabrication did not alter the structure of vancomycin, as the
characteristic peaks of vancomycin remained unchanged.
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Figure 3. Fourier transmission infrared spectra of sodium alginate (SA), polyvinyl alcohol (PVA),
vancomycin (VCL), vancomycin-loaded MNs (MNs), and the physical mixture of these constituents.

Table 1. Characteristic functional groups of sodium alginate, polyvinyl alcohol, and vancomycin.

Compound Functional Group Wavenumber (cm−1)

Sodium alginate
COO 1591
C-OH 1401
C-O 1035

Polyvinyl alcohol
C=O 1699

C-O-C 1246
C-O 1035

vancomycin

C=O 1651
C=C 1488

phenols 1225
C-O 1035

4.3. Ex Vivo Skin Deposition Study

Following the physical and mechanical evaluation of the MNs, the ability of the MNs
to penetrate, dissolve, and release vancomycin into the skin was evaluated via a Franz cell
setup. As illustrated in Figure 4, OCT images were taken while the MNs were inserted
into the Parafilm®M layers to determine the ability of the MNs to insert. Upon application
to the skin, the amount of vancomycin that permeated and deposited into the skin was
quantified via a validated UV-HPLC analytical method. Approximately 34.46 ± 11.317 µg
of vancomycin permeated through the skin into the reservoir compartment, whereas
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approximately 9.88 ± 0.572 µg of vancomycin was deposited in the skin. Approximately
35% of the loaded vancomycin permeated the reservoir compartment, and approximately
10% remained in the skin after 24 h of application.
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These findings are in accordance with previously reported data indicating that the
amount of permeated vancomycin from MNs to the receiver compartment was more
than two times greater than the amount of deposited vancomycin in the skin [42]. This
difference might be due to the hydrophilicity of vancomycin and the polymers used in
the MN formulation. Sodium alginate and PVA are biodegradable polymers that are
intrinsically hydrophilic and may aid in the dissolution, deposition, and permeation of
vancomycin across the skin layers [20,43]. The delivery of vancomycin via MNs has been
previously investigated by several researchers. For example, vancomycin MNs made of
dissolvable polymers (PVA and sodium hyaluronate) showed high drug penetration across
porcine skin upon conducting an ex vivo skin permeation study using a Franz cell diffusion
apparatus [43]. In a recently published study, sodium alginate was used to fabricate MNs
loaded with clindamycin for skin infection [19]. MNs are made by casting, where sodium
alginate and gelatin are the main components of the MNs. Clindamycin MNs exhibited a
high drug release percentage, and approximately 90% of the drug was released after the
MNs were immersed in an aqueous release medium of PBS for 24 h. This release pattern
was due to the hydrophilicity and biodegradability of sodium alginate [44].

4.4. Evaluating Antimicrobial Activities
4.4.1. Determination of the MIC and MBC Values of Vancomycin

The antimicrobial activity of vancomycin was evaluated in terms of the MIC and
MBC against S. aureus, S. epidermidis, and MRSA, as these are the most common bacteria
related to skin infections. According to the data presented in Table 2, vancomycin had
inhibitory and biocidal effects on all three tested bacteria. Both MRSA and S. epidermidis
had twofold greater MICs than did S. aureus. However, S. epidermidis demonstrated the
highest biocidal concentration, with an MBC value equal to 25 µg/mL, while MRSA was
the least bactericidal at a concentration of 6.25 µg/mL. The reduced bactericidal activity of
vancomycin on S. aureus, as shown by higher MBC values, may be attributed to the greater
amount of cell wall anchored (CWA) surface proteins relative to the other bacterial species
investigated, resulting in an overall decrease in the number of binding sites for vancomycin
to bind to the D-Ala-D-Ala C-terminus of the peptidoglycan layer [45,46]. Nonetheless,
and according to the National Comprehensive Cancer Study (NCCLS) guidelines, all
staphylococcal strains are considered susceptible to vancomycin, as all the tested bacteria
exhibited MIC values lower than 4 µg/mL [47].
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Table 2. MIC and MBC values of vancomycin against S. aureus, S. epidermidis, and MRSA.

Bacteria MIC (µg/mL) MBC (µg/mL)

S. aureus 0.78 12.5
S. epidermidis 1.56 25

MRSA 1.56 6.25

4.4.2. Evaluating the Antimicrobial Activities of the Vancomycin MNs

To evaluate the antimicrobial activity of the vancomycin MNs, disc diffusion assays
were used to monitor the zone of inhibition of vancomycin as proof of the release of
vancomycin from the sodium alginate MNs. The test was performed against three staphy-
lococcal species in comparison to free MNs without antibiotics. As shown in Table 3,
vancomycin-loaded MNs demonstrated promising antibacterial activity against all three
microorganisms, as proven by the ZOI values. The inhibition zone diameters were 6.3 ± 1.5,
7.3 ± 2.3, and 5.0 ± 0 mm for S. aureus, S. epidermidis, and MRSA, respectively, indicating
that the growth of the tested bacteria was successfully inhibited by our vancomycin MNs,
as evidenced by the release of vancomycin from the sodium alginate MNs. This finding is
consistent with our release studies described earlier. Ziesmer and colleagues developed a
vancomycin MN array for the local treatment of MRSA SSTIs and compared the results to
those of positive vancomycin controls prepared as vancomycin-infused filter papers with
dimensions identical to those of vancomycin MNs. Their disc diffusion studies revealed
correlated results between the test results and positive controls, with increased diameters
and increased vancomycin amounts. The ZOIs against MRSA shown in this set of experi-
ments indicate that antimicrobial activity is attained after the drug has been released upon
dissolution and diffusion from the sodium alginate matrix. In contrast, the drug-free MNs
did not show any ZOIs, indicating that no antimicrobial activity was attained by the sodium
alginate polymer alone. Notably, in the present study, the antimicrobial properties of the
MNs were modulated by the payload within the MNs. In contrast, some of our previous
work explored the antimicrobial properties of dissolving MNs by using novel polymers
that exhibit either antibacterial or antifungal properties [48]. Moving forward, future work
could entail modifying sodium alginate to include pendant groups on the polymer that
also exhibit antimicrobial properties, thus serving as an antibiotic potentiator that could
augment the efficacy of the formulation.

Table 3. The zone of inhibition (mm) of vancomycin MNs against the tested bacteria correlated with
that of the unloaded MNs.

Bacteria
Zone of Inhibition (mm)

Vancomycin MNs

S. aureus 6.3 ± 1.5
S. epidermidis 7.3 ± 2.3

MRSA 5.0 ± 0
Free MNs showed no ZOI against any of the tested microorganisms.

5. Conclusions

In this work, we developed sodium alginate MNs loaded with vancomycin as an
innovative approach for treating skin infections, specifically MRSA. Using a double-casting
method, we successfully fabricated MNs that exhibited high integrity and were capable
of effectively penetrating an ex vivo skin model, as confirmed by light microscopy and
mechanical testing. MNs demonstrated substantial drug delivery ability, with 35% of
the loaded vancomycin permeated through full-thickness neonatal porcine skin and 10%
remaining within the skin after 24 h. This results in an overall delivery efficiency of 45%,
indicating the potential of MNs to provide effective dosing for antimicrobial therapy. Fur-
thermore, antibacterial activity tests confirmed the potent effects of the vancomycin-loaded
MNs against C. acnes and S. aureus, confirming their suitability as a treatment modality
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for skin infections. Although the loading of vancomycin into MNs has been reported
previously [44], notably, in this work, the antimicrobial potency of vancomycin-loaded
MNs against C. acnes, S. aureus, and MRSA, not only MRSA, was evaluated. Additionally,
the MNs presented in this work presented a higher delivery percentage (35% of the loaded
vancomycin) than the previously reported dissolving vancomycin-loaded MNs (8% of
the loaded vancomycin) [43]. Our findings highlight the promising role of vancomycin-
loaded sodium alginate MNs in offering a non-invasive, efficient alternative to conventional
delivery methods for managing MRSA-related skin infections.
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