Finding the Key Structure of Mechanical Parts with Formal Concept Analysis
<p>Expression views of several mechanical parts’ functional surfaces (1).</p> "> Figure 2
<p>Expression views of several mechanical parts’ functional surfaces (2).</p> "> Figure 3
<p>Expression views of several mechanical parts’ functional surfaces (3).</p> "> Figure 4
<p><a href="#information-11-00116-f001" class="html-fig">Figure 1</a>’s 3D structure model.</p> "> Figure 5
<p><a href="#information-11-00116-f002" class="html-fig">Figure 2</a>’s 3D structure model.</p> "> Figure 6
<p><a href="#information-11-00116-f003" class="html-fig">Figure 3</a>’s 3D structure model.</p> "> Figure 7
<p>The formal concept lattice of <a href="#information-11-00116-t002" class="html-table">Table 2</a>.</p> "> Figure 8
<p>The concept lattice of <a href="#information-11-00116-t003" class="html-table">Table 3</a>.</p> "> Figure 9
<p>The concept lattice of <a href="#information-11-00116-t004" class="html-table">Table 4</a>.</p> "> Figure 10
<p>The concept lattice of <a href="#information-11-00116-t005" class="html-table">Table 5</a>.</p> "> Figure 11
<p>The concept lattice of <a href="#information-11-00116-t006" class="html-table">Table 6</a>.</p> "> Figure 12
<p>The concept lattice of <a href="#information-11-00116-t007" class="html-table">Table 7</a>.</p> "> Figure 13
<p>The concept lattice of <a href="#information-11-00116-t008" class="html-table">Table 8</a>.</p> "> Figure 14
<p>The concept lattice of <a href="#information-11-00116-t009" class="html-table">Table 9</a>.</p> ">
Abstract
:1. Introduction and Problem Statement
2. Structure Model of Parts
3. Theory and Method
3.1. Structure Model of Part Drawings Mapping to Concept Lattice
Algorithm 1: A mapping algorithm. |
begin |
foreach do |
FormBinaries(g.target, g.source); |
end |
FormBinaries(FixedTarget, MovingTarget) |
begin |
foreach do |
if g.target = MovingTarget then |
Attribute⟵g.source∼g.relation; |
Object⟵FixedTarget; |
(Object, Attribute)}; |
FormBinaries(FixedTarget, g.source); |
end |
3.2. Weighted Concept Lattice Based on Decision Formal Context
4. An Algorithm Getting the Part Key Structure and Examples.
5. Experiments
Algorithm 2: cAn algorithm of the part key structure with concept lattice searching. |
Input and |
begin |
foreach do |
Computing w by (1)or (4),compare w and |
if then next ; |
else |
is a key structure; |
end |
6. Conclusions
7. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Berchtold, S.; Kriegel, H.P. S3: Similarity search in CAD database systems. In SIGMOD ’97; Association for Computing Machinery: New York, NY, USA, 1997; pp. 564–567. [Google Scholar]
- Müller, S.; Rigoll, G. Searching an Engineering Drawing Database for User-Specified Shapes. In Proceedings of the Fifth International Conference on Document Analysis and Recognition, Bangalore, India, 20–22 September 1999; pp. 697–700. [Google Scholar]
- Park, J.H.; Um, B.S. A new approach to similarity retrieval of 2-d graphic objects based on dominant shapes. Pattern Recognit. Lett. 1999, 20, 591–616. [Google Scholar] [CrossRef]
- Liang, Z.; Qiang, X.; Ding, Q. Engineering drawing retrieval based on graph matching. J. Nanjing Univ. Aeronaut. Astronaut. 2008, 40, 354–359. [Google Scholar]
- Wang, P.; Jiang, S. An engineering drawing retrieval method based on nested assignment algorithm. Mech. Sci. Technol. Aerosp. Eng. 2011, 30, 693–698. [Google Scholar]
- Zehtaban, L.; Roller, D. Beyond similarity comparison: Intelligent data retrieval for cad/cam designs. Comput.-Aided Des. Appl. 2013, 10, 789–802. [Google Scholar] [CrossRef]
- Xu, J.; Dong, Y. Structure retrieval method for part engineering drawing. J. Mech. Eng. 2011, 47, 191–198. [Google Scholar] [CrossRef]
- Ganter, B.; Wille, R. Formal Concept Analysis: Mathematical Foundations; Springer: New York, NY, USA, 1999. [Google Scholar]
- Ganter, B.; Kuznetsov, S.O. Hypotheses and Version Spaces. Lect. Notes Comput. Sci. 2003, 2746, 83–95. [Google Scholar]
- Zhang, J.F.; Zhang, S.L.; Zheng, L. Weighted concept lattice and incremental construction. Pattern Recognit. Artif. Intell. 2005, 10, 171–176. [Google Scholar]
- Wu, W.Z.; Leung, Y.; Mi, J.S. Granular computing and knowledge reduction in formal contexts. IEEE Trans. Knowl. Data Eng. 2009, 21, 1461–1474. [Google Scholar]
- Li, J.; Mei, C.; Lv, Y. Incomplete decision contexts: Approximate concept construction, rule, acquisition and knowledge reduction. Int. J. Approx. Reason. 2013, 54, 149–165. [Google Scholar] [CrossRef]
- Liaab, J. Knowledge reduction in real decision formal contexts. Inf. Sci. 2012, 189, 191–207. [Google Scholar]
- Yang, H.Z.; Yee, L.; Shao, M.W. Rule acquisition and attribute reduction in real decision formal contexts. Soft Comput. 2011, 15, 1115–1128. [Google Scholar] [CrossRef]
- Qu, K.S.; Zhai, Y.H.; Zhao, Y.M. Study of decision implications based on formal concept analysis. Int. J. Gen. Syst. 2006, 36, 533–542. [Google Scholar] [CrossRef]
- Shao, M.W. Knowledge Acquisition in Decision Formal Contexts. In Proceedings of the International Conference on Machine Learning and Cybernetics, Hong Kong, China, 19–22 August 2007; Volume 7, pp. 4050–4054. [Google Scholar]
- Li, J.; Mei, C.; Lv, Y. Knowledge reduction in decision formal contexts. Knowl.-Based Syst. 2011, 24, 709–715. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, P.; Zhang, J.; Wang, X.; Pedrycz, W. A completeness analysis of frequent weighted concept lattices and their algebraic properties. Data Knowl. Eng. 2012, 81–82, 104–117. [Google Scholar] [CrossRef]
- Li, J.; He, Z.; Zhu, Q. An Entropy-Based Weighted Concept Lattice for Merging Multi-Source Geo-Ontologies. Entropy 2013, 15, 2303–2318. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, P.; Zhang, J. Intension weight value acquisition of weighted concept lattice based on information entropy and deviance. Trans. Beijing Inst. Technol. 2011, 31, 59–63. [Google Scholar]
- Kuznetsov, S.O. Learning of Simple Conceptual Graphs from Positive and Negative Examples. Lect. Notes Comput. Sci. 1999, 1704, 384–391. [Google Scholar]
- Ganter, B.; Grigoriev, P.A.; Kuznetsov, S.O.; Samokhin, M.V. Concept-Based Data Mining with Scaled Labeled Graphs. In Proceedings of the International Conference on Conceptual Structures, Huntsville, AL, USA, 18–22 July 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 94–108. [Google Scholar]
- Métivier, J.P.; Lepailleur, A.; Buzmakov, A.; Poezevara, G.; Crémilleux, B.; Kuznetsov, S.O.; Le Goff, J.; Napoli, A.; Bureau, R.; Cuissart, B. Discovering Structural Alerts for Mutagenicity Using Stable Emerging Molecular Patterns. J. Chem. Inf. Model. 2015, 55, 925–940. [Google Scholar] [CrossRef]
- Belfodil, A.; Kuznetsov, S.O.; Robardet, C.; Kaytoue, M. Mining Convex Polygon Patterns with Formal Concept Analysis. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 1425–1432. [Google Scholar]
- Kuznetsov, S.O.; Makhalova, T. On interestingness measures of formal concepts. Inf. Sci. 2018, 442–443, 202–219. [Google Scholar] [CrossRef] [Green Version]
- Belohlavek, R. Concept lattices and order in fuzzy logic. Ann. Pure Appl. Log. 2004, 128, 277–298. [Google Scholar] [CrossRef]
- Lubomir, A.; Stanislav, K.; Ondrej, K. On stability of fuzzy formal concepts over randomized one-sided formal context. Fuzzy Sets Syst. 2018, 333, 36–53. [Google Scholar]
- Chen, D.; Zhang, W.; Yeung, D.; Tsang, E.C.C. Rough approximations on a complete completely distributive lattice with applications to generalized rough sets. Inf. Sci. 2006, 176, 1829–1848. [Google Scholar]
Coaxial | Parallel | Vertical | ||||||
---|---|---|---|---|---|---|---|---|
Meaning | separate | meet | overlapping | common | amidst | middle | intersect | biased |
mark | s | m | o | c | d | i | i | b |
icon |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | |
1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
a | b | c | d | e | |
---|---|---|---|---|---|
1 | × | × | |||
2 | × | ||||
3 | × | × | × | ||
4 | × | × | |||
5 | × | × | × | × |
E | F | G | K | L | |
---|---|---|---|---|---|
1 | × | × | |||
2 | × | × | × | ||
3 | × | × | |||
4 | × | × | × | × | |
5 | × | ||||
6 | × | ||||
7 | × | × |
A | W |
---|---|
E | 0.1 |
F | 0.2 |
G | 0.7 |
K | 0.9 |
L | 1 |
1 | 1 | 1 | 0 | 0 | |
0 | 1 | 1 | 0 | 0 | |
1 | 0 | 0 | 0 | 0 | |
H | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 0 | |
0 | 0 | 1 | 1 | 0 | |
0 | 1 | 0 | 0 | 1 | |
0 | 1 | 0 | 0 | 0 |
a | b | c | d | e | f | g | h | k | |
---|---|---|---|---|---|---|---|---|---|
1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | |
1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | |
0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | |
0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
X | B | |
---|---|---|
47/90 | ||
1/4 | ||
1/2 | ||
1 | ||
2/3 | ||
3/5 | ||
2/5 |
X | B | |
---|---|---|
1/2 | ||
1/3 | ||
1/2 | ||
1/4 | ||
13/36 | ||
1/4 | ||
1/3 | ||
1/3 | ||
1/3 | ||
1/2 | ||
1/3 |
X | B | |
---|---|---|
2/3 | ||
5/9 | ||
1/4 | ||
1/3 | ||
3/4 | ||
1/2 |
X | B | |
---|---|---|
5/9 | ||
2/3 | ||
1/2 | ||
1/3 | ||
2/3 | ||
3/4 | ||
3/4 | ||
2/3 |
X | B | |
---|---|---|
1361/2160 | ||
1/2 | ||
1/2 | ||
4/9 | ||
7/18 | ||
2/5 | ||
1/4 | ||
1/3 | ||
1 | ||
1/2 | ||
1 | ||
1/4 | ||
3/8 | ||
1/4 | ||
1/4 |
Model Name | Important Concept | Key Structure |
---|---|---|
[Cow][Cow] | ||
Model | Time (s) | 001 | 002 | 003 | 004 | 005 | 006 | 007 |
---|---|---|---|---|---|---|---|---|
This method 18.137 | ||||||||
Ref. [7] method 26.334 |
Model | Time (s) | 008 | 009 | 010 | 011 | 012 | 013 | 014 |
---|---|---|---|---|---|---|---|---|
This method 31.072 | ||||||||
Ref. [7] method 38.256 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Dong, Y.; Xie, L. Finding the Key Structure of Mechanical Parts with Formal Concept Analysis. Information 2020, 11, 116. https://doi.org/10.3390/info11020116
Wu Q, Dong Y, Xie L. Finding the Key Structure of Mechanical Parts with Formal Concept Analysis. Information. 2020; 11(2):116. https://doi.org/10.3390/info11020116
Chicago/Turabian StyleWu, Qiang, Yan Dong, and Liping Xie. 2020. "Finding the Key Structure of Mechanical Parts with Formal Concept Analysis" Information 11, no. 2: 116. https://doi.org/10.3390/info11020116
APA StyleWu, Q., Dong, Y., & Xie, L. (2020). Finding the Key Structure of Mechanical Parts with Formal Concept Analysis. Information, 11(2), 116. https://doi.org/10.3390/info11020116