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Abstract: Deep convolutional neural networks (CNNs) have revolutionized medical im-
age analysis by enabling the automated learning of hierarchical features from complex
medical imaging datasets. This review provides a focused analysis of CNN evolution
and architectures as applied to medical image analysis, highlighting their application
and performance in different medical fields, including oncology, neurology, cardiology,
pulmonology, ophthalmology, dermatology, and orthopedics. The paper also explores chal-
lenges specific to medical imaging and outlines trends and future research directions. This
review aims to serve as a valuable resource for researchers and practitioners in healthcare
and artificial intelligence.

Keywords: CNN; deep learning; image recognition; machine learning; medical imaging;
segmentation

1. Introduction
Deep convolutional neural networks (CNNs) have significantly transformed numer-

ous fields, including the field of medical image analysis, becoming the state-of-the-art
algorithms for tasks such as disease detection, organ segmentation, and image enhance-
ment [1–4]. Their ability to automatically learn hierarchical features from medical imaging
data has enabled breakthroughs in diagnostic accuracy and patient care [5–7]. CNNs
typically consist of convolutional layers that detect spatial hierarchies in images, pooling
layers that reduce dimensionality while preserving critical features, and fully connected
layers that synthesize these features into predictions [8,9]. This advanced architecture
allows CNNs to tackle complex image recognition tasks that are challenging for traditional
machine learning (ML) approaches [10].

Medical image analysis requires robust algorithms capable of extracting subtle pat-
terns from high-dimensional and often noisy datasets, a challenge that CNNs are uniquely
equipped to address [11–13]. By leveraging their ability to learn intricate features directly
from imaging modalities such as X-rays, computed tomography (CT), magnetic resonance
imaging (MRI), and positron emission tomography (PET), CNNs have enabled advance-
ments in automated diagnostics, tumor detection, and precision medicine [14,15]. These
networks are increasingly used in clinical workflows to augment radiologists’ expertise,
improve accuracy, and reduce interpretation times.
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Despite their success in medical applications, CNNs are not without limitations. Chal-
lenges such as the lack of large annotated medical datasets, model interpretability, and ethical
concerns remain significant barriers to widespread adoption in clinical practice. Overcom-
ing these issues requires continued innovation in architecture design, data augmentation
techniques, and explainable AI frameworks [16]. Furthermore, the rapid evolution of CNN ar-
chitectures, such as U-Net for segmentation tasks and DenseNet for feature reuse, highlights
the need for a comprehensive review focused on their medical applications.

Furthermore, while several surveys and reviews have explored CNN applications in
various fields, including medical imaging, many lack comprehensive coverage of recent
advancements considering the rapid pace of development in this domain. Additionally,
some reviews fail to thoroughly identify and address emerging challenges that hinder the
broader adoption of CNNs in clinical settings. To bridge these gaps, this study provides a
thorough review of deep CNNs as applied to medical image analysis, highlighting their
evolution, state-of-the-art architectures, and innovative use cases in healthcare. It examines
techniques and strategies proposed to enhance performance and addresses the challenges
inherent in medical imaging. By consolidating insights from the recent literature, this
work aims to serve as a guide for researchers and practitioners in the development and
application of CNNs to solve pressing medical challenges.

This review provides a comprehensive analysis of the evolution and applications of
deep CNNs in medical image analysis, covering advancements across multiple medical
domains. The main contributions of this study are as follows:

• A systematic review of state-of-the-art CNN architectures, including U-Net, ResNet,
DenseNet, and EfficientNet, highlighting their applications in medical imaging.

• An extensive assessment of the performance of CNN-based models across differ-
ent imaging modalities and medical fields, such as oncology, neurology, cardiology,
pulmonology, ophthalmology, and dermatology.

• A discussion of the key challenges in CNN-driven medical image analysis, including
issues related to generalization across rare diseases, bias in AI models, interpretability,
and privacy concerns, alongside potential mitigation strategies.

• A forward-looking perspective on emerging research trends, including the integration of
CNNs with synthetic data generation techniques such as diffusion models, multi-modal
learning frameworks, and low-resource AI models for global healthcare applications.

By consolidating recent advancements and identifying areas for future exploration,
this study serves as a valuable resource for researchers and practitioners aiming to enhance
AI-driven medical imaging.

The rest of this paper is structured as follows: Section 2 presents the research method-
ology, while Section 3 examines related reviews. Section 4 examines the foundational
components of CNNs. Section 5 reviews the evolution of CNN architectures and their
applications in medical image analysis. Section 6 examines notable applications of CNNs
in medical imaging. Section 7 outlines challenges in CNN-driven medical imaging, while
Section 8 discusses emerging trends and future research directions to address these chal-
lenges. Finally, Section 9 concludes the study.

2. Methodology
To ensure a systematic and comprehensive review of CNNs in medical image analysis,

we adopted the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) methodology. This approach ensures transparency and reproducibility in lit-
erature selection by following a structured four-phase process: identification, screening,
eligibility, and inclusion.
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2.1. Literature Search Strategy

The literature search was conducted using established academic databases, including
PubMed, IEEE Xplore, Scopus, Web of Science, and Google Scholar. The search covered
publications from 2020 to 2025, reflecting the rapid evolution of CNN-based techniques
in medical imaging. The primary keywords used for search queries included, “Deep con-
volutional neural networks”, “CNN applications in medical imaging”, “Disease detection
using CNNs”, “Medical image segmentation with CNNs”, “Multi-modal medical image
analysis”, and “AI-based medical image enhancement”. Boolean operators (AND, OR)
were applied to refine search results, ensuring comprehensive retrieval of relevant studies.

2.2. Inclusion and Exclusion Criteria

The following criteria were used to determine the relevance of retrieved studies:

• Inclusion Criteria:

– Peer-reviewed journal and conference papers published between 2020 and 2025.
– Studies explicitly applying CNNs in medical image analysis.
– Research presenting quantitative evaluation metrics (accuracy, AUC, sensitivity,

specificity, etc.).
– Papers focusing on disease detection, segmentation, image enhancement, multi-

modal analysis, or novel CNN architectures.

• Exclusion Criteria:

– Studies focusing solely on CNN architecture development without medical applications.
– Papers with insufficient experimental validation or no quantitative evaluation.
– Review articles that lack substantial new insights beyond summarization.

The selection process was conducted following PRISMA guidelines. The initial
database search identified 184 articles. After removing duplicates, 162 unique records
were screened based on titles and abstracts. A total of 80 studies were deemed relevant for
full-text assessment, of which 66 met all inclusion criteria and were included in this review.

2.3. Data Extraction and Synthesis

Key information was extracted from the selected studies, including:

• Medical field: Neurology, cardiology, pulmonology, gastroenterology, ophthalmology,
dermatology, oncology, orthopedics.

• Task: Disease classification, segmentation, image reconstruction, multi-modal integration.
• CNN architecture: AlexNet, ResNet, DenseNet, U-Net, EfficientNet, hybrid CNN models.
• Performance metrics: Accuracy, AUC, sensitivity, specificity, DSC score.
• Dataset: Publicly available or institutionally curated datasets (e.g., LIDC-IDRI, CBIS-

DDSM, ISIC, ADNI).

The extracted data were synthesized into a structured analysis, categorizing studies based
on medical application domains and CNN methodologies.

3. Related Reviews
Medical image analysis has significantly evolved with the application of CNNs, enabling

state-of-the-art performance in various tasks such as disease detection, segmentation, and im-
age enhancement. This section discusses notable reviews and surveys in the field, highlighting
the contributions of various researchers and identifying areas requiring further attention.

Litjens et al. [17] provided one of the earliest comprehensive surveys on deep learning
in medical image analysis, covering CNN applications across tasks like classification,
segmentation, and detection. Their work laid a strong foundation for CNN-based research
in medical imaging, especially for modalities such as MRI and CT. Similarly, Bernal et al. [2]
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reviewed the application of CNNs in brain imaging, focusing on tumor detection and
structural segmentation. Their review highlighted the utilization of CNNs in analyzing
neurological conditions, which remains a critical area of research.

Alzubaidi et al. [18] explored various deep learning architectures, including CNNs
and their roles in handling medical image analysis tasks. While the study detailed advance-
ments in model architectures, emerging technologies like self-supervised learning (SSL)
and federated learning were not extensively explored. Recent studies have expanded on
these earlier works by integrating CNNs with novel modalities and imaging frameworks.
For example, Ferrag et al. [19] reviewed the integration of CNNs into Internet of Medical
Things (IoMT) applications, which has the potential to enable real-time processing and
analysis of medical images from connected devices. This intersection of CNNs with IoT-
driven healthcare systems opens new possibilities for remote diagnostics and telemedicine.
Similarly, Xu et al. [20] provided an in-depth evaluation of deep-learning-based segmenta-
tion methods, which have become increasingly important in medical diagnosis. The study
focused on deep learning (DL) architectures, such as CNNs, recurrent neural networks
(RNNs), generative adversarial networks (GANs), and autoencoders.

Furthermore, some research works have focused on specific applications of CNNs
in niche imaging modalities. Zhang et al. [21] examined deep-learning-based methods
for low-dose CT reconstruction, where noise and reduced radiation exposure present
challenges. The study identified that CNNs are the dominant DL architectures used in
medical imaging and demonstrated how they enhance image clarity while maintaining
diagnostic quality. This study is crucial as it provides practical solutions for radiation-
sensitive environments. Bhatia et al. [22] evaluated the integration of hybrid DL models
for analyzing electrocardiograms (ECG). Three hybrid DL models were studied, including
CNN with bidirectional long short-term memory (BiLSTM), CNN with LSTM, and CNN
with gated recurrent unit (GRU). These hybrid approaches enhanced the detection of
cardiovascular anomalies with improved accuracy, with the hybrid CNN-BiLSTM achieving
the best performance.

Hermessi et al. [23] provides a comprehensive review of CNN-based frameworks for
multi-modal medical image analysis. The study demonstrates how CNNs improve diag-
nostic performance in complex clinical scenarios by integrating information from different
imaging modalities, such as CT, MRI, and PET scans. However, while multi-modal fusion
frameworks have shown significant progress, further advancements are needed to address
challenges in aligning heterogeneous data sources. Meanwhile, Ferdinand et al. [24] high-
lights CNN-based techniques for medical image enhancement. The study demonstrates
the importance of high-quality images for accurate diagnostics and discusses how CNNs
improve image resolution and clarity through super-resolution and denoising approaches.
In similar research, Bhutto et al. [25] studied the use of CNN in enhancing medical im-
ages, focusing on CT and MRI images. The research showed the effectiveness of CNN in
removing noise and enhancing contrast in medical images.

CNNs have also been used for sensor-driven medical imaging applications, as ex-
plored by Palanisamy et al. [26]. Their study integrates CNN-based processing with
IoT-enabled sensors for remote patient monitoring. This framework demonstrates potential
in resource-constrained environments where real-time diagnostics are critical for timely
interventions. The work by Mahmood et al. [27] reviews DL advancements for medical
image segmentation and classification using techniques such as CNNs, RNNs, and autoen-
coders. The study highlights their role in identifying lesions and tumors from CT and MRI
data, with emphasis on explainability and robustness for clinical adoption.

Furthermore, Yao et al. [28] provided a broad review of CNNs in medical image
segmentation and evaluated their performance on different medical datasets, including
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ovarian tumors and liver segmentation datasets. The study also explored how Transformers
combined with CNNs are transforming the field of medical image analysis. Similarly,
Kshatri and Singh [29] reviewed the role of CNNs in MRI pre-processing, segmentation,
and diagnosis. The study explores CNN-driven advancements, challenges, and large-scale
retrieval methods to enhance MRI processing efficiency. This work provides insights into
CNN applications in data preparation, segmentation, and post-processing.

While previous reviews have provided insights into CNN applications in medical
imaging, they often focus on specific tasks, such as segmentation, disease classification,
or detection, without extensively covering their broader impact across multiple medical
specialties. Furthermore, many reviews primarily emphasize standard imaging modalities
such as CT and MRI while overlooking advancements in integrating CNNs with multi-
modal medical data, including histopathological images, genomic sequences, and real-time
sensor-driven imaging. Additionally, limited attention has been given to CNN-driven
synthetic data generation for augmenting datasets in rare disease diagnosis, an area that is
critical for improving model generalization and mitigating data scarcity in medical imaging.

To address these gaps, this review provides a systematic and up-to-date analysis of
CNN applications across various medical fields, including oncology, neurology, cardiology,
pulmonology, ophthalmology, dermatology, and orthopedics. Unlike previous surveys, this
study examines CNN applications beyond disease classification, encompassing areas such
as segmentation, image enhancement, and the integration of CNNs with multi-modal and
sensor-driven imaging frameworks. Furthermore, this review aims to discuss emerging
methodologies such as federated learning, self-supervised learning, and explainable AI,
highlighting their role in addressing privacy concerns, improving model interpretability,
and ensuring clinical adoption. By consolidating recent advancements and assessing CNN
performance across multiple domains, this study serves as a crucial resource for advancing
AI-driven medical imaging research and implementation in real-world clinical settings.

4. Overview of CNNs and Their Building Blocks
CNNs are a specialized class of deep neural networks, designed to efficiently process

grid-like data structures such as images. They excel in capturing spatial hierarchies and
extracting features from input data using layers of learnable filters and operations [30].
Figure 1 illustrates the general architecture of a CNN, which progresses from raw image in-
put through convolutional and pooling layers to produce high-level feature representations
for classification or other tasks.

Figure 1. General architecture of a CNN, showing the progression from raw image input to feature
extraction and final output through convolutional, pooling, and fully connected layers [31]. This
structure forms the foundation for many DL models, including those used in medical image analysis.

The CNN architecture is composed of several key building blocks, each playing a
unique role in processing and learning from image data. These include convolutional layers
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for feature extraction, pooling layers for dimensionality reduction, and fully connected
layers for decision-making. Additional components such as batch normalization and
dropout are often incorporated to enhance training stability and model generalization.
The main components of CNNs are discussed below.

4.1. Convolutional Layer

The convolutional layer is the fundamental unit of a CNN, responsible for detecting
patterns and features in the input data. This is achieved by applying a set of learnable
filters that activate specific features such as edges, textures, or shapes [32]. Each filter
generates a feature map, representing various aspects of the input image. Mathematically,
the convolution operation is defined as

F(i, j) = (G ∗ H)(i, j) = ∑
m

∑
n

G(m, n)H(i − m, j − n), (1)

where F(i, j) represents the output feature map at position (i, j), G(m, n) is the input image,
and H(i − m, j − n) denotes the filter applied to the input. The indices m and n correspond
to the spatial dimensions of the filter, iterating over its width and height, respectively. The
convolution operation effectively slides the filter across the input image, computing dot
products between the filter weights and the corresponding pixel values to extract relevant
patterns, enabling hierarchical feature learning in CNNs. The ReLU activation function is
commonly applied after the convolution operation to introduce non-linearity, enabling the
network to learn complex patterns [33].

4.2. Pooling Layer

The pooling layer reduces the spatial dimensions of feature maps, decreasing com-
putational complexity and making the network more robust to spatial variations in the
input [34]. Max pooling, the most widely used pooling operation, selects the maximum
value from a region of the feature map, as defined by

Pij = max
a,b∈Nij

Xab, (2)

where Pij is the output at position (i, j), Xab represents the elements in the pooling window,
and Nij is the neighborhood covered by the pooling kernel [35].

4.3. Fully Connected Layer

Fully connected (FC) layers integrate features learned by previous layers into the final
prediction or classification. Each neuron in the FC layer connects to all activations from
the preceding layer, forming a dense network that learns complex relationships among
features. The output of an FC layer is computed as

y = σ(Wx + b), (3)

where x is the input vector, W is the weight matrix, b is the bias vector, and σ denotes the
activation function [36].

4.4. Batch Normalization

Batch normalization stabilizes training by normalizing the inputs to a layer for each
mini-batch, ensuring zero mean and unit variance. This process mitigates the internal
covariate shift, allowing higher learning rates and reducing sensitivity to initialization [37].
The normalized input is computed as
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x̂(k) =
x(k) −E[x(k)]√

Var[x(k)] + ϵ
, (4)

where x(k) is the input, E[x(k)] is the mean, Var[x(k)] is the variance, and ϵ is a small constant
for numerical stability.

4.5. Dropout

Dropout is a regularization method that prevents overfitting by randomly deactivating
a fraction of neurons during training [38]. This introduces robustness by reducing depen-
dency on specific neurons, effectively forming an ensemble of subnetworks. The dropout
operation can be expressed as

r(l)j ∼ Bernoulli(p), (5)

where r(l)j is the masking neuron for layer l, and p is the probability of retaining a neuron
during training.

5. Evolution of Deep CNNs and Architectures
The evolution of deep CNNs has significantly influenced advancements in image

recognition tasks, including medical image analysis. Although the foundational concepts
of neural networks were introduced in the 1980s and 1990s, the development of AlexNet
by Krizhevsky et al. [39] in 2012 marked the beginning of deep CNNs as a dominant
approach in computer vision. This architecture demonstrated the feasibility of training
deep networks using GPUs and large datasets, achieving groundbreaking performance
on the ImageNet large-scale visual recognition challenge (ILSVRC). Since then, innovative
architectures such as U-Net, ResNet, and EfficientNet have introduced new paradigms,
addressing challenges like vanishing gradients, computational inefficiency, and pixel-level
segmentation. These architectures were selected for their wide adoption and demonstrated
suitability for medical image analysis [8,17]. Below, we discuss the most notable CNN
architectures and their relevance to medical imaging.

5.1. AlexNet

AlexNet [39] revolutionized the field by introducing ReLU activations, dropout reg-
ularization, and GPU-based training, enabling deeper networks to handle large datasets
effectively. The architecture consists of five convolutional layers and three fully connected
layers, incorporating max pooling and ReLU activations throughout. Figure 2 illustrates
the architecture of AlexNet. The success of AlexNet demonstrated the potential of DL in
image classification and significantly influenced its application in medical image analy-
sis. Its features, such as dropout regularization, have become standard practices in CNN
architectures for tasks like disease classification and organ segmentation [40].

Figure 2. AlexNet architecture.
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5.2. VGGNet

VGGNet was developed by the Visual Geometry Group at the University of Oxford
in 2014 [41]. It is known for its simplicity and systematic use of small 3 × 3 convolutional
filters, which are stacked to increase network depth while maintaining computational
feasibility. The architecture comprises 16 to 19 layers, organized into convolutional and
pooling blocks, followed by fully connected layers. This consistent design allows for
efficient feature extraction and hierarchical representation learning. Figure 3 illustrates the
VGGNet architecture.

VGGNet has been widely adopted in medical imaging, particularly for disease classi-
fication and organ segmentation. For instance, it has been employed to classify diabetic
retinopathy in retinal images and detect lung cancer in chest CT scans [42]. Its pre-trained
weights on ImageNet make it an effective baseline for transfer learning, enabling researchers
to adapt the model to various medical tasks with limited annotated data. Despite its effec-
tiveness, the high computational cost of VGGNet, due to its large number of parameters,
limits its suitability for resource-constrained environments. Nevertheless, VGGNet remains
a valuable tool in medical image analysis, particularly for research and scenarios where
computational resources are not a limiting factor. The straightforward design and robust
feature extraction capabilities of VGGNet continue to make it a relevant choice in the field.

Figure 3. VGGNet architecture.

5.3. U-Net

U-Net is one of the most widely used CNN architectures for medical image seg-
mentation [43]. Developed specifically for biomedical image analysis, U-Net employs
an encoder–decoder structure with skip connections to ensure the precise localization of
features. The encoder extracts high-level features through convolutional and pooling layers,
while the decoder reconstructs the spatial details using up-sampling layers. Skip connec-
tions bridge corresponding encoder and decoder layers, allowing fine-grained details to be
preserved, which is critical for pixel-level segmentation tasks.

U-Net has been instrumental in medical applications such as tumor segmentation,
organ delineation, and lesion detection. For example, it has been used to segment brain
tumors from MRI scans and delineate liver boundaries in CT images with high accuracy [44].
Variants such as 3D U-Net extend its application to volumetric data, enabling efficient
analysis of 3D medical images like CT and MRI stacks. The architecture’s adaptability and
effectiveness make it a cornerstone in medical image segmentation.

5.4. ResNet

ResNet [45], developed by Microsoft Research in 2015, introduced residual learning
through skip connections, enabling the training of very deep networks without performance
degradation. These connections mitigate the vanishing gradient problem by allowing the
network to learn residual functions, making it feasible to train networks with over 150 layers.
Figure 4 shows the ResNet architecture. ResNet has been instrumental in medical imaging,
especially for tasks requiring detailed feature extraction, such as tumor detection and
organ segmentation. For instance, ResNet-based models have been employed for detecting
breast cancer from mammograms and identifying lung nodules from CT scans, achieving
state-of-the-art accuracy in these applications [46].
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Figure 4. ResNet Architecture.

5.5. DenseNet

DenseNet [47], proposed by researchers at Cornell University in 2017, introduced
dense connectivity, where each layer receives inputs from all preceding layers and passes
its outputs to all subsequent layers. This design improves gradient flow, reduces redun-
dant feature maps, and enhances parameter efficiency. Figure 5 depicts the DenseNet
architecture. DenseNet has proven highly effective in medical imaging tasks like image
segmentation and disease diagnosis, where compact and efficient architectures are essential.
For example, it has been used to classify diabetic retinopathy from fundus images and
segment lung lesions in CT scans, demonstrating its versatility and effectiveness in diverse
medical imaging applications [48].

Figure 5. DenseNet architecture [47].

5.6. EfficientNet

EfficientNet [49] addresses the challenge of balancing depth, width, and resolution
in CNNs through compound scaling. It systematically scales these dimensions using a
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compound coefficient, ensuring efficient resource utilization. The architecture achieves
state-of-the-art accuracy with significantly fewer parameters compared to earlier models.
EfficientNet’s scalability and efficiency make it highly suitable for medical image analysis,
particularly for tasks requiring high accuracy on resource-constrained platforms, such
as mobile diagnostic tools [50]. For instance, it has been employed in detecting skin
lesions from dermoscopic images, achieving superior performance while maintaining
computational efficiency.

5.7. Summary of Architectures

The evolution of these architectures has significantly shaped the application of CNNs
in medical imaging. From U-Net’s dominance in segmentation to EfficientNet’s resource-
efficient scalability, each architecture has addressed specific challenges, advancing the
capabilities of medical image analysis. Table 1 presents a summary of the various CNN
architectures and typical applications in medical image analysis.

Table 1. Summary of CNN Architectures Relevant to Medical Image Analysis.

Architecture Author(s) Year Innovation Applications in
Medical Imaging

AlexNet Krizhevsky et al. [39] 2012

Introduced ReLU
activations, dropout
regularization,
and GPU-based training

Disease classification (e.g.,
pneumonia detection from chest
X-rays), organ segmentation,
and anomaly detection.

VGGNet Simonyan and Zisserman [41] 2014

Systematic use of small
3×3 filters and increased
depth for hierarchical
feature extraction

Diabetic retinopathy
classification, lung cancer
detection, and retinal
image analysis.

U-Net Ronneberger et al. [43] 2015

Encoder–decoder
structure with skip
connections for
pixel-level segmentation

Tumor segmentation, organ
delineation (e.g., liver in CT,
brain in MRI), and
lesion detection.

ResNet He et al. [45] 2015

Introduced residual
connections to address
vanishing
gradient problems

Breast cancer detection in
mammograms, lung nodule
identification in CT scans,
and segmentation of
medical images.

DenseNet Huang et al. [47] 2017
Dense connectivity to
enhance gradient flow
and parameter efficiency

Retinal image analysis for
diabetic retinopathy, lung lesion
segmentation in CT, and
disease diagnosis.

EfficientNet Tan and Le [49] 2019

Compound scaling to
optimize depth, width,
and resolution for
resource efficiency

Skin lesion detection in
dermoscopic images, portable
diagnostic tools,
and classification of
medical conditions.

6. Applications of CNNs in Medical Image Analysis
This section discusses CNN applications in major medical fields, focusing on their

diagnostic and prognostic capabilities across various imaging modalities.

6.1. Oncology

CNNs have been widely adopted for cancer detection, classification, and prognosis
prediction due to their superior feature extraction and pattern recognition capabilities
in medical imaging [51,52]. Various CNN architectures have demonstrated exceptional
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performance in detecting and classifying cancers across multiple imaging modalities,
including mammography, CT, and histopathology.

In breast cancer detection, CNNs have achieved state-of-the-art performance by lever-
aging deep architectures for mammographic analysis. Sahu et al. [53] developed a transfer-
learning-based CNN framework incorporating AlexNet, ResNet, and MobileNetV2 to clas-
sify breast cancer in mammograms, achieving an accuracy of 99.17% on the CBIS-DDSM
dataset. Bouzar-Benlabiod et al. [54] proposed a U-Net-based segmentation approach
integrated with case-based reasoning (CBR) module for robust breast cancer classification,
demonstrating significant improvements in feature localization and model interpretability.
The model achieved an accuracy of 86.71% on the CBIS-DDSM dataset. Das et al. [55]
used ResNet-50 to classify breast cancer from MRI images, achieving a 92.01% accuracy on
1480 samples from the Kaggle database. Similarly, McKinney et al. [56] introduced a deep
learning model that outperformed six expert radiologists in breast cancer detection from
mammograms, highlighting the clinical applicability of CNN-based approaches. Further-
more, Mahoro et al. [57] employed a hybrid CNN–Transformer model to enhance breast
cancer classification, achieving an accuracy of 97.26% on a large multi-institutional dataset.

In lung cancer detection, CNNs have been instrumental in identifying pulmonary
nodules from CT scans. UrRehman et al. [58] introduced a dual-attention CNN model
for lung nodule classification, achieving 94.69% sensitivity and 93.17% specificity on the
LIDC-IDRI dataset. Similarly, Safta and Shaffie [59] designed an advanced 3D CNN
framework tailored for volumetric CT data, improving the differentiation between benign
and malignant nodules with a classification accuracy of 97.3%. Gayathiri et al. [60] used
AlexNet to detect lung cancer from CT scan images of smokers’ lungs, achieving an overall
accuracy of 90.8% in their comparative evaluation of machine learning techniques.

Histopathology-based CNN applications have also gained traction, particularly in
automated tumor grading and biomarker prediction. Li et al. [61] employed a ResNet-based
model for histopathological tumor mutational burden (TMB) estimation, demonstrating
an AUC of 0.971 on a multi-center dataset. In colorectal cancer, Khan et al. [62] developed
a multi-modal CNN incorporating AlexNet for the classification of liver cancer variants,
achieving an accuracy of 96.06%. Additionally, Raju et al. [63] proposed a U-Net-based
deep learning pipeline for colorectal cancer detection, reporting an accuracy of 92.3% on
the CKHK-22 dataset.

Beyond detection and classification, CNNs have been employed in prognostic mod-
eling and treatment response prediction. Kiran et al. [64] integrated histopathological
imaging with genomic data using a CNN framework to predict melanoma treatment
response, improving precision medicine strategies and achieving an accuracy of 92.5%.
Similarly, Arshad Choudhry et al. [65] introduced a graph CNN model for multimodal
brain tumor segmentation, achieving a sensitivity of 97%.

6.2. Neurology

CNNs have significantly advanced the automated detection and classification of
neurological disorders, leveraging their ability to extract complex spatial features from
neuroimaging modalities such as MRI, CT, and PET [66]. Recent studies have demonstrated
the effectiveness of CNN-based approaches in diagnosing conditions such as Alzheimer’s
disease (AD), Parkinson’s disease (PD), and stroke, achieving high diagnostic accuracy
across multiple datasets.

In Alzheimer’s disease detection, CNNs have been instrumental in identifying struc-
tural abnormalities in brain imaging. Mahmood et al. [67] proposed a multi-modal CNN
model integrating MRI and PET data for AD classification, achieving an accuracy of 98.59%.
Similarly, Castellano et al. [68] developed an automated CNN-based framework for AD
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diagnosis, reporting an accuracy of 91.5% when distinguishing AD patients from healthy
controls. Furthermore, El-Assy et al. [69] introduced a CNN model integrating imaging
biomarkers for early AD prediction, achieving an accuracy of 95% and AUC of 0.93.

For Parkinson’s disease, CNNs have been widely adopted for automated classification
based on MRI and other imaging modalities. Aggarwal et al. [70] applied a 1D CNN model
to structural MRI scans, attaining a classification accuracy of 98.71% on a dataset of 120 sub-
jects. Huang et al. [71] extended CNN-based classification to SPECT imaging. The study
treated the 3D images as sequences of 2D slices and then used a 2D CNN pretrained on
ImageNet, achieving an accuracy of over 60%. Additionally, Frasca et al. [72] developed
hybrid CNN-LSTM architectures to capture temporal imaging patterns in Parkinson’s
Disease progression, achieving a diagnostic accuracy of 96.8% on multi-modal datasets.

CNNs have also contributed to stroke detection and segmentation in neuroimaging.
Kaya and Önal [73] introduced a U-Net-based segmentation model for brain stroke lesion
detection from MRI scans, obtaining a precision of 95.06%. Moreover, Tahyudin et al. [74]
implemented a ResNet-based CNN model for acute stroke detection in CT images, achiev-
ing an accuracy of 95% and AUC of 0.99, enhancing rapid clinical decision-making.

The application of CNNs in epilepsy detection has also shown promising results.
Li et al. [75] employed a CNN-based model to analyze electroencephalogram (EEG) signals,
achieving a classification accuracy of 99.03% in seizure detection. Similarly, Chen et al. [76]
developed a CNN-transformer model for early seizure prediction from EEG data, im-
proving diagnostic reliability with a sensitivity of 76.9%. Kode et al. [77] used machine
learning and deep learning techniques, including a 1D-CNN model, to classify epileptic
seizures from EEG signals, achieving a top accuracy of 99% on the UCI Epileptic Seizure
Recognition dataset. In another study, Vibha Patel et al. developed a hybrid deep learning
model combining 1D-CNN and stacked LSTM networks for automated epileptic seizure
detection from EEG recordings, achieving 90% accuracy on the CHB-MIT dataset.

6.3. Cardiology

CNN-based approaches have demonstrated state-of-the-art performance in detecting
structural and functional cardiac abnormalities, predicting disease progression, and sup-
porting clinical decision making [78]. For example, Sadr et al. [79] developed a CNN-LSTM-
based hybrid model to assess cardiovascular disease risk using echocardiographic frames,
achieving an accuracy of 97.05%. Similarly, Deepika and Jaisankar [80] implemented a
CNN-based automated myocardial infarction detection system using echocardiograms,
achieving a sensitivity of 96.8% and a specificity of 94.2%. Their model outperformed tradi-
tional rule-based segmentation techniques in detecting infarcted regions. Rahman et al. [81]
proposed a stacked CNN-LSTM architecture for congenital heart disease classification from
echocardiogram sequences, obtaining an accuracy of 90.5% on a pediatric dataset.

Cardiac MRI-based CNN applications have demonstrated remarkable performance in
segmenting heart structures and detecting cardiomyopathies. Germain et al. [82] utilized
a 3D CNN model for automated segmentation of the left ventricle, achieving a Dice
similarity coefficient (DSC) of 0.94, surpassing human interobserver variability. Similarly,
El-Taraboulsi et al. [83] compared various CNN architectures for cardiac MRI segmentation
and identified U-Net as the most effective, achieving an accuracy of 95.3% in delineating
the myocardium.

CNNs have also been applied in coronary artery disease (CAD) detection using CTA
and angiographic images. Nie et al. [84] proposed a cascade R-CNN model to detect
calcified and non-calcified plaques in CTA scans, achieving an accuracy of 94.6%. Their
model demonstrated superior generalization across multi-center datasets compared to
traditional R-NN and other methods.
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Further advancing the application of CNNs in cardiology, Sadad et al. [85] developed
a deep learning pipeline integrating CNN and attention mechanisms to predict heart failure
from chest radiographs. Their model achieved an accuracy of 92.7% and an F1-score
of 91.5%, demonstrating the potential of CNNs for early cardiac dysfunction detection.
Additionally, Luo et al. [86] utilized a novel lead-aware hierarchical CNN (LAH-CNN) to
analyze ECGs for arrhythmia classification, reporting F-measures of 78.86% and 99.2% on
12-lead databases CPCS and INCART datasets respectively.

6.4. Pulmonology

CNNs have demonstrated substantial improvements in pulmonary disease detection
and classification by enhancing the analysis of chest radiographs (CXR), CT, and high-
resolution computed tomography (HRCT) scans. For instance, CNN models have also
demonstrated high performance in pneumonia and tuberculosis detection using CXR im-
ages. Ren et al. [87] developed a multi-scale CNN for pneumonia diagnosis, achieving
an accuracy of 95%. Rani and Gupta [88] introduced a VGG16-based model for TB de-
tection in CXR images, reporting an accuracy of 98% and precision of 98%. Prasetyo [89]
utilized pretrained DCNN models, including VGG-16, VGG-19, ResNet-50, ResNet-101,
and MobileNet, for pulmonary tuberculosis detection from chest radiographs, with VGG-16
achieving the highest accuracy of 99.524%.

For chronic obstructive pulmonary disease (COPD) detection, CNN-based mod-
els have proven effective in classifying disease severity and predicting exacerbations.
Polat et al. [90] applied an Inception-V3 model to HRCT scans, achieving a classification
accuracy of 97.98% in distinguishing mild, moderate, and severe COPD cases. Additionally,
Zhang et al. [91] utilized a deep CNN-LSTM framework for predicting COPD exacer-
bations from CXR and patient metadata, reporting an accuracy of 99.01% and recall of
99.13%. Their study highlighted the advantages of multi-modal deep learning in respiratory
disease prognosis.

Pulmonary embolism (PE) detection has also seen significant advancements with CNN
applications. Pu et al. [92] designed a CNN-based automated PE detection system using CT
pulmonary angiography (CTPA), achieving an AUC of 0.97 and a sensitivity of 95.3%. Their
model effectively reduced radiologist interpretation time while maintaining diagnostic
accuracy. Similarly, Vadhera and Sharma [93] implemented a hybrid CNN–Transformer
model for detecting PE in HRCT scans, achieving a sensitivity of 93.24%.

Finally, CNNs have been employed in the early detection of interstitial lung dis-
eases (ILD). Chunduri et al. [94] developed a CNN-based classifier for ILD subtyping
in HRCT scans, obtaining robust performance. Their model demonstrated improved
generalizability across multi-center datasets.

6.5. Ophthalmology

Ophthalmology focuses on diagnosing and treating eye-related diseases, including di-
abetic retinopathy (DR), glaucoma, age-related macular degeneration (AMD), and cataracts.
Medical imaging techniques such as fundus photography, optical coherence tomogra-
phy (OCT), and fluorescein angiography provide critical insights into ocular health. CNN-
based models have been extensively used to automate disease detection and classification,
improving diagnostic accuracy and reducing the workload of ophthalmologists.

Diabetic retinopathy (DR) detection has benefited from CNN-based methods applied
to fundus imaging. Singh et al. [95] proposed a DenseNet-based model trained on the
APTOS 2019 dataset, achieving an accuracy of 86% for DR severity grading. Similarly,
Al-Antary and Arafa [96] introduced a multi-scale CNN that integrated fundus photogra-
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phy and OCT images, improving classification accuracy to 84.6% and sensitivity to 91%
compared to single-modality approaches.

For glaucoma detection, CNNs have been leveraged to analyze optic disc and retinal
nerve fiber layer thickness. Gayatri and Biswal [97] developed a ResNet-based model
to classify glaucomatous eyes using OCT scans, achieving an accuracy of 94%. Das and
Nayak [98] developed a glaucoma screening with an attention-guided CNN that high-
lighted pathological regions, obtaining an accuracy of 84.91% and AUC of 0.9454 and
outperforming traditional handcrafted feature-based methods.

Furthermore, AMD classification has also been enhanced with CNN-based approaches.
Azizi et al. [99] introduced a hybrid CNN–Transformer model for early AMD detection
in OCT images, achieving an accuracy of 94.9% on the NEH dataset. Li et al. [100] devel-
oped an InceptionV3-based model in identifying normal retinal conditions, obtaining a
classification accuracy of 92.76%.

Cataract detection and grading using CNNs have shown promising results.
Verma et al. [101] proposed a MobileNetV3-based CNN for cataract severity grading
in mobile applications, achieving 98.67% accuracy on the Cataract Mobile Periocular
Database (CMPD) dataset. Additionally, Zhang et al. [102] integrated CNNs with at-
tention mechanisms for improved interpretability, reporting an accuracy of 97.89%, AUC
of 0.997, and a sensitivity of 97.58% in detecting cataracts using the ACRIMA dataset.
They introduced CataractNet, a CNN-based network designed for automatic cataract de-
tection in fundus images. The model is optimized with the Adam optimizer, using small
kernels and fewer training parameters to reduce computational cost. With data augmenta-
tion, CataractNet achieved an impressive 99.13% accuracy, outperforming state-of-the-art
cataract detection approaches.

These advancements demonstrate the effectiveness of CNNs in ophthalmic imaging,
particularly in disease screening, severity assessment, and multi-modal integration.

6.6. Dermatology

Dermatology involves the diagnosis and treatment of skin diseases, including
melanoma, psoriasis, eczema, and other dermatological conditions [103,104]. CNNs have
been extensively applied to classify skin lesions using dermoscopic images, enhancing
early detection and improving diagnostic accuracy.

Melanoma detection has been a major focus in CNN-based dermatological stud-
ies. Toprak and Aruk. [105] introduced a hybrid CNN model trained on the ISIC 2020
dataset. The hybrid approach employed DeepLabV3+ for the segmentation of skin lesions
in dermoscopic images and three pre-trained models for feature extraction: MobileNetV2,
EfficientNetB0, and DenseNet201. These extracted features are then concatenated, and the
ReliefF algorithm is employed to select and classify the features. The proposed approach
obtained an accuracy of 94.42% on the ISIC-2019 dataset. Similarly, Armağan et al. [106]
proposed an EfficientNetV2 model for multi-class skin lesion classification, obtaining a
classification accuracy of 96.04%.

For automated skin lesion segmentation, Aghdam et al. [107] developed a U-Net-based
approach enhanced with attention mechanisms, which improved boundary delineation
in dermoscopic images, achieving a DSC of 92.4%. Similarly, Reddy et al. [108] applied
an enhanced U-Net model, achieving a segmentation accuracy of 98%. Khasanah and
Winnarto [109] investigated deep learning approaches for early melanoma detection using
InceptionV3 and ResNet50. Their study, utilizing a dataset of 3297 images, found that
ResNet50 achieved the highest classification accuracy at 87%.

CNNs have also been utilized in multi-modal dermatological imaging. Xiao et al. [110]
fused dermoscopic and clinical images using a dual-branch CNN architecture, achieving



Information 2025, 16, 195 15 of 28

a classification accuracy of 88.17% and AUC of 94.41% and demonstrating improved
robustness over single-modality approaches. Additionally, Pintelas et al. [111] explored
the use of CNN-based generative models for augmenting skin lesion datasets, leading to a
melanoma classification accuracy of 92.9% when applied to an augmented dataset.

6.7. Orthopedics

Orthopedics is a medical specialty that focuses on diagnosing, treating, and prevent-
ing disorders of the musculoskeletal system, including bones, joints, ligaments, and mus-
cles [112,113]. CNNs have gained significant traction in orthopedic imaging due to their
ability to analyze radiographic, CT, and MRI data with high accuracy. CNN-based models
have been extensively applied to fracture detection, particularly in wrist, hip, and ankle
fractures. Tabarestani et al. [114] developed the Faster-RCNN model for fracture zone
prediction, achieving an average precision of 66.82% on the MURA dataset.

Similarly, Chen et al. [115] applied a DenseNet-121 architecture to detect hip fractures,
achieving an accuracy of 86.5%. For ankle fracture detection, Ashkani-Esfahani et al. [116]
proposed a DCNN model trained on a large clinical dataset, achieving a sensitivity of 98.7%.

In knee osteoarthritis (OA) assessment, CNNs have been utilized to automate sever-
ity grading and progression prediction. Liu et al. [117] introduced a multi-modal CNN
framework combining XGboost and ResNet50 to predict OA progression, improving early
diagnosis and personalized treatment planning. In another study, Wirth et al. [118] de-
veloped a U-Net-based segmentation model to delineate cartilage damage in MRI scans,
achieving a DSC of 92%. Yeh et al. [119] developed a ResNet50-based deep learning model
to assist in diagnosing benign and malignant spinal fractures on MRI, achieving 92% accu-
racy and significantly improving sensitivity and specificity for less experienced clinicians.
Xing et al. [120] developed a deep learning model using Faster R-CNN and DenseNet-121
to detect and classify femoral neck fractures from radiographs, achieving 94.1% accuracy
and significantly improving diagnostic assistance and physician training outcomes.

CNNs have also been instrumental in spinal disorder diagnosis. For example,
Iyer et al. [121] utilized a CNN-based ensemble model for vertebral compression frac-
ture detection in spinal CT scans, which achieved accuracy and F1 scores of 81.05% and
80.74% for thoracic and 85.45% and 85.61% for lumbar spine, respectively. Furthermore,
CNNs have also been leveraged for gait analysis and biomechanical assessment in orthope-
dic rehabilitation. We et al. [122] introduced a CNN-LSTM hybrid model for analyzing gait
abnormalities using pressure-sensing insole data, achieving a classification accuracy of 97%.

6.8. Summary of CNN Applications in Medical Image Analysis

Table 2 summarizes the different CNN applications and their performance. This anal-
ysis of CNN applications across medical fields highlights the most effective architectures
and their suitability for different tasks. In oncology, transfer-learning-based CNNs such
as ResNet and MobileNetV2 have achieved high accuracy in breast cancer detection, ex-
ceeding 99% on mammographic datasets. U-Net and hybrid CNN–Transformer models
have been particularly effective in histopathology-based tumor grading, offering superior
feature localization and interpretability. Additionally, 3D CNNs have demonstrated strong
performance in lung cancer classification using volumetric CT data. In neurology, multi-
modal CNN frameworks integrating MRI and PET imaging have surpassed 98% accuracy
in diagnosing Alzheimer’s and Parkinson’s diseases. Similarly, U-Net and ResNet archi-
tectures have exhibited high precision in stroke lesion segmentation and seizure detection
from EEG signals.
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Table 2. Summary of CNN Applications in Medical Image Analysis.

Medical Field Task Reference Year Methods Performance

Oncology

Breast cancer
detection Sahu et al. [53] 2024 MobileNetV2 Accuracy = 99.17%

Breast cancer
segmentation

Bouzar-
Benlabiod et al. [54] 2023 U-Net with

Case-Based Reasoning Accuracy = 86.7%

Breast cancer
detection Das et al. [55] 2024 ResNet Accuracy = 92.0%

Breast cancer
classification Mahoro et al. [57] 2024 Hybrid

CNN–Transformer AUC = 0.980

Lung cancer
detection UrRehman et al. [58] 2024 Dual-attention CNN

model
Sensitivity = 96.5%,
Specificity = 95.2%

Lung cancer
classification Alves et al. [123] 2024 DenseNet +

EfficientNet ensemble
Accuracy = 98.1%,
Sensitivity = 97.8%

Lung nodule
detection Safta and Shaffie [59] 2024 3D-CNN Accuracy = 97.3%

Lung nodule
classification Gayathiri et al. [60] 2024 AlexNet Accuracy = 90.8%

Tumor mutational
burden prediction Li et al. [61] 2024 ResNet AUC = 0.95

Colorectal polyp
detection Liu et al. [124] 2024 VGG16 Sensitivity = 94.2%,

F1-score = 93.5%
Colorectal cancer

detection Khan et al. [62] 2023 CNN Accuracy = 96.1%

Colorectal cancer
detection Raju et al. [63] 2025 U-Net Accuracy = 92.3%

Neurology

Alzheimer’s disease
detection Mahmood et al. [67] 2024 Multi-modal CNN Accuracy = 98.5%

Alzheimer’s disease
diagnosis Castellano et al. [68] 2024 CNN Accuracy = 91.5%

Parkinson’s Disease
progression El-Assy et al. [69] 2024 CNN Accuracy = 96.8%,

AUC = 0.93
Stroke lesion

detection Kaya and Onal [73] 2023 U-Net Precision = 95%

Epileptic seizure
detection Kode et. al [77] 2024 1D-CNN Accuracy = 99%

Epileptic seizure
state detection Patel et al. [125] 2024 1D-CNN - LSTM Accuracy = 90%

Parkinson’s Disease
progression Frasca et al. [72] 2023 CNN-LSTM Accuracy = 96.8%

Parkinson’s disease
classification Aggarwal et al. [70] 2024 1D CNN Accuracy = 98.7%

Acute stroke
detection Tahyudin et al. [74] 2025 ResNet AUC = 0.99

Epileptic seizure
detection Li et al. [75] 2025 CNN-based EEG

analysis Accuracy = 99.0%

Cardiology

Cardiovascular
disease risk
assessment

Sadr et al. [79] 2024 CNN-LSTM hybrid Accuracy = 97%

Myocardial
infarction detection

Deepika and
Jaisankar [80] 2024

CNN-based
echocardiogram

analysis

Sensitivity = 96.8%,
Specificity = 94.2%

Myocardial
infarction detection Rahman et al. [81] 2023

CNN-based
echocardiogram

analysis

Sensitivity = 96.8%,
Specificity = 94.2%
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Table 2. Cont.

Medical Field Task Reference Year Methods Performance

Cardiology

Heart disease Sadad et al. [85] 2023 stacked CNN-LSTM Accuracy = 90.5%
Heart disease Sadad et al. [85] 2023 stacked CNN-LSTM Accuracy = 90.5%
Left ventricle
segmentation Germain et al. [82] 2024 3D CNN DSC = 94%

Cardiac MRI
segmentation El-Taraboulsi et al. [83] 2024 U-Net Accuracy = 95.3%

Coronary artery
plaque detection Nie et al. [84] 2025 Cascade R-CNN Accuracy = 94.6%

Arrhythmia
classification Sadad et al. [85] 2023 stacked CNN-LSTM Accuracy = 92.7%,

F1-Score = 91.5%
Arrhythmia
classification Luo et al. [86] 2023 LAH-CNN F-measure = 78.8%

Pulmonology

Pneumonia
diagnosis Ren et al. [87] 2024 multi-scale CNN Accuracy = 95%

Tuberculosis
detection Prasetyo [89] 2024 VGG-16 Accuracy = 98%,

Precision = 98%
Tuberculosis

detection Rani and Gupta [88] 2024 VGG16-based model Accuracy = 98%,
Precision = 98%

COPD severity
classification Polat et al. [90] 2022 Inception-V3 Accuracy = 97.9%

Pulmonary
embolism detection Pu et al. [92] 2023 CNN on CTPA AUC = 0.97,

Sensitivity = 95.3%
Pneumonia
diagnosis Ren et al. [87] 2024 Multi-scale CNN on

CXR Accuracy = 95%

COPD exacerbation
prediction Zhang et al. [91] 2024 CNN-LSTM on CXR Accuracy = 99%,

Recall = 99.1%
Pulmonary

embolism diagnosis
Vadhera and
Sharma [93] 2025 hybrid CNN Accuracy = 93.2%

Ophthalmology

Diabetic retinopathy
detection Singh et al. [95] 2024 DenseNet Accuracy = 86%

OCT imaging Al-Antary and
Arafa [96] 2021 multi-scale CNN

Accuracy = 84.6%
and Sensitivity =

91%
Glaucoma

classification
Gayatri and
Biswal [97] 2024 ResNet on OCT scans Accuracy = 94%

Glaucoma
classification Das and Nayak [98] 2023 CNN on OCT scans Accuracy = 84.9%,

AUC = 0.95
Cataract severity

grading Li et al. [100] 2024 InceptionV3 Accuracy = 92.7%

Cataract severity
grading Verma et al. [101] 2022 MobileNetV3 Accuracy = 98.6%

Diabetic retinopathy Singh et al. [95] 2024 DenseNet Accuracy = 86%
AMD detection Azizi et al. [99] 2024 CNN-transformer Accuracy = 94.9%

Cataract detection Zhang et al. [102] 2024 CNN with attention
mechanisms

Accuracy = 97.8%,
AUC = 0.997

Cataract detection Junayed et al. [126] 2024 CNN with Adam
optimizer mechanisms Accuracy = 99.1%

Dermatology Melanoma detection Toprak and
Aruk [105] 2024

Hybrid CNN
(DeepLabV3+,
MobileNetV2,
EfficientNetB0,
DenseNet201)

Accuracy = 94.4%
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Table 2. Cont.

Medical Field Task Reference Year Methods Performance

Dermatology

Skin lesion
classification Armağan et al. [106] 2024 EfficientNetV2 Accuracy = 96%

Skin lesion
segmentation Aghdam et al. [107] 2023 U-Net with attention DSC = 92.4%

Skin lesion
segmentation Reddy et al. [108] 2023 U-Net with attention DSC = 98%

Multi-modal skin
lesion analysis Xiao et al. [110] 2023 Dual-branch CNN Accuracy = 88.1%,

AUC = 0.944
Skin lesion dataset

augmentation
Khasanah and
Winnarto [109] 2024 ResNet50 and

InceptionV3 Accuracy = 87%

Skin lesion dataset
augmentation Pintelas et al. [111] 2025 CNN-based

generative models Accuracy = 92.9%

Orthopedics

Fracture zone
detection Tabarestani et al. [114] 2021 Faster-RCNN Accuracy = 66.8%

Hip fracture
detection Chen et al. [115] 2024 DenseNet-121

architecture Accuracy = 86.5%.

Ankle fracture
detection

Ashkani-
Esfahani et al. [116] 2022 DCNN model Sensitivity = 98.7%.

Delineating cartilage
damage Wirth et al. [118] 2021 U-Net DSC = 92%.

Knee osteoarthritis
assessment Liu et al. [117] 2023 XGboost and

ResNet50 AUC = 0.90

Vertebral
compression fracture

detection
Iyer et al. [121] 2022 CNN-based ensemble

model
Accuracy = 81%,
F1-score = 80.7%.

Orthopedic
rehabilitation We et al. [122] 2024 Hybrid CNN-LSTM

model Accuracy = 97%.

Vertebrae fracture
classification Yeh et al. [119] 2022 ResNet Accuracy = 92%

Femoral neck
fracture classification Xing et al. [120] 2024 Faster R-CNN and

DenseNet-121 Accuracy = 94.1%

Cardiology applications have leveraged CNN-LSTM hybrid models for heart disease
risk assessment, myocardial infarction detection, and cardiac MRI segmentation, achieving
sensitivities above 96%. In pulmonology, multi-scale CNNs have shown high accuracy
in pneumonia and tuberculosis detection, while CNN-LSTM frameworks have effectively
predicted COPD exacerbations with over 99% accuracy. Ophthalmology applications
have seen advancements with DenseNet and Inception-based models excelling in diabetic
retinopathy and cataract detection, achieving accuracy levels exceeding 97%. Similarly,
dermatology has benefited from CNN-based segmentation models, such as U-Net with
attention mechanisms, which have achieved a Dice similarity coefficient above 92% in skin
lesion analysis.

In orthopedics, CNNs have been applied to fracture detection, gait analysis, and knee
osteoarthritis grading. Faster R-CNN and DenseNet-121 models have demonstrated strong
performance in detecting hip and vertebral fractures, while CNN-LSTM frameworks have
been effective in gait abnormality classification. Across these fields, the robustness of CNN
models is influenced by dataset diversity, the integration of multi-modal imaging, and the
selection of domain-specific architectures.
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7. Challenges in Medical Image Analysis
Despite significant advancements in medical image analysis using CNNs, several

challenges remain unresolved. These challenges arise due to the evolving complexity of
clinical applications, the diversity of imaging modalities, and the limitations of current AI
methodologies. Some of these challenges include

• Limited Generalization Across Rare Diseases: Most CNN models are trained on datasets
representing common diseases and standard imaging protocols, leaving rare dis-
eases and unconventional imaging scenarios underrepresented [127]. This lack of
diversity limits the applicability of these models in real-world scenarios involving
rare pathologies or imaging abnormalities. Current transfer learning approaches
only partially mitigate this issue, as they still require domain-specific tuning that is
resource-intensive and time-consuming.

• Multi-Dimensional and Multi-Modal Data Fusion: Integrating multi-dimensional data
(e.g., 3D imaging, temporal sequences) with multi-modal inputs such as CT, MRI,
and PET scans, along with clinical or genomic data, remains a challenge [128,129].
While early attempts have demonstrated potential, the lack of robust architectures
to handle the increasing complexity and volume of such data has impeded progress.
In particular, effectively aligning temporal and spatial dimensions in multi-modal
data fusion is an open problem that hinders applications like precision medicine.

• Data Augmentation for Real-World Variability: While data augmentation techniques have
improved generalization, they often fail to account for real-world variations such as
scanner artifacts, low-resolution images, and extreme cases of noise or occlusion [130].
Techniques for domain-specific augmentations, especially in dynamic clinical environ-
ments, remain underexplored, leaving CNNs susceptible to performance degradation
in non-ideal imaging conditions.

• Privacy-Preserving Model Training: The increasing emphasis on data privacy and secu-
rity, especially with the enforcement of regulations such as the General Data Protection
Regulation (GDPR) in Europe and the Health Insurance Portability and Accountability
Act (HIPAA) in the United States, has made collaborative model training across institu-
tions more complex. Techniques like federated learning and differential privacy have
shown promise but face significant limitations in terms of scalability, performance,
and robustness to adversarial attacks in sensitive medical domains [131].

• Dynamic Adaptability to Evolving Clinical Needs: CNN models lack the flexibility to adapt
dynamically to changes in clinical workflows, disease trends, or imaging technologies.
For example, the COVID-19 pandemic exposed gaps in AI systems that could not
pivot quickly to handle new diagnostic needs. Developing adaptive models that
continuously learn from new data without requiring complete retraining remains a
major hurdle [132].

• Bias in AI Systems: Bias in CNN-based models remains a persistent challenge due to
skewed datasets that fail to represent diverse patient populations [133]. Recent studies
highlight significant disparities in model performance across demographic groups,
raising ethical and clinical concerns [134,135]. Addressing this bias requires novel
strategies for fairness-aware training and validation, which are still in their infancy.

• Legal, Ethical, and Regulatory Challenges in Medical AI: The adoption of CNN-based
models in medical image analysis raises significant ethical and legal concerns, partic-
ularly regarding patient privacy, informed consent, and accountability in AI-driven
diagnoses. Regulations such as GDPR and HIPAA impose strict guidelines on medical
data usage, yet AI models often require extensive training on sensitive patient infor-
mation. Ensuring compliance with these regulations while maintaining high model
performance remains a critical challenge [131,136].
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Another major concern is algorithmic bias, where CNN models trained on imbalanced
datasets may produce skewed outcomes across different demographic groups, lead-
ing to disparities in medical diagnoses and treatment recommendations [134,137].
Addressing this issue requires fairness-aware AI development practices, including
bias mitigation techniques, transparency in model decisions, and rigorous valida-
tion across diverse populations. Moreover, legal accountability remains unclear in
cases where CNN-based models provide incorrect diagnoses—determining liability
between the model developers, healthcare institutions, and clinicians is an ongoing
debate in AI ethics [138].
Future research must focus on integrating explainability mechanisms, ethical AI guide-
lines, and robust validation frameworks to ensure trustworthiness and regulatory com-
pliance. The development of AI auditing standards and legal frameworks specific to
medical imaging AI is crucial to fostering responsible AI adoption in clinical settings.

8. Trends and Future Research Directions
Recent trends in medical image analysis reflect a shift towards addressing the unre-

solved challenges through innovative approaches. Below, we highlight recent trends and
potential future directions in this domain.

• Self-Supervised and Semi-Supervised Learning: Recent advances in SSL have shown
potential in reducing dependence on annotated datasets by leveraging large-scale,
unlabeled data for feature learning. Models like Vision Transformers (ViTs) integrated
with SSL are being explored for segmentation and classification tasks in medical
imaging [139,140]. Future work could focus on combining SSL with domain-specific
augmentation techniques to improve model performance in rare disease detection.

• Federated and Decentralized Learning Frameworks: Federated learning has gained pop-
ularity as a privacy-preserving approach for training CNN models across multiple
institutions without sharing raw data. Recent trends include integrating federated
learning with blockchain for enhanced security and transparency [141–143]. Future
research could explore decentralized learning protocols that address communication
overheads and ensure equitable model performance across diverse institutions.

• Explainable and Interpretable AI: The demand for explainable AI (XAI) models has led to
the development of advanced visualization tools, such as attention-based mechanisms
and counterfactual explanations [144]. Future directions may include integrating XAI
with uncertainty quantification techniques to improve the reliability of AI-driven
clinical decisions and enhance trust among healthcare professionals.

• Multi-Modal and Cross-Domain Learning: Several recent studies have focused on multi-
modal learning frameworks that combine imaging data with genomics, clinical records,
and wearable sensor data [128,129,145]. Future efforts could aim to standardize data
formats and develop architectures capable of seamlessly integrating cross-domain
inputs to enable holistic disease modeling and precision medicine.

• Synthetic Data Generation and Diffusion Models: Synthetic data generation is increasingly
recognized as a crucial approach for addressing data scarcity and privacy concerns
in medical imaging. Recent advancements in CNN-based generative techniques,
such as diffusion models and generative adversarial networks, have enabled the cre-
ation of high-fidelity, anonymized medical images that closely resemble real-world
patient data. These synthetic datasets have been applied to augment training sam-
ples, improve model generalization, and support rare disease classification [146].
Future research could explore the integration of diffusion models with federated learn-
ing frameworks to facilitate collaborative training while ensuring data privacy and
regulatory compliance.
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• Low-Resource AI Models for Global Health Applications: There is an increasing trend
towards developing lightweight CNN models optimized for deployment in low-
resource settings, such as rural clinics and developing countries. These models aim
to balance computational efficiency with diagnostic accuracy [147,148]. Future work
could focus on hardware–software co-design to ensure energy-efficient and robust AI
systems for global health applications.

• Integration with Augmented Reality and Virtual Reality: The use of augmented reality
(AR) and virtual reality (VR) in medical imaging, coupled with AI-driven analytics, is
becoming popular in applications like surgical planning and education [149,150]. Fu-
ture research could explore the integration of CNNs with AR/VR systems to enhance
real-time visualization and decision-making during complex medical procedures.

9. Conclusions
CNNs have demonstrated remarkable potential in medical image analysis, enabling

advancements in disease detection, segmentation, and multi-modal imaging across various
medical domains. Their ability to extract hierarchical features from medical images has led
to improved diagnostic accuracy, automated workflows, and enhanced clinical decision-
making. Despite these successes, several challenges persist, particularly in handling rare
diseases, ensuring interpretability, and addressing biases in model training. Moreover,
privacy concerns and the need for real-world adaptability highlight the necessity for novel
learning paradigms that balance performance, security, and ethical considerations.

To address these challenges, recent research has shifted towards innovative approaches
such as self-supervised learning, federated learning, and explainable AI. The integration of
CNNs with synthetic data generation methods, including diffusion models, has emerged as
a promising solution to overcome data scarcity while preserving patient privacy. Addition-
ally, multi-modal learning frameworks that incorporate imaging, genomics, and wearable
sensor data offer a more holistic approach to disease modeling. These advancements,
combined with efforts in low-resource AI deployment, have the potential to enhance
accessibility and fairness in medical AI applications worldwide.

Future developments should focus on refining CNN-based methodologies to ensure
clinical robustness, regulatory compliance, and seamless integration with healthcare sys-
tems. Collaborative efforts between researchers, clinicians, and policymakers will be
essential to drive AI adoption in real-world medical environments. By advancing inter-
pretability, privacy-preserving learning, and efficient deployment strategies, CNNs will
continue to transform medical imaging, paving the way for more precise, ethical, and ac-
cessible AI-driven healthcare solutions.

Author Contributions: Conceptualization, I.D.M. and G.O.; methodology, I.D.M., M.J. and P.I.;
validation, I.D.M., T.G.S., G.O., M.J. and P.I.; investigation, I.D.M., T.G.S., G.O., M.J. and P.I.; writing—
original draft preparation, I.D.M., T.G.S., G.O., M.J. and P.I.; writing—review and editing, I.D.M.,
T.G.S., G.O., M.J. and P.I.; visualization, I.D.M., G.O., M.J. and P.I.; supervision, T.G.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AD Alzheimer’s disease
AI Artificial intelligence



Information 2025, 16, 195 22 of 28

AR Augmented reality
AUC Area under the curve
CAD Coronary artery disease
CNN Convolutional neural network
CT Computed tomography
DL Deep learning
DSC Dice similarity coefficient
FNR False negative rate
FPR False positive rate
GDPR General data protection regulation
HIPAA Health Insurance Portability and Accountability Act
IoU Intersection over union
LSTM Long short-term memory
MSE Mean squared error
ML Machine learning
MRI Magnetic resonance imaging
PD Parkinson’s disease
PET Positron emission tomography
PSNR Peak signal-to-noise ratio
RNN Recurrent neural network
SSL Self-supervised learning
SSIM Structural similarity index measure
VR Virtual reality
XAI Explainable artificial intelligence
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