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Abstract: The General Transit Feed Specification (GTFS) is an open standard format for
recording transit information, utilized by thousands of transit agencies worldwide. In this
study, a new tool named GTFS2STN for converting GTFS data into the spatiotemporal
networks is introduced. To analyze the travel time variability, it is important to transform
a transit network to a spatiotemporal network to enable a comprehensive analysis of
transit system accessibility. GTFS2STN is a new tool that converts General Transit Feed
Specification (GTFS) data into spatiotemporal networks, addressing the lack of open-source
solutions for transit analysis. The tool includes a web application that generates isochrone
maps and calculates travel time variability between locations. Validation against Google
Maps APIs shows that journey time (i.e., the summation of the transit time, walking time,
and waiting time) differences in the Mean Absolute Percentage Error are typically within
12%. A before–after analysis shows that for the transit journey time in 2024 in Nashville,
Tennessee, 8 out of 10 pivotal bus stops showed a significantly decreased journey time
compared with the case of 2019. A further set of before–after analyses shows that although
journey time between transit sites significantly dropped on May 2020 during COVID-19
emergencies, the journey time almost totally recovered to the before-COVID-19 level by
November 2020. By supporting any valid GTFS schedule, GTFS2STN enables the analysis
of historical and planned transit systems, making it valuable for long-term accessibility
assessment and travel time variability studies.

Keywords: transit system; general transit feed specialization; transit accessibility; travel
time variability

1. Introduction
Transit accessibility and travel time have attracted particular attention from both

policymakers and planners. Due to the spatial allocations of transit stations and temporal
route schedules, the transit accessibility and travel time have spatiotemporal dynamics.
Therefore, visualizing the transit performance in a real-time manner becomes critical
to transit operation and management. However, transit operational data (e.g., stop and
boarding activities with reference to time and location) are typically collected by a range
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of information and communication technologies (ICTs), including Automated Vehicle
Location (AVL), Automated Passenger Counting (APC), and Automated Fare Collection
(AFC) systems [1,2]. Many transportation agencies transform those transit data into General
Transit Feed Specification (GTFS) according to the Transit Feed Specification uniformed
by the Google company. GTFS been widely adopted by transit agencies since the early
2010s to share transit schedules with the public via the internet [3]. With historical GTFS
feeds archived on platforms, GTFS has emerged as a invaluable research resource for
transit analysis [4,5]. This historical data enable researchers to compare past versions with
current data feeds, providing insights into how transit agencies have evolved their services
over time.

Each GTFS feed is represented using multiple tables as a dataset, which encapsulates
the complete transit service of an agency for a specific date range. The feed consists of
several mandatory and optional tables, structured similarly to a typical SQL database with
primary and foreign keys. Figure 1 illustrates the relationships between these tables through
an Entity Relationship Diagram (ERD). This diagram only encompasses the required tables
and their relationships related to accessibility analysis (e.g., “agency”, “trips”, “stops”, and
“routes”). The other GTFS tables are not shown (i.e., “shapes”, “frequencies”, “transfers”,
“fare rules” and “attributes”). Each table represents a distinct aspect of the transit system,
with primary and foreign keys establishing connections between different tables. The “trips”
table is the center stage of the dataset. Traditionally, a trip typically refers to section of a
vehicle traveling from the first/origin stop to the last/terminal stop. Thus, any trip has
a unique “route id”. Similarly, each trip belongs to a specific “service id”. The detailed
information of each bus stop is further recorded in the “stop times” table. Collectively, these
interconnected tables construct a comprehensive representation of the entire transit plans.

Understanding the GTFS data structure facilitates the development of various ap-
plications, including route planning (e.g., Open Route Service [6] and Mapnificent [7]),
public service information provision (e.g., Google Maps [8] and Open Trip Planner [9]),
system visualization and analysis, etc. Nearly all these applications rely on the construction
of a spatiotemporal network. Furthermore, there are also some commercial tools for
transit planning (e.g., Remix [10] and Conveyal [11]). To further understand the differences
between these existing tools, Table 1 summarizes the performance results of the aforemen-
tioned services. All the aforementioned tools lack some flexibilities. Some do not allow
uploading a special version of GTFS, and some services do not fully disclose the code
and algorithms. Many services are mostly tailored for user interactions through graphic
interfaces. Most importantly, in general, there is a lack of the ability to let users to download
the spatiotemporal network to perform customized analysis using their own code. Thus,
to address this fundamental need for a free, open-source product converting GTFS to its
spatiotemporal network, we propose GTFS2STN, a standardized tool designed to generate
spatiotemporal transit networks as the foundation for comprehensive transit analysis.

The remainder of this paper is structured as follows: Section 2 reviews the previ-
ous GTFS-based studies, focusing on three key aspects: transit accessibility, transit data
visualization, and travel time variability. Section 3 details the process of constructing
spatiotemporal networks and outlines the algorithms used to generate outcomes. Section 4
presents the case studies and demonstrates the basic functionalities of the GTFS2STN
application. Section 5 concludes the paper by summarizing the new findings, limitations,
potentials, etc.
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Figure 1. The relationship of the GTFS tables to the spatiotemporal network generation.

Table 1. A comparison between the different tools/services analyzing GTFS for transit planning.

Service Name Price Upload GTFS Source Code Massive Analysis Download
Spatiotemporal Network

Google Maps API [8] Low No No Yes No
Open Route Service [6] Free No Yes No No
Open Trip Planner [9] Free No Yes No No

Mapnificent [7] Free No Yes No No
Open Trip Planner [9] Free No Yes No No

Remix [10] High No No Yes No
Conveyal [11] High Yes No Yes No

GTFS2STN Free Yes Yes Yes Yes
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2. Literature Review
2.1. Transit Data Sources

The General Transit Feed Specification (GTFS) is recognized as a vital dataset for the
analysis and modeling of public transport systems, particularly in the context of cities
in the United States and Europe [12]. This standard format facilitates the publication of
transit schedules, routes, and related geographical information, enabling researchers and
developers to create applications and conduct analyses based on comprehensive public
transport data. Numerous studies have successfully employed GTFS data to assess public
transit accessibility, operational efficiency, and to establish multimodal transport models.
For instance, research utilizing GTFS has enabled detailed assessments of public transport
services, incorporated into geospatial analysis frameworks that enhance our understanding
of urban mobility patterns [13]. In this context, the integration of GTFS with Geographic
Information System (GIS) tools has become a common practice for conducting accessibility
analyses, identifying areas needing service improvements [14,15].

In addition to GTFS, various other data sources, such as smart card data, have been
employed in public transport studies to enrich the transit data analysis. For example, smart
card data have been used to evaluate the transfer efficiency between bus and subway sys-
tems [16] and assess transit competitiveness based on actual travel times [17]. Furthermore,
methodologies for estimating transit accessibility have also been developed using smart
card data [18].

Despite the availability of these alternative datasets, our study predominantly focuses
on GTFS data for several reasons. Firstly, GTFS is publicly available and widely adopted
by transit agencies, making it accessible for researchers and developers across various
regions. Secondly, its standardization fosters consistency in data analysis, which is critical
for comparative studies and modeling efforts. Lastly, prior studies have been conducted
to exploit GTFS data for visualizing public transit systems [1,19–22], and for measuring
the transit operational performance [23–26], which further consolidates its role as the
foundational dataset for our research objectives.

2.2. Spatiotemporal Public Transport Networks

Spatiotemporal public transport networks represent a critical area of study, focusing
on the dynamics of how public transportation systems function over both spatial (geo-
graphic) and temporal (temporal) dimensions. Understanding these networks is pivotal for
enhancing urban mobility, improving accessibility, and developing effective transportation
policies. The integration of spatial and temporal factors into public transport analysis is
essential, as it allows researchers and planners to investigate the complexities of commuter
behaviors and service patterns. For instance, the study of spatiotemporal patterns helps
in identifying peak travel times and routes that experience variable demand, which is
particularly important in densely populated urban environments [27].

Recent works in the literature highlight the importance of such analyses in enhancing
operational efficiency. For example, Park et al. emphasized the role of real-time data in
understanding the intricate operational dynamics of public transit systems [28]. Their
findings asserted that incorporating Geographic Information Systems (GISs) with temporal
data can optimize route planning and scheduling, ultimately leading to better service
provision and user satisfaction.

Moreover, spatiotemporal analyses contribute significantly to understanding acces-
sibility within public transport systems. Farber et al. explored the spatial dimensions of
public health access through public transit by examining how accessibility varies across
different neighborhoods at different times of the day [29]. By identifying areas that lack ad-
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equate transport options, policymakers can target improvements more effectively, thereby
enhancing overall service equity.

In conclusion, the literature on spatiotemporal public transport networks underscores
their crucial role in informing transport policy, improving accessibility, increasing the effi-
ciency of services, and responding to the needs of urban populations. By acknowledging
both spatial and temporal dimensions, researchers and practitioners can obtain a compre-
hensive understanding of public transport dynamics, ultimately leading to improved urban
mobility solutions and enhanced quality of life for city dwellers.

2.3. Transit System Performance and Accessibility

Evaluating transit system performance is crucial for effective urban planning and mo-
bility management. Numerous studies have positioned transit accessibility as a significant
metric for understanding the overall effectiveness and efficiency of transit systems. One
of the most extensively studied topics is the measurement of transit system accessibility
across time and space using GTFS data. For instance, Farber et al. examined the temporal
variability of transit-based accessibility to supermarkets [29]. Their study analyzed how
accessibility from census blocks to the nearest supermarkets fluctuates over time. They
identified “food deserts”—areas lacking adequate access through public transport and
within walking distance—by considering variations throughout the day as well as mean
travel times. Furthermore, by incorporating demographic information from census blocks,
the study analyzed gender and racial equity in terms of food access.

While Farber et al. employed shortest path algorithms for their analysis [29], which is
a common approach in accessibility studies, other researchers have explored alternative
methodologies. One method is to perform a real-time accessibility analysis. For example,
Liu et al. [30] proposed a method to look at the impacts on accessibility using the GTFS
real-time dataset, especially during and after public events (e.g., football matches). Another
example explored the accessibility near three hospitals in Spain during COVID-19 using
GTFS real-time data [31]. Without real-time GTFS, it is also possible to combine with
other real-time transit information. Wessel and Widner conducted a comparative analysis
between static GTFS data and real-time vehicle location data from NextBus [32]. Their study
identified times and locations with a higher likelihood of delays, suggesting areas where
schedule padding might be necessary. Furthermore, a later study tried to compare the
gap of variability measures between GTFS data and the automatic vehicle location (AVL)
data [33]. They used GTFS and AVL data to regenerate the travel network. The variation
in actual operation causes some remote places to have a worse level of accessibility. It is
found that travel fluctuations contribute to estimating traveling time. In another approach,
Goliszek and Połom combined GTFS data with OpenStreetMap network information to
create minute-based isochrones [34]. Recognizing the importance of considering both
supply and demand in transit system analysis, Fayyaz et al. proposed an analytical
framework to measure transit accessibility while accounting for temporal fluctuations [35].
Their method incorporates indicators to identify causes of poor accessibility, providing a
more comprehensive understanding of transit system performance. Polzin et al. proposed
a framework combining the demand and supply of the transit system to measure time
variability [36].

Besides combining the GTFS dataset with other datasets, it is also possible to analyze
accessibility changes by comparing various GTFS data feeds of the same system across
different time periods. Kukuliač et al. [37] used GTFS data feeds to compare against the
accessibility change before and after the COVID-19 period in the suburban regions of two
Czech cities. In another study, Singh et al. used GTFS to compare the “extra benefits” of the
openings of a new bus line, a rapid transit system, in Winnipeg, Canada [38]. Another study
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by Kar et al. went through the transit system of 22 major cities during and after the COVID-
19 period. They found that during COVID-19, there is a decreased accessibility for the
social vulnerabilities in accessing food, non-urgent healthcare, and urgent healthcare [39].

Moreover, it is crucial to recognize that accessibility is just one of several measures
that reflect the level of service in public transport systems. Other factors such as effi-
ciency, equity, connectivity, reliability, and sustainability also play vital roles. For example,
Lee et al. evaluated the transfer efficiency between different transit systems to provide a
more competitive transit service [16]. Equity is another significant dimension in transit
evaluations. Guo and Brakewood evaluated the transit equity by clustering the areas
with high transit-dependent demand and low transit accessibility to different essential
services [14]. Connectivity is crucial for effective transit service. Sharma et al. used GTFS
data to compute multimodal transit connectivity and equity [40]. Reliability is a founda-
tional aspect of service quality in transit systems. Kim and Song proposed a measurement
that integrated accessibility and reliability to evaluate a network’s performance and vul-
nerability [41]. Sustainability in transit systems has gained increased attention in recent
years. Miller et al. introduced sustainability metrics into transit planning, advocating
for strategies that minimize environmental impact while informing decision making and
planning efforts [25].

In summary, while our study focuses on accessibility, incorporating these additional
factors—efficiency, equity, connectivity, reliability, and sustainability—can provide a
more comprehensive understanding of transit system performance. Future research
should consider these dimensions collectively to enhance the evaluation frameworks
used in public transportation studies, thus advancing the field toward more integrated
and effective solutions.

2.4. Transit Data Visualization and Analysis

Visualizing transit systems offers an effective method to further exploit and understand
GTFS data. Prommaharaj et al. explored several techniques for visualizing public transit
systems using GTFS data [1]. Six different visualization modules (i.e., mobility, speed, flow,
density, headway, and analysis) were introduced. The researchers utilized various diagrams
to visualize headway patterns throughout the day. Additionally, they implemented a top
list feature to identify extreme data points, such as the busiest stations or those with the
longest waiting times. This approach enables transit planners and researchers to quickly
identify areas of concern or exceptional performance within the system.

Beyond visualization, GTFS data can be leveraged to analyze more technical metrics
of transit systems. Wong demonstrated how GTFS data could be used to measure the Level
of Service (LOS) as defined in the Transit Capacity and Quality of Service Manual (TCQSM)
for transit agencies [42]. Their study examined metrics such as average headway, stop
spacing, and other relevant indicators. Furthermore, Wong recognized the need to evaluate
LOS separately for different transit modes including bus, light rail, subway, and commuter
rail [42].

While most studies have processed and visualized GTFS data on local machines, some
researchers have endeavored to engineer online or real-time visualization solutions. One of
the most ambitious applications in this domain is the real-time transit data visualization
system proposed by Bast et al. [43]. This innovative system creates a worldwide live map
that demonstrates the real-time information of transit systems across the globe. To achieve
this ambitious goal, Bast et al. employed several sophisticated techniques, including time–
space queries, interpolated schedule, and spatial–temporal bounding boxes [43]. These
methods are utilized to significantly reduce response times on the client side, ensuring a
smooth and responsive user experience despite the vast amount of data being processed.
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Notably, the system uses GTFS data as a fallback when real-time positional data are
unavailable, demonstrating the continued importance of GTFS even in advanced, real-
time applications.

Despite the abundance of transit service analyses based on GTFS data, there is a notable
absence of an open-source tool specifically designed to generate spatiotemporal networks
for transit analysis. The development of such a tool is both necessary and important, as it
would provide a standardized method for expanding GTFS data into a spatiotemporal
network—essentially creating the skeletal structure for comprehensive transit analysis.

This identified gap in the existing literature and toolset serves as the primary mo-
tivation for our current study. By developing a tool that can consistently and efficiently
transform GTFS data into spatiotemporal networks, we aim to facilitate more advanced,
standardized, and comparable transit analyses across different systems and studies. We
anticipate fostering a more comprehensive and nuanced understanding of transit systems,
ultimately contributing to improved public transportation planning and operations.

3. Methodology
The methodology for this study comprises three main components: (1) a basic example

of a spatiotemporal network; (1) the generation of a spatiotemporal network; and (2) path
searching algorithms.

3.1. A Basic Example of Spatiotemporal Network

Traditional static networks are insufficient for comprehensive travel time analysis,
as transit services vary throughout the day. To address this limitation, we expand the
network across the time dimension, creating a spatiotemporal network. Figure 2 illustrates
the process of converting bus routes into a three-dimensional spatiotemporal transit net-
work. The left sub-figure in Figure 2 depicts three distinct traffic routes overlaid on a map.
The right sub-figure introduces an additional dimension—a time axis representing the time
of day. This example showcases three buses traveling back and forth along three routes.
Specifically, in the three-dimensional spatiotemporal network (right sub-figure), the vertical
lines represent passengers’ ability to wait at transit stops over time. Although not explicitly
shown in Figure 2, passengers can walk between different transit stops to access other
routes. Each node in the network corresponds to a specific location at a particular time. This
comprehensive approach allows for a more nuanced and realistic representation of transit
systems, capturing the dynamic nature of public transit schedules throughout the day.

Figure 2. A simple demonstration of converting a transit network to a spatiotemporal transit network.
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3.2. Generate Spatiotemporal Network

The process of generating the spatiotemporal traffic network involves several inter-
connected steps. The first step is to create duplicated stop nodes across the time dimension,
effectively representing each stop at various times throughout the day. This forms the
foundation of our temporal expansion. For example, Figure 3a shows the skeleton network
of a segment of a bus route. The x-axis shows the distances of consecutive stations, whereas
the y-axis shows the time dimension. One bus stop node represents the status of one node
at a given time.

After generating the skeleton nodes, the second step adds more bus nodes and links
based on the bus time schedule as represented in Figure 3b. The blue links with dotted
lines represent a transit vehicle traveling from one stop to another. Besides the skeleton
nodes in Figure 3a, more nodes are added based on the transit time schedule.

Besides traveling buses, one needs to consider the walking distance to access bus stops
or transfer between close bus stops. To account for pedestrian movement between stops,
we define a maximum walking distance buffer (e.g., 0.25 miles). For each bus stop node,
we then add walking edges to all neighboring nodes that fall within this buffer distance.
For example, the purple links in Figure 3c shows the transfer links from skeleton bus stop
nodes to another bus route.

Finally, after adding all the transit traveling links and walking links, we can finally
connect all the links representing the same bus stop in time order along the time direction.
These links are called stop or waiting links representing the possibility of a traveler waiting
at a transit stop. As a demonstration, the red solid lines in Figure 3b,c represent the
stop/waiting links.

Figure 3. A simplified example of generating a spatiotemporal network for three consecutive stops of
a transit route.

In summary, the waiting links, the transit links, and the walking links together form
all the links of the transit travel network. Combined with the stop nodes at both ends of
the network’s links, a transit travel network is fully generated. Table 2 summarizes the
components of the basic spatiotemporal network. Besides the four basic types mentioned
in Figure 3, the destination node is necessary to denote the arrival at each bus stop. Links
are created connecting all stop/transit nodes to the destination node with costs of zero to
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construct the Directed Acyclic Graph (DAG). Thus, with DAG created connecting places
following the time arrow, it is possible to query the shortest path between any two stop
nodes at specific times.

Table 2. Basic elements of spatiotemporal network.

Name Description

stop/transit node traffic nodes of network (i.e., a bus stop at a give time)
destination node for each stop, there is a destination node to denote the arrival
stop/waiting link vertical links connecting the same stop over time
transit link links connecting different bus stops traversed by buses
walking link links connecting different bus stops traversed by walking
arrival link connecting from stop node to the destination node

To facilitate more comprehensive analysis, we introduce an additional layer of abstrac-
tion. For each transit stop, we generate a single origin node and a single destination node.
These nodes connect to all temporal instances of their respective stop. This enhancement
allows for more flexible querying. For instance, analysts can request the shortest path to a
specific stop without specifying an arrival time because all links are pointed towards the
corresponding destination node of the link.

Note that the steps in Figure 3 conceptualize the idea of a spatiotemporal graph focus-
ing on three consecutive bus stops along a transit route. A more comprehensive example
is provided in Figure 4 by visualizing a small segment of the spatiotemporal network in
downtown Nashville, Tennessee. The bottom map shows the corresponding topologies by
longitudes and latitudes. The vertical dimension shows the time of the day. The red and grey
links are traversed by transit vehicles and by walking, respectively. The black links are the
stop/waiting links. Each green dot represents the node of a bus stop as a given time. Building
such a network can help query the shortest travel time between two places.

Figure 4. A spatiotemporal network generated in downtown Nashville, TN (a small segment of
the network).
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3.3. Path Searching Algorithms

Once the spatiotemporal network is generated, it becomes possible to search for travel
times between different locations using the shortest path searching algorithms. In this
study, we employ Dijkstra’s algorithm for path searching due to its efficiency and reliability
in finding the shortest path in a weighted graph.

The flexibility of our approach allows for searching the shortest paths given either
a set of origins or a set of destinations. For example, Figure 5 illustrates this concept by
displaying the sub-network that can be traversed at different times of the day from a given
origin in Nashville, Tennessee.

The generated spatiotemporal diagram offers significant potential for addressing vari-
ous transit-related problems. By modifying the network’s topology, many flexible queries
become available. For instance, by reversing all the links in the network, we can generate
isochrone plots to specific destinations, providing insights into the inbound accessibility.
Furthermore, by introducing a hyper destination node connected to several destination
stop nodes, we can analyze the isochrone plots for multiple origins or destinations simulta-
neously. This approach proves particularly useful when studying accessibility to a group
of locations, such as healthcare facilities or employment centers. Finally, it is possible
to query the shortest traveling time between several origins and several destinations by
adding hyper nodes.

In summary, the method of generating spatiotemporal diagrams is crucial for analysis.
The applications of the method can extend beyond the aforementioned examples. For in-
stance, the spatiotemporal network can be adapted to analyze temporal variations in service
frequency, identify optimal transfer points, or evaluate the impact of service disruptions on
overall network accessibility. By providing a comprehensive framework for representing
both the spatial and temporal aspects of transit systems, our approach opens up new
avenues for the in-depth analysis and optimization of public transportation networks.

Figure 5. A shortest paths starting from a bus stop in Nashville, TN.
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4. Examples and Usages
To demonstrate the versatility and applicability of our GTFS2STN tool, we conducted

a series of experiments using the WeGo transit system in Nashville, Tennessee. While
the tool is designed to work with any standard GTFS data feed, we chose to focus on a
single transit system for consistency throughout this paper. Our analysis explores various
scenarios to gain insights into the system’s performance and accessibility. To validate our
results, we compared them with outputs from Mapnificent, another tool that generates
real-time isochrone maps using GTFS data inputs.

4.1. A Step-by-Step Guide of Using the (Online) Application Version of the GTFS2STN

The GTFS2STN application comprises five major steps for network analysis as il-
lustrated in Figure 6 taking the New York’s MTA (Metropolitan Transit Agency) as an
example. The process begins with the first step of data selection. Users can either select an
existing file or upload their own GTFS document. After loading the data, users confirm
their selection to proceed to the next stage. In this example, the New York’s MTA GTFS
data feed is selected.

Figure 6. The 5 major steps of using the GTFS2STN application.

In the second step, users can visually explore the records for each table in the dataset.
For tables containing geographical information, such as “stops.txt” or “shapes.txt”, the ap-
plication offers an interactive map view. Users can explore the system by hovering over
and clicking on various points of interest.

The third step involves building the network. Users select the specific date of interest
for analysis. Service IDs that correspond to the date information of the “calendar.txt” are
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identified to build up the operation scope. Additionally, the maximum allowable walking
distance and speed to establish the walking links are specified. The spatiotemporal network
is then generated, and users have the option to download it for further analysis. Users have
the option of downloading the spatiotemporal graph for further analysis on their own.

The fourth step focuses on accessibility analysis. Users select an origin transit stop,
departure time, and maximum allowable journey time (cutoff time). Based on these
parameters, the application generates isochrone maps to visualize accessibility. In Figure 6,
the isochrone map originating from the subway stop at the intersection of 116th street and
Columbia University is drawn, given the departure time at 8 AM.

The final (fifth) step analyzes the travel times between specified origins and desti-
nations. Users can either click on the map to select stops or manually input coordinates.
Upon initiating the analysis, the application visualizes the journey time, breaking it down
into three components: walking time (in blue), waiting time (in orange), and transit time
(in green). A red line at the top represents the total journey time, summing up these three
segments. In Figure 6, the journey time between the intersection of the 116th street and
Columbia University and the transit stop of “Coney island—Stillwell Avenue” is plotted.

This step-by-step approach allows for a comprehensive analysis of the transit system,
providing insights into the accessibility, travel times, and network efficiency. By offering
both visual and quantitative outputs, GTFS2STN enables users to gain a nuanced under-
standing of the transit system’s performance across various scenarios and parameters.
Besides the website, code is provided for further analysis using Jupyter Notebooks.

4.2. Evaluating GTFS2STN by Comparing Travel Time Results with Google Map
APIs’ Groundtruth

Besides basic code testing, an experiment is run to evaluate the accuracy of the pro-
posed tool by comparing the results with the ground truth results from Google Maps API.
The experiment is run on four different cities. For each city, 10 transit stations are randomly
chosen as either the origin or the destination. In other words, among the selected stations,
45 unique origin–destination combinations are evaluated. To measure the performance,
three metrics are used: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and
Mean Absolute Percentage Error (MAPE). The shortest transit paths are queried for either
10 AM or 4 PM on 16 November 2024. The results are summarized in Table 3. By observa-
tion, the difference is caused by different metrics in measuring walking distance and speed.
Google Map APIs, the ground truth data, may have a better estimate of the walking time
within a transit station, and it allows for a longer walking distance (e.g., 2 miles) to access
the transit system. However, an open-source tool is still necessary to analyze the transit
system specialized for transit studies. Most importantly, Google Map API does not store
historic information, not to mention the GTFS plans in the planning phase.

Table 3. Evaluating travel time results between GTFS2STN model and Google Maps APIs
(ground truth).

City Name Transit Agency MAE (Min) RMSE (Min) MAPE

New York, NY MTA 5.5 7.1 10.4%
San Francisco, CA BART 1.8 5.1 2.6%
Washington, DC WMATA 6.9 8.6 12.6%

Austin, TX CapMetro 12.0 17.4 10.5%

4.3. Case Study 1: Accessibility to Walmart Markets in Nashville, Tennessee

The flexibility of our GTFS2STN tool, as outlined in the methodology section, allows
for diverse and insightful analyses through the addition of hyper nodes and links. To illus-
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trate this capability, we conduct an accessibility analysis focusing on Walmart markets in
Nashville, Tennessee.

Figure 7 identifies three Walmart locations within the city. We generate an isochrone
plot with a 60-min travel time threshold to visualize the accessibility of these markets via
public transit. The results reveal that these Walmart locations, collectively, are accessible
to a substantial portion of the city, primarily along major arterial routes. This analysis
demonstrates the tool’s ability to assess accessibility to multiple destinations simultaneously,
which can be particularly valuable for urban planning and retail strategy development.

Figure 7. The isochrone map to access any of the three Walmart markets in Nashville, Tennessee.

4.4. Case Study 2: Temporal Variations in Accessibility

To further showcase the tool’s capabilities in capturing temporal dynamics of transit
systems, we conduct a case study examining accessibility levels at different times of the
day. For this analysis, we focus on trips originating from and terminating at the Nashville
International Airport, as shown in Figure 8. Each subplot is an isochrone plot. The first row
of subplots shows the accessibility originating from Nashville International Airport (BNA)
airport starting from different times of the day, whereas the second row of subplots shows
the accessibility destination to the BNA airport with a different latest arrival time.

By comparing different isochrone plots in Figure 8, the study reveals significant varia-
tions in service levels throughout the day. Most notably, we observe that transit accessibility
is considerably limited at 9 PM. This stark contrast in service availability highlights the
importance of considering temporal factors in transit planning and analysis. Such temporal
accessibility analyses can provide crucial insights for various stakeholders: (1) transit plan-
ners can identify periods of limited service, informing decisions about route modifications
or service frequency adjustments; (2) airport authorities can better understand how public
transit availability might affect passenger experiences at different arrival or departure times;
and (3) city officials can assess the airport’s connectivity to the broader urban area across
different times, which may influence economic development strategies.
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Figure 8. Accessibility from/to the Nashville International Airport (BNA) using WeGo transit services
in Nashville, Tennessee (all isochrone legends are same as the one in Figure 7).

4.5. Analyzing the Change of the Transit System over a 5-Year Period

To further demonstrate the analytical capabilities of our tool, we conduct a comparative
case study using data from the WeGo public transit in Nashville, Tennessee. This study
aims to contrast transit patterns changes over the last 5 years, offering insights into public
transportation services and usage. This case study explores the schedules of two distinct
periods in different years, including (1) Thursday, 14 November 2019 (before the COVID-19
pandemic) and (2) Thursday, 14 November 2024 (5 years later).

To evaluate the network changes, 10 different coordinates are manually chosen,
as shown in the left sub-figure of Figure 9. Those 10 locations cover the most impor-
tant sites points of the network. The objective is to generate the journey time matrix
between these 10 sites. Moreover, considering the temporal differences, separate travel time
matrices are generated from six different trip departure times (i.e., 8 AM, 10 AM, 12 PM,
2 PM, 4 PM, and 6 PM). In summary, among 10 different sites, there are 90 different combi-
nations of origin–destination pairs. Considering 6 different originate times and 2 networks
to evaluate, there are 2 × 6 × 90 = 1080 OD queries to evaluate. This before–after study
ensures that every factor is the same except there is exactly a 5-year difference in time.

The right sub-figure of Figure 9 illustrates the changes in journey time in minutes.
The x-axis and y-axis correspond to the journey time of the 2019 network and 2024 network,
respectively. As mentioned, there are 540 data pairs of journey time to compare against. One
can decompose the data pairs into different subgroups by originate time, origin location,
or destination location. For example, the red points represent the case of trips starting from
a bus stop near Vanderbilt University, whereas the green points show the opposite case
of trips that terminate at the same bus stop. By observation, it appears that the journey
time to the station overall drops since most points in green lie at the right-hand side of the
45-degree line representing no changes in journey time. To further analyze the changes in
the network, statistical methods of paired t-test and Wilcoxon signed-rank test are applied
over all data points as well as each subset by origin, destination, and time of the day.
The results are summarized in Tables 4 and 5 below. Based on the results of Table 4, under a
significance level of 0.0001, we conclude with the alternative hypothesis that the travel time
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in November 2019 is greater than the travel time in November 2024. For 10 pivotal transit
sites, Table 5 shows that for 8 out of 10 sites, under a significance level of 0.05, we conclude
with the alternative hypothesis. Overall, the travel time has dropped against the case of
5 years ago. Similar to Table 5, Table 6 evaluates the journey time changes for each site as
trip destinations. By observation, under a significance level of 0.05, for 9 out of 10 sites, we
conclude with the alternative hypothesis.

Figure 9. Analyzing journey time changes of a network by comparing between 2019 and 2024 over
10 different bus stops across the network.

Table 4. Evaluating journey time changes between 2019 and 2024 over different departure times.
The null hypothesis H0 : journey time in November 2019 is equal or smaller than that of May 2020.
Alternative hypothesis: Ha : Journey time in November 2019 is greater than that of November 2024.

Departure Time Paired t-Test Wilcoxon Signed-Ranked Test
Statistics p-Value Statistics p-Value

Overall 11.41 <0.0001 112,830 <0.0001

8 AM 5.73 <0.0001 3376 <0.0001
10 AM 4.48 <0.0001 3045 <0.0001
12 PM 4.19 <0.0001 3030 <0.0001
14 PM 4.29 <0.0001 3034 <0.0001
16 PM 3.90 <0.0001 3194 <0.0001
18 PM 7.20 <0.0001 3575 <0.0001

Table 5. Evaluating journey time changes between 2019 and 2024 over different origin sites. Null
hypothesis H0 : Journey time in November 2019 is equal to or smaller than that of May 2020.
Alternative hypothesis: Ha : Journey time in November 2019 is greater than that of November 2024.

Paired t-Test Wilcoxon Signed-Ranked Test
Site Coordinates Statistics p-Value Statistics p-Value

Site 1 (36.143989, −86.799031) 2.99 0.0020 1105 0.0009
Site 2 (36.104841, −86.814243) 2.23 0.0149 1027 0.0071
Site 3 (36.130815, −86.666128) 3.64 0.0003 1105 0.0009
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Table 5. Cont.

Paired t-Test Wilcoxon Signed-Ranked Test
Site Coordinates Statistics p-Value Statistics p-Value

Site 4 (36.089632, −86.733373) 4.37 <0.0001 1222 <0.0001
Site 5 (36.167145, −86.826597) −2.10 0.9801 520 0.9723
Site 6 (36.228731, −86.725305) 9.87 <0.0001 1484 <0.0001
Site 7 (36.221122, −86.805488) 14.18 <0.0001 1475 <0.0001
Site 8 (36.100465, −86.871159) −5.22 0.9999 230 0.9999
Site 9 (36.051442, −86.714537) 12.04 <0.0001 1476 <0.0001

Site 10 (36.167234, −86.660707) 8.47 <0.0001 1432 <0.0001

Table 6. Evaluating journey time changes between 2019 and 2024 over different destination sites. Null
hypothesis H0 : Journey time in November 2019 is equal or smaller than that of May 2020. Alternative
hypothesis: Ha : Journey time in November 2019 is greater than that of November 2024.

Paired t-Test Wilcoxon Signed-Ranked Test
Site Coordinates Statistics p-Value Statistics p-Value

Site 1 (36.143989, −86.799031) 2.77 0.0037 1034 0.0060
Site 2 (36.104841, −86.814243) 5.49 <0.0001 1264 <0.0001
Site 3 (36.130815, −86.666128) 0.52 0.3002 883 0.1131
Site 4 (36.089632, −86.733373) 2.87 0.0029 1051 0.0039
Site 5 (36.167145, −86.826597) 4.15 <0.0001 1173 0.0001
Site 6 (36.228731, −86.725305) 5.27 <0.0001 1248 <0.0001
Site 7 (36.221122, −86.805488) 5.86 <0.0001 1324 <0.0001
Site 8 (36.100465, −86.871159) 2.82 0.0033 1067 0.0026
Site 9 (36.051442, −86.714537) 5.97 <0.0001 1261 <0.0001

Site 10 (36.167234, −86.660707) 2.73 0.0042 1203 <0.0001

4.6. Analyzing the Journey Time Shifts During the COVID-19 Pandemic

To further validate the analysis tool, we extend the analysis in the previous section to
compare between more scenarios using the before–after comparative analysis approach.
Specifically, in this section, three different days are considered for analysis: (1) Thursday,
14 November 2019 (before the COVID-19 pandemic); (2) Thursday, 14 May 2020 (dur-
ing the COVID-19 pandemic, right after the Phase 1 reopening plan); and (3) Thursday,
13 November 2020. The timeline of the operation phases for Nashville WeGO can be
found by referencing another transit ridership study [44]. Thus, this study tries to validate
those mentioned changes in transit operations during the COVID-19 phase using historical
records of GTFS datasets.

Except for the after study cases, the study approach and the experiment plans are same
as that of Section 4.5. Using the previous study case, the scatter plots of the before–after
journey time results are visualized in Figure 10 below. By observation, comparing against
the late 2019 baseline, the journey time is increased in May, but the pattern is not obvious for
the case of late 2020. For quantitative analysis, the results are summarized in Tables 7 and 8.
Based on the results in Table 7, the null hypothesis is rejected under a significance level
of 0.01 all the time. However, for the results in Table 8, comparing November cases in
2019 and 2020, there exist travel time shifts only for 2 cases out of 6 different departure
times, where the corresponding p-values are under 0.1 for the paired t-test and Wilcoxon
signed-ranked test.
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Table 7. Evaluating journey time changes between November 2019 and May 2020 over different
departure times. Null hypothesis H0 : Journey time in November 2019 is equal or greater than that
of May 2020. Alternative hypothesis: Ha : Journey time in November 2019 is smaller than that of
May 2020.

Departure Time Paired t-Test Wilcoxon Signed-Ranked Test
Statistics p-Value Statistics p-Value

Overall −11.53 <0.0001 30,300 <0.0001

8 AM −8.91 <0.0001 230 <0.0001
10 AM −4.58 <0.0001 973 <0.0001
12 PM −3.74 <0.0001 1016 <0.0001
14 PM −2.38 <0.0001 1334 0.00206
16 PM −6.33 <0.0001 723 <0.0001
18 PM −3.25 <0.0001 1181 <0.0001

Table 8. Evaluating journey time changes between November 2019 and November 2020 over dif-
ferent departure time. Null hypothesis H0 : Journey time in November 2019 is equal to that of
November 2020. Alternative hypothesis: Ha : Journey time in November 2019 is not equal to that of
November 2020.

Departure Time Paired t-Test Wilcoxon Signed-Ranked Test
Statistics p-Value Statistics p-Value

Overall −2.17 0.0307 60,997 0.0307

8 AM −3.05 0.0030 3376 0.0007
10 AM 0.94 0.3495 3045 0.7983
12 PM −1.78 0.0772 3030 0.0259
14 PM 0.44 0.6642 3034 0.7460
16 PM −1.17 0.2448 3194 0.1277
18 PM −1.25 0.2133 3575 0.8523

Figure 10. Analyzing journey time changes of a networks. (a) A journey time scatter plot comparing
between 14 November 2019 and 14 May 2020; (b) a journey time scatter plot comparing between
14 November 2019 and 13 November 2020.
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4.7. Comparative Analysis: GTFS2STN vs. Existing Tool

To validate the effectiveness of our GTFS2STN tool, we conduct a comparative analysis
with similar existing tools, particularly focusing on Mapnificent. This comparison provides
insights into the accuracy and unique features of our proposed tool.

Figure 11 illustrates the results of a query originating from the airport, generated by
both GTFS2STN and Mapnificent. While the overall patterns of accessibility are similar,
there are notable differences in the presentation and depth of information provided by
each tool.

Mapnificent’s query is constrained to a 60 min time bound, presenting a single
isochrone boundary. In contrast, GTFS2STN offers a more granular visualization, dis-
playing isochrones ranging from 20 to 120 min using a color gradient. This extended range
and detailed breakdown allow for a more comprehensive understanding of the transit
accessibility at various time thresholds.

Upon close examination, we observe that the isochrone generated by GTFS2STN
appears slightly smaller than that of Mapnificent. This discrepancy can be attributed to
the more realistic modeling of bus waiting times of GTFS2STN. By incorporating this
additional factor, our tool provides a more conservative, yet potentially more accurate,
representation of transit accessibility. Despite this minor difference, the overall accessibility
patterns revealed by both tools are remarkably similar. This consistency across different
methodologies lends credibility to our results and suggests that GTFS2STN is performing
in line with the established tools in the field.

The comparative analysis highlights several key strengths of GTFS2STN: (1) enhanced
temporal resolution, allowing for more nuanced accessibility analysis; (2) more realistic
modeling of transit experiences by including waiting times; and (3) flexibility in visualizing
a wider range of travel times, enabling both broad overview and detailed examination of
accessibility patterns.

Figure 11. A comparison of the isochrone plot between GTFS2STN and Mapnificent using similar
query conditions (isochrone legends on the left subplot are same as the one in Figure 7).

5. Discussions
GTFS data are widely used by researchers and transit operators for smart public

transportation systems. In this study, we developed a GTFS data visualization tool, namely
GTFS2TN, which simplifies the visualization of transit service accessibility in a space and
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time diagram. A use scenario is analyzed and the functionalities of GTFS2TN are well ex-
plained. By comparing with existing tools, i.e., Google Map, GTFS2TN can offer a relatively
accurate representation of the transit accessibility and travel time. Meanwhile, we demon-
strate two real-word cases to showcase its core functions. In the first case, we showcase
its capability to assess the transit accessibility to multiple destinations simultaneously by
travel time isochrones, which is a unique function to the authors’ best knowledge. In the
second case, we showcase the temporal variations in transit accessibility due to the varying
travel demands across the day. The temporal variation chart assists transit operators in
identifying periods of limited service and helps other modes of transportation better coor-
dinate departure and arrival times to ensure smooth transfers. Lastly, GTFS2TN can also be
applied to analyze the change in transit systems over the years. This function is particular
helpful in the case that transit planners evaluate the transit operational performance in
response to transit enhancement projects. For example, by adding a new transit line, we
can analyze the changes in the accessibility of the transit system in a quantitative way.

Meanwhile, we acknowledge several limitations in its current iteration. Firstly,
the walking buffer is currently implemented as a simple circular area, rather than a more
realistic network-based buffer that accounts for actual road traversal. Secondly, the tool
faces challenges in integrating multiple GTFS feeds simultaneously. For now, users need
to manually download and merge GTFS datasets from different agencies before starting
the analysis. This limitation is particularly relevant for large metropolitan areas served
by multiple transit agencies, where analyzing a single agency’s network may not fully
capture the realistic transit scenario. Thirdly, the expansion of the network into a three-
dimensional spatiotemporal structure, implemented in Python, can be memory intensive
and time-consuming for large-scale analyses. Finally, the model cannot incorporate the
customer’s demand side since there are too many subjective decisions and different data
sources before establishing a suitable analysis pipeline.

To address these limitations and enhance the tool’s capabilities, our future research
directions will include (1) incorporating a more realistic walking network (e.g., from the
Open Street Map) based on actual road geometries; (2) enhancing the tool’s accuracy
across various transit agencies; (3) optimizing memory usage to improve performance for
large-scale analyses; and (4) developing functionality to integrate multiple GTFS feeds for
comprehensive analysis across multiple transit agencies within one metropolitan region.
Despite these limitations, GTFS2STN demonstrates significant potential as a valuable
resource for transit planners, researchers, and city planners. Its ability to evaluate transit
system performance across various temporal and spatial scales provides crucial insights
for improving public transportation networks.

6. Conclusions
Public transportation is a vital service, particularly in large cities where rising vehic-

ular traffic poses a significant challenge for daily travel reliability. For one thing, transit
accessibility is attracting considerable attention among researchers in transport planning,
urban geography and sustainable development. For another thing, travel time is always a
concern and major factor influencing the user’s travel mode choice. This study developed
GTFS2STN, a novel and interactive application designed to visualize transit accessibility
and travel time across both time and space. By allowing users to upload any GTFS network,
the tool offers remarkable flexibility for researchers and urban planners to evaluate histori-
cal or projected transit scenarios in terms of accessibility and travel time variability. Our
comparative analysis demonstrates that GTFS2STN performs comparably to existing tools
like Google Maps API. Moreover, as a research tool, our tool has the flexibility of loading
any planned or historical GTFS networks for comparative analysis (see Section 4).
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As an open-source research tool, GTFS2STN provides a user-friendly interface for
interactive data exploration, isochrone plot generation from fixed locations, and journey
time analysis between origin–destination pairs. Furthermore, the application enables
users to download the generated spatiotemporal transit network, further facilitating in-
depth analyses beyond the tool’s built-in capabilities. This study makes analysis of the
accessibility of different interested locations possible given the spatiotemporal diagram.

Overall, by offering a comprehensive, flexible, and user-friendly platform for transit
performance analysis, GTFS2STN contributes to the growing toolkit available to trans-
portation professionals. As urban areas continue to grapple with issues of mobility and
accessibility, GTFS2STN will play a critical role in shaping efficient, equitable, and sustain-
able transit systems in the future.
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37. Kukuliač, P.; Horák, J.; Fojtík, D.; Ivan, I.; Kolodziej, O.; Orlíková, L.; Marešová, P. Post COVID-19 public transport accessibility
changes: Case study of Ostrava and Hradec Králové regions. Geogr. Cassoviensis 2023, 17. [CrossRef]

38. Singh, S.S.; Javanmard, R.; Lee, J.; Kim, J.; Diab, E. Evaluating the accessibility benefits of the new BRT system during the
COVID-19 pandemic in Winnipeg, Canada. J. Urban Mobil. 2022, 2, 100016. [CrossRef]

39. Kar, A.; Carrel, A.L.; Miller, H.J.; Le, H.T. Public transit cuts during COVID-19 compound social vulnerability in 22 US cities.
Transp. Res. Part D Transp. Environ. 2022, 110, 103435. [CrossRef]

40. Sharma, I.; Mishra, S.; Golias, M.M.; Welch, T.F.; Cherry, C.R. Equity of transit connectivity in Tennessee cities. J. Transp. Geogr.
2020, 86, 102750. [CrossRef]

http://dx.doi.org/10.1016/j.tra.2023.103931
http://dx.doi.org/10.5198/jtlu.2024.2454
http://dx.doi.org/10.1007/s12205-018-0218-0
http://dx.doi.org/10.1016/j.jtrangeo.2019.102546
http://dx.doi.org/10.1177/03611981211027562
http://dx.doi.org/10.1007/s12469-024-00362-x
http://dx.doi.org/10.1080/20964471.2020.1758537
http://dx.doi.org/10.1007/s10109-022-00382-w
http://www.ncbi.nlm.nih.gov/pubmed/35615383
http://dx.doi.org/10.1016/j.jtrangeo.2022.103508
http://dx.doi.org/10.1016/j.trd.2016.02.012
http://dx.doi.org/10.1007/s12469-022-00291-7
http://dx.doi.org/10.1016/j.jclepro.2016.05.161
http://dx.doi.org/10.1080/13658816.2019.1608997
http://dx.doi.org/10.1016/j.apgeog.2014.06.012
http://dx.doi.org/10.1016/j.jtrangeo.2023.103769
http://dx.doi.org/10.32358/rpd.2022.v8.589
http://dx.doi.org/10.1007/s10109-016-0244-8
http://dx.doi.org/10.5198/jtlu.2019.1502
http://dx.doi.org/10.7163/Eu21.2016.31.4
http://dx.doi.org/10.1016/j.jtrangeo.2017.01.006
http://dx.doi.org/10.3141/1799-05
http://dx.doi.org/10.33542/GC2023-1-05
http://dx.doi.org/10.1016/j.urbmob.2022.100016
http://dx.doi.org/10.1016/j.trd.2022.103435
http://dx.doi.org/10.1016/j.jtrangeo.2020.102750


Information 2025, 16, 24 22 of 22

41. Kim, H.; Song, Y. An integrated measure of accessibility and reliability of mass transit systems. Transportation 2018, 45, 1075–1100.
[CrossRef]

42. Wong, J. Leveraging the general transit feed specification for efficient transit analysis. Transp. Res. Rec. 2013, 2338, 11–19.
[CrossRef]

43. Bast, H.; Brosi, P.; Storandt, S. Real-time movement visualization of public transit data. In Proceedings of the 22nd ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems, Fort Worth, TX, USA, 4–7 November
2014; pp. 331–340.

44. Wilbur, M.; Ayman, A.; Sivagnanam, A.; Ouyang, A.; Poon, V.; Kabir, R.; Vadali, A.; Pugliese, P.; Freudberg, D.; Laszka, A.; et al.
Impact of COVID-19 on public transit accessibility and ridership. Transp. Res. Rec. 2023, 2677, 531–546. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11116-018-9866-7
http://dx.doi.org/10.3141/2338-02
http://dx.doi.org/10.1177/03611981231160531
http://www.ncbi.nlm.nih.gov/pubmed/38602901

	Introduction
	Literature Review
	Transit Data Sources
	Spatiotemporal Public Transport Networks
	Transit System Performance and Accessibility
	Transit Data Visualization and Analysis

	Methodology
	A Basic Example of Spatiotemporal Network
	Generate Spatiotemporal Network
	Path Searching Algorithms

	Examples and Usages
	A Step-by-Step Guide of Using the (Online) Application Version of the GTFS2STN
	Evaluating GTFS2STN by Comparing Travel Time Results with Google Map APIs' Groundtruth
	Case Study 1: Accessibility to Walmart Markets in Nashville, Tennessee
	Case Study 2: Temporal Variations in Accessibility
	Analyzing the Change of the Transit System over a 5-Year Period
	Analyzing the Journey Time Shifts During the COVID-19 Pandemic
	Comparative Analysis: GTFS2STN vs. Existing Tool

	Discussions
	Conclusions
	References

