Investigating Human Influence on Offshore Terrestrial Organic Carbon Trends in a High-Energy Delta: The Ayeyarwady Delta, Myanmar
<p>Reference and core location maps for the Ayeyarwady Delta, Myanmar: (<b>A</b>) Ayeyarwady and Thanlwin Rivers along with other major rivers in Asia; (<b>B</b>) Andaman Sea bathymetry and regional tectonic setting (Bathymetry from [<a href="#B45-jmse-13-00163" class="html-bibr">45</a>]); (<b>C</b>) Study area with coring sites from [<a href="#B40-jmse-13-00163" class="html-bibr">40</a>] (red circles) and Pathein, Yangon, and Thanlwin river sampling locations from [<a href="#B40-jmse-13-00163" class="html-bibr">40</a>,<a href="#B46-jmse-13-00163" class="html-bibr">46</a>] (indicated by green, red, and blue stars, respectively). Black circles around coring sites indicate that no <sup>7</sup>Be was detected in surface sediment, whereas yellow circles indicate the presence of <sup>7</sup>Be. The region of modern sediment accumulation on the shelf is indicated by the black polygon [<a href="#B42-jmse-13-00163" class="html-bibr">42</a>]. Depositional regions are separated by dashed lines into (<b>A</b>) the NW shelf, (<b>B</b>) “Mouths of the Ayeyarwady”, (<b>C</b>) the Gulf of Martaban, and (<b>D</b>) the Martaban Depression. Smoothed bathymetric contours (gray lines) are shown in meters of water depth (adapted from [<a href="#B45-jmse-13-00163" class="html-bibr">45</a>]).</p> "> Figure 2
<p>Core-averaged organic carbon and surface area results including (<b>A</b>) TOC (%), (<b>B</b>) TerrOC wt.%, (<b>C</b>) surface area (SA), and (<b>D</b>) organic carbon loading (OC/SA). Coring locations are shown as black circles. Locations of Pathein, Yangon, and Thanlwin river end-members are shown as green, red, and blue stars, respectively. The black polygon indicates the region of modern sediment accumulation as defined in [<a href="#B42-jmse-13-00163" class="html-bibr">42</a>].</p> "> Figure 3
<p>Organic carbon loading (OC/SA) plotted in relation to grain size parameters for each of the offshore regions with the Gulf and Depression shown in blue, “Mouths of the Ayeyarwady” in yellow, and the NW shelf in red.</p> "> Figure 4
<p>Example downcore plots of δ<sup>13</sup>C, TOC, TerrOC, and OC/SA from the (<b>A</b>) Gulf of Martaban (KC-04), (<b>B</b>) Martaban Depression clinoform forests (KC-02), (<b>C</b>) “Mouths of the Ayeyarwady” (KC-24), and (<b>D</b>) NW shelf (KC-21). Red dashed lines indicate the depth of the SML, and blue dashed lines indicate the depth at which excess <sup>210</sup>Pb is no longer detectable. Overall, cores from all regions demonstrate a lack of downcore change with relatively consistent δ<sup>13</sup>C, TOC, TerrOC, and OC/SA at depth. Organic carbon data for all cores can be found in <a href="#app1-jmse-13-00163" class="html-app">Table S1</a>.</p> "> Figure 5
<p>Example downcore plots of surface area (SA), D<sub>50</sub>, D<sub>90</sub>, and mud content (%) from the (<b>A</b>) Gulf of Martaban (KC-04), (<b>B</b>) Martaban Depression clinoform forests (KC-02), (<b>C</b>) “Mouths of the Ayeyarwady” (KC-24), and (<b>D</b>) NW shelf (KC-21). Red dashed lines indicate the depth of the SML, and blue dashed lines indicate the depth at which excess <sup>210</sup>Pb is no longer detectable. SA and grain size for all cores can be found in <a href="#app1-jmse-13-00163" class="html-app">Tables S2 and S3</a>, respectively.</p> "> Figure 6
<p>Correlations between surface area (SA) and grain size parameters, including D<sub>50</sub>, D<sub>90</sub>, and mud content for all sediment samples analyzed. D<sub>90</sub> exhibits the strongest correlation with SA; however, all grain size parameters show minimal change once SA reaches over 20 m<sup>2</sup>g<sup>−1</sup>. Depositional regions are indicated by color, with the Gulf and Depression shown in blue, “Mouths of the Ayeyarwady” in yellow, and the NW shelf in red.</p> "> Figure 7
<p><sup>210</sup>Pb accumulation rates plotted in relation to (<b>Left</b>) core-averaged OC/SA and (<b>Right</b>) average downcore changes in TerrOC by wt.%. Downcore change in TerrOC by wt.% was calculated for each core by subtracting the observed TerrOC wt.% at the bottom of the core from that at the surface. Positive values thus indicate a decrease in TerrOC at depth, while negative values indicate an increase in TerrOC at depth. In both plots, depositional regions on the shelf are plotted by color, with the Gulf of Martaban and Martaban Depression shown in blue, “Mouths of the Ayeyarwady” shown in yellow, and the NW shelf shown in red.</p> "> Figure 8
<p>XRF ratios (<b>A</b>) Ni/Rb and (<b>B</b>) Zn/La are indicative of sediment sources from the Ayeyarwady and Indo-Burman Range and Thanlwin, respectively. Coring locations are shown as black circles, and Pathein, Yangon, and Thanlwin River end-member sample locations are shown as green, red, and blue stars, respectively. The black polygon on the Northern Andaman Sea shelf represents the region of modern sediment accumulation [<a href="#B42-jmse-13-00163" class="html-bibr">42</a>].</p> "> Figure 9
<p>Examples of downcore XRF elemental ratios and core X-rays from the (<b>A</b>) Gulf of Martaban (GC-29), (<b>B</b>) Martaban Depression (GC-09), and (<b>C</b>,<b>D</b>) NW shelf (GC-21 and GC-17, respectively). High Ni/Rb ratios (blue) are indicative of sediment sourced from Ayeyarwady distributaries, while high Zn/La ratios (pink) are indicative of sediment sourced from the Thanlwin. 3 cm moving average ratios are plotted for both ratios as solid black lines. Core average ratios are plotted as dashed black lines. Red dashed lines indicate the depth of the SML when present. Core X-ray images are from [<a href="#B40-jmse-13-00163" class="html-bibr">40</a>]. XRF ratios for all cores are found in <a href="#app1-jmse-13-00163" class="html-app">Table S5</a>.</p> ">
Abstract
:1. Introduction
2. Study Area
2.1. Regional Climate and Oceanographic Conditions
2.2. Ayeyarwady and Thanlwin Rivers
2.3. Holocene Progradation and Modern Offshore Accumulation
3. Methods
3.1. Sample Collection
3.2. Isotope and Organic Elemental Analysis
3.3. Surface Area and Grain Size
3.4. X-Ray Fluorescence (XRF) Elemental Analysis
4. Results and Discussion
4.1. Spatial Organic Carbon Trends
4.2. Temporal Organic Carbon Trends
4.3. Sediment Provenance
4.4. Comparing Human Perturbations on High-Energy Margins
5. Conclusions
- Spatial trends in organic carbon and sediment provenance are prominent in an east-west direction along the Northern Andaman Sea shelf, indicating variations in sediment sources and depositional environments between the Gulf of Martaban and Martaban Depression, “Mouths of the Ayeyarwady”, and the NW shelf.
- Despite land use changes, no significant temporal (downcore) change in sediment sources or TerrOC contents in shelf sediments has occurred over the last 100 years. On the Northern Andaman Sea shelf, this can be attributed to frequent seabed resuspension, which extends particle residence time and provides conditions necessary for TerrOC oxidation, thereby creating a low-pass filter for signals of changing fluvial fluxes.
- The NW shelf deposit has the highest TerrOC content, which is likely associated with the rapid delivery of TerrOC from small rivers draining the minimally developed IBR. TerrOC preservation on the NW shelf may be increased through efficient burial associated with rapid settling and the formation of episodic storm layers. Deposition across the NW shelf break also suggests that export of TerrOC to the Bay of Bengal via shelf escape is possible, allowing for sequestration over geologic timescales as material undergoes subduction in the Andaman trench.
- Unlike other large, developed Asian rivers, the A-T river mainstems are not obstructed by large dams. Therefore, it is possible that A-T fluvial sediment and TerrOC loads have not yet been impacted to an extent where changes are evident in the offshore sediment record, as has been seen in other large delta systems.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Syvitski, J.; Saito, Y. Morphodynamics of deltas under the influence of humans. Glob. Planet. Change 2007, 57, 261–282. [Google Scholar] [CrossRef]
- Syvitski, J. Deltas at risk. Sustain. Sci. 2008, 3, 23–32. [Google Scholar] [CrossRef]
- Bianchi, T.S.; Allison, M.A. Large-river delta-front estuaries as natural “recorders” of global environmental change. Proc. Natl. Acad. Sci. USA 2009, 106, 8085–8092. [Google Scholar] [CrossRef] [PubMed]
- Syvitski, J.; Kettner, A.J.; Overeem, I.; Hutton, E.W.H.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Syvitski, J.; Ángel, J.R.; Saito, Y.; Overeem, I.; Vörösmarty, C.J.; Wang, H.; Olago, D. Earth’s sediment cycle during the Anthropocene. Nat. Rev. Earth Environ. 2022, 3, 179–196. [Google Scholar] [CrossRef]
- Anthony, E.; Syvitski, J.; Zăinescu, F.; Nicholls, R.J.; Cohen, K.M.; Marriner, N.; Saito, Y.; Day, J.; Minderhoud, P.S.J.; Amorosi, A.; et al. Delta sustainability from the Holocene to the Anthropocene and envisioning the future. Nat. Sustain. 2024, 7, 1235–1246. [Google Scholar] [CrossRef]
- Syvitski, J.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef]
- Gupta, H.; Kao, S.-J.; Dai, M. The role of mega dams in reducing sediment fluxes: A case study of large Asian rivers. J. Hydrol. 2012, 464–465, 447–458. [Google Scholar] [CrossRef]
- Shen, Z.; Rosenheim, B.E.; Törnqvist, T.E.; Lang, A. Engineered Continental-Scale Rivers Can Drive Changes in the Carbon Cycle. AGU Adv. 2021, 2, e2020AV000273. [Google Scholar] [CrossRef]
- Bianchi, T.S.; Mayer, L.M.; Amaral, J.H.F.; Arndt, S.; Galy, V.; Kemp, D.B.; Kuehl, S.A.; Murray, N.J.; Regnier, P. Anthropogenic impacts on mud and organic carbon cycling. Nat. Geosci. 2024, 17, 287–297. [Google Scholar] [CrossRef]
- Chen, D.; Li, X.; Saito, Y.; Liu, J.P.; Duan, Y.; Liu, S.; Zhang, L. Recent evolution of the Irrawaddy (Ayeyarwady) Delta and the impacts of anthropogenic activities: A review and remote sensing survey. Geomorphology 2020, 365, 107231. [Google Scholar] [CrossRef]
- Keil, R. Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments. Annu. Rev. Mar. Sci. 2017, 9, 151–172. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, T.S.; Cui, X.; Blair, N.E.; Burdige, D.J.; Eglinton, T.I.; Galy, V. Centers of organic carbon burial and oxidation at the land-ocean interface. Org. Geochem. 2018, 115, 138–155. [Google Scholar] [CrossRef]
- Blair, N.E.; Aller, R.C. The Fate of Terrestrial Organic Carbon in the Marine Environment. Annu. Rev. Mar. Sci. 2012, 4, 401–423. [Google Scholar] [CrossRef]
- Hemingway, J.D.; Rothman, D.H.; Grant, K.E.; Rosengrad, S.Z.; Eglinton, T.I.; Derry, L.A.; Galy, V.V. Mineral Protection regulates long-term preservation of natural organic carbon. Nature 2019, 570, 228–231. [Google Scholar] [CrossRef]
- Pszonka, J.; Žecová, K.; Wendorff, M. Oligocene turbidite fans of the Dukla Basin: New age data from the calcareous nannofossils and paleoenvironmental conditions (Cergowa beds, Polish–Slovakian borderland). Geol. Carpathica 2019, 70, 311–324. [Google Scholar] [CrossRef]
- Bouchez, J.; Beyssac, O.; Galy, V.; Gaillardet, J.; France-Lanord, C.; Maurice, L.; Moreira-Turcq, P. Oxidation of petrogenic organic carbon in the Amazon floodplain as a source of atmospheric CO2. Geology 2010, 38, 255–258. [Google Scholar] [CrossRef]
- Wei, B.; Mollenhauer, G.; Kusch, S.; Hefter, J.; Grotheer, H.; Schefuß, E.; Geibert, W.; Ransby, D.; Jia, G. Anthropogenic Perturbations Change the Quality and Quantity of Terrestrial Carbon Flux to the Coastal Ocean. J. Geophys. Res.-Biogeosci. 2023, 128, e2023JG007482. [Google Scholar] [CrossRef]
- Maavara, T.; Chen, Q.; Van Meter, K.; Brown, L.E.; Zhang, J.; Ni, J.; Zarfl, C. River dam impacts on biogeochemical cycling. Nat. Rev. Earth Environ. 2020, 1, 103–116. [Google Scholar] [CrossRef]
- Valiela, I.; Bartholomew, M.; Giblin, A.; Tucker, J.; Harris, C.; Martinetto, P.; Otter, M.; Camilli, L.; Stone, T. Watershed Deforestation and Down-Estuary Transformations Alter Sources, Transport, and Export of Suspended Particles in Panamanian Mangrove Estuaries. Ecosystems 2014, 17, 96–111. [Google Scholar] [CrossRef]
- Amoakwah, E.; Lucas, S.T.; Didenko, N.A.; Rahman, M.A.; Islam, K.R. Impact of deforestation and temporal land-use change on soil organic carbon storage, quality, and lability. PLoS ONE 2022, 17, e0263205. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, C.; Wang, Y.; Jia, G.; Wang, Y.; Zhu, C.; Yu, Q.; Zou, X. Anthropogenic perturbations to the fate of terrestrial organic matter in a river-dominated marginal sea. Geochim. Cosmochim. Acta 2022, 333, 242–262. [Google Scholar] [CrossRef]
- Milliman, J.; Mie-e, R. Rivér Flux to the Sea: Impact of Human Intervention on River Systems and Adjacent Coastal Areas. In Climate Change Impact on Coastal Habitation, 1st ed.; CRC Press: Boca Raton, FL, USA, 1995; pp. 57–83. [Google Scholar]
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2015, 113, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Jennerjahn, T.C.; Gilman, E.; Krauss, K.W.; Lacerda, L.D.; Nordhaus, I.; Wolanski, E. Mangrove Ecosystems under Climate Change. In Mangrove Ecosystems: A Global Biogeographic Perspective; Rivera-Monroy, V.H., Lee, S.Y., Kristensen, E., Twilley, R.R., Eds.; Springer: Cham, Switzerland, 2017; pp. 211–244. [Google Scholar]
- Estoque, R.C.; Myint, S.W.; Wang, C.; Ishtiaque, A.; Aung, T.T.; Emerton, L.; Ooba, M.; Hijioka, Y.; Mon, M.S.; Wang, Z.; et al. Assessing environmental impacts and change in Myanmar’s mangrove ecosystem service value due to deforestation (2000–2014). Glob. Change Biol. 2018, 24, 5391–5410. [Google Scholar] [CrossRef] [PubMed]
- Torgersen, T.; Chivas, A.R. Terrestrial organic carbon in marine sediment: A preliminary balance for a mangrove environment derived from 13C. Chem. Geol. Isot. Geosci. 1985, 52, 379–390. [Google Scholar] [CrossRef]
- Jennerjahn, T.C.; Ittekkot, V. Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Sci. Nat. 2002, 89, 23–30. [Google Scholar] [CrossRef]
- Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 2008, 89, 201–219. [Google Scholar] [CrossRef]
- Alongi, D.M. Carbon sequestration in mangrove forests. Carbon Manag. 2012, 3, 313–322. [Google Scholar] [CrossRef]
- Alongi, D.M. Carbon Cycling and Storage in Mangrove Forests. Annu. Rev. Mar. Sci. 2014, 6, 195–219. [Google Scholar] [CrossRef]
- Arellano, A.R.; Bianchi, T.S.; Osburn, C.L.; D’Sa, E.J.; Ward, N.D.; Oviedo-Vargas, D.; Joshi, I.D.; Ko, D.S.; Shields, M.R.; Kurian, G.; et al. Mechanisms of Organic Matter Export in Estuaries with Contrasting Carbon Sources. J. Geophys. Res.-Biogeosci. 2019, 124, 3168–3188. [Google Scholar] [CrossRef]
- Webb, E.L.; Jachowski, N.R.A.; Phelps, J.; Friess, D.A.; Than, M.M.; Ziegler, A.D. Deforestation in the Ayeyarwady Delta and the conservation implications of an internationally-engaged Myanmar. Glob. Environ. Change 2014, 24, 321–333. [Google Scholar] [CrossRef]
- Atwood, T.B.; Connolly, R.M.; Almahasheer, H.; Carnell, P.E.; Duarte, C.M.; Ewers Lewis, C.J.; Irigoien, X.; Kelleway, J.J.; Lavery, P.S.; Macreadie, P.I.; et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Change 2017, 7, 523–528. [Google Scholar] [CrossRef]
- Gandhi, S.; Jones, T. Identifying Mangrove Deforestation Hotspots in South Asia, Southeast Asia and Asia-Pacific. Remote Sens. 2019, 11, 728. [Google Scholar] [CrossRef]
- Richards, D.R.; Thompson, B.S.; Wijedasa, L. Quantifying net loss of global mangrove carbon stocks from 20 years of land cover change. Nat. Commun. 2020, 11, 4260. [Google Scholar] [CrossRef] [PubMed]
- Alongi, D.M. Lateral Export and Sources of Subsurface Dissolved Carbon and Alkalinity in Mangroves: Revising the Blue Carbon Budget. J. Mar. Sci. Eng. 2022, 10, 1916. [Google Scholar] [CrossRef]
- Blair, N.E.; Leithold, E.L.; Aller, R.C. From bedrock to burial: The evolution of particulate organic carbon across coupled watershed-continental margin systems. Mar. Chem. 2004, 92, 141–156. [Google Scholar] [CrossRef]
- Baronas, J.J.; Stevenson, E.I.; Hackney, C.R.; Darby, S.E.; Bickle, M.J.; Hilton, R.G.; Larkin, C.S.; Parsons, D.R.; Myo Khaing, A.; Tipper, E.T. Integrating Suspended Sediment Flux in Large Alluvial River Channels: Application of a Synoptic Rouse-Based Model to the Irrawaddy and Salween Rivers. J. Geophys. Res. Earth Surf. 2020, 125, e2020JF005554. [Google Scholar] [CrossRef]
- Kuehl, S.A.; Williams, J.; Liu, J.P.; Harris, C.; Aung, D.W.; Tarpley, D.; Goodwyn, M.; Aye, Y.Y. Sediment dispersal and accumulation off the Ayeyarwady delta—Tectonic and oceanographic controls. Mar. Geol. 2019, 417, 106000. [Google Scholar] [CrossRef]
- Liu, J.P.; Kuehl, S.A.; Pierce, A.C.; Williams, J.; Blair, N.E.; Harris, C.K.; Aung, D.W.; Aye, Y.Y. Fate of Ayeyarwady and Thanlwin Rivers Sediments in the Andaman Sea and Bay of Bengal. Mar. Geol. 2020, 423, 106137. [Google Scholar] [CrossRef]
- Flynn, E.R.; Kuehl, S.A.; Harris, C.K.; Fair, M.J. Sediment and terrestrial organic carbon budgets for the offshore Ayeyarwady Delta, Myanmar: Establishing a baseline for future change. Mar. Geol. 2022, 447, 106782. [Google Scholar] [CrossRef]
- Harris, C.K.; Wacht, J.T.; Fair, M.J.; Côté, J.M. ADCP Observations of Currents and Suspended Sediment in the Macrotidal Gulf of Martaban, Myanmar. Front. Earth Sci. 2022, 10, 820326. [Google Scholar] [CrossRef]
- Damodararao, K.; Singh, S.K.; Rai, V.K.; Ramaswamy, V.; Rao, P.S. Lithology, Monsoon and Sea-Surface Current Control on Provenance, Dispersal and Deposition of Sediments over the Andaman Continental Shelf. Front. Mar. Sci. 2016, 3, 118. [Google Scholar] [CrossRef]
- IOC; IHO; BODC. “Centenary Edition of the GEBCO Digital Atlas”, Published on CDROM on Behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as Part of the General Bathymetric Chart of the Oceans; British Oceanographic Data Centre: Liverpool, UK, 2023. [Google Scholar]
- Glover, H.E.; Ogston, A.S.; Fricke, A.T.; Nittrouer, C.A.; Aung, C.; Naing, T.; Kyu Kyu, K.; Htike, H. Connecting Sediment Retention to Distributary-Channel Hydrodynamics and Sediment Dynamics in a Tide-dominated Delta: The Ayeyarwady Delta, Myanmar. J. Geophys. Res. Earth Surf. 2021, 126, e2020JF005882. [Google Scholar] [CrossRef]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef]
- Anthony, E.J.; Besset, M.; Dussouillez, P.; Goichot, M.; Loisel, H. Overview of the Monsoon-influenced Ayeyarwady River delta, and delta shoreline mobility in response to changing fluvial sediment supply. Mar. Geol. 2019, 417, 106038. [Google Scholar] [CrossRef]
- Rodolfo, K.S. Sediments of the Andaman Basin, northeastern Indian Ocean. Mar. Geol. 1969, 7, 371–402. [Google Scholar] [CrossRef]
- Fair, M. Sediment Transport and Trapping on the Ayeyarwady-Martaban Continental Shelf. Master’s Thesis, Virginia Institute of Marine Science, Gloucester Point, VA, USA, 2021. [Google Scholar]
- Ramaswamy, V.; Rao, P.S.; Rao, K.H.; Thwin, S.; Rao, N.S.; Raiker, V. Tidal influence on suspended sediment distribution and dispersal in the northern Andaman Sea and Gulf of Martaban. Mar. Geol. 2004, 208, 33–42. [Google Scholar] [CrossRef]
- Bender, F.; Bannert, D.; Bannert, D.N. Geology of Burma; Gebr. Borntraeger: Berlin, Germany, 1983. [Google Scholar]
- Stamp, L.D. The Irrawaddy River. Geogr. J. 1940, 95, 329–352. [Google Scholar] [CrossRef]
- Bertrand, G.; Rangin, C. Tectonics of the western margin of the Shan plateau (central Myanmar): Implication for the India–Indochina oblique convergence since the Oligocene. J. Asian Earth Sci. 2003, 21, 1139–1157. [Google Scholar] [CrossRef]
- Mitchell, A.H.G.; Htay, M.T.; Htun, K.M.; Win, M.N.; Oo, T.; Hlaing, T. Rock relationships in the Mogok metamorphic belt, Tatkon to Mandalay, central Myanmar. J. Asian Earth Sci. 2007, 29, 891–910. [Google Scholar] [CrossRef]
- Chapman, H.; Bickle, M.; Thaw, S.H.; Thiam, H.N. Chemical fluxes from time series sampling of the Irrawaddy and Salween Rivers, Myanmar. Chem. Geol. 2015, 401, 15–27. [Google Scholar] [CrossRef]
- Garzanti, E.; Wang, J.-G.; Vezzoli, G.; Limonta, M. Tracing provenance and sediment fluxes in the Irrawaddy River basin (Myanmar). Chem. Geol. 2016, 440, 73–90. [Google Scholar] [CrossRef]
- Hossain, H.M.Z.; Kawahata, H.; Roser, B.P.; Sampei, Y.; Manaka, T.; Otani, S. Geochemical characteristics of modern river sediments in Myanmar and Thailand: Implications for provenance and weathering. Geochemistry 2017, 77, 443–458. [Google Scholar] [CrossRef]
- Giosan, L.; Naing, T.; Min Tun, M.; Clift, P.D.; Filip, F.; Constantinescu, S.; Khonde, N.; Blusztajn, J.; Buylaert, J.P.; Stevens, T.; et al. On the Holocene evolution of the Ayeyawady megadelta. Earth Surf. Dyn. 2018, 6, 451–466. [Google Scholar] [CrossRef]
- Ketelsen, T.; Taylor, L.; Vinh, M.K.; Hunter, R.; Johnston, R.; Liu, S.; Tint, K.; Gyi, K.M.M.; Charles, M. State of Knowledge: River Health in the Ayeyarwady; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2017. [Google Scholar]
- Vogel, A.; Seeger, K.; Brill, D.; Brückner, H.; Soe, K.K.; Oo, N.W.; Aung, N.; Myint, Z.N.; Kraas, F. Identifying Land-Use Related Potential Disaster Risk Drivers in the Ayeyarwady Delta (Myanmar) during the Last 50 Years (1974–2021) Using a Hybrid Ensemble Learning Model. Remote Sens. 2022, 14, 3568. [Google Scholar] [CrossRef]
- Gruel, C.R.; Latrubesse, E.M. A Monitoring System of Sand Mining in Large Rivers and Its Application to the Ayeyarwady (Irrawaddy) River, Myanmar. Water 2021, 13, 2331. [Google Scholar] [CrossRef]
- De Alban, J.D.T.; Jamaludin, J.; Wong De Wen, D.; Than, M.M.; Webb, E.L. Improved estimates of mangrove cover and change reveal catastrophic deforestation in Myanmar. Environ. Res. Lett. 2020, 15, 034034. [Google Scholar] [CrossRef]
- Aye, W.N.; Tong, X.; Tun, A.W. Species Diversity, Biomass and Carbon Stock Assessment of Kanhlyashay Natural Mangrove Forest. Forests 2022, 13, 1013. [Google Scholar] [CrossRef]
- Hennig, T. Damming the transnational Ayeyarwady basin. Hydropower and the water-energy nexus. Renew. Sustain. Energy Rev. 2016, 65, 1232–1246. [Google Scholar] [CrossRef]
- Searle, M.P.; Windley, B.F.; Coward, M.P.; Cooper, D.J.W.; Rex, A.J.; Rex, D.; Tingdong, L.; Xuchang, X.; Jan, M.Q.; Thakur, V.C.; et al. The closing of Tethys and the tectonics of the Himalaya. Geol. Sci. Am. Bull. 1987, 98, 678–701. [Google Scholar] [CrossRef]
- Ramaswamy, V.; Rao, P.S. The Myanmar Continental Shelf; The Geological Society of London: London, UK, 2014. [Google Scholar]
- Awasthi, N.; Ray, J.S.; Singh, A.K.; Band, S.T.; Rai, V.K. Provenance of the Late Quaternary sediments in the Andaman Sea: Implications for monsoon variability and ocean circulation. Geochem. Geophys. Geosyst. 2014, 15, 3890–3906. [Google Scholar] [CrossRef]
- Robinson, R.A.J.; Bird, M.I.; Oo, N.W.; Hoey, T.B.; Aye, M.M.; Higgitt, D.L.; Lu, X.X.; Swe, A.; Tun, T.; Win, S.L. The Irrawaddy River Sediment Flux to the Indian Ocean: The Original Nineteenth-Century Data Revisited. J. Geol. 2007, 115, 629–640. [Google Scholar] [CrossRef]
- Johnston, R.; McCartney, M.; Liu, S.; Ketelsen, T.; Taylor, L.; Vinh, M.K.; Gyi, M.K.K.; Aung, T.; Gyi, K.M.M. State of Knowledge: River Health in the Salween; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2017. [Google Scholar]
- Fung, Z.; Lamb, V. Dams, Diversions, and Development: Slow Resistance and Authoritarian Rule in the Salween River Basin. Antipode 2023, 55, 1662–1685. [Google Scholar] [CrossRef]
- Gardiner, N.J.; Robb, L.J.; Searle, M.P. The metallogenic provinces of Myanmar. Appl. Earth Sci. 2014, 123, 25–38. [Google Scholar] [CrossRef]
- Khin, K.; Sakai, T.; Zaw, K. Arakan Coastal Ranges in western Myanmar, geology and provenance of Neogene siliciclastic sequences: Implications for the tectonic evolution of the Himalaya–Bengal System. In Geological Society, London, Memoirs; Lyell Collection: London, UK, 2017; Volume 48, pp. 81–116. [Google Scholar]
- Hedley, P.J.; Bird, M.I.; Robinson, R.A.J. Evolution of the Irrawaddy delta region since 1850: Evolution of the Irrawaddy delta region since 1850. Geogr. J. 2009, 176, 138–149. [Google Scholar] [CrossRef]
- Rao, P.S.; Ramaswamy, V.; Thwin, S. Sediment texture, distribution and transport on the Ayeyarwady continental shelf, Andaman Sea. Mar. Geol. 2005, 216, 239–247. [Google Scholar] [CrossRef]
- Colin, C.; Turpin, L.; Bertaux, J.; Desprairies, A.; Kissel, C. Erosional history of the Himalayan and Burman ranges during the last two glacial–interglacial cycles. Earth Planet. Sci. Lett. 1999, 171, 647–660. [Google Scholar] [CrossRef]
- Licht, A.; France-Lanord, C.; Reisberg, L.; Fontaine, C.; Soe, A.N.; Jaeger, J.J. A palaeo Tibet–Myanmar connection? Reconstructing the Late Eocene drainage system of central Myanmar using a multi-proxy approach. J. Geol. Soc. 2013, 170, 929–939. [Google Scholar] [CrossRef]
- Sommerfield, C.K.; Nittrouer, C.A.; Alexander, C.R. 7Be as a tracer of flood sedimentation on the northern California continental margin. Cont. Shelf Res. 1999, 19, 335–361. [Google Scholar] [CrossRef]
- Yu, M.; Eglinton, T.I.; Haghipour, N.; Montluçon, D.B.; Wacker, L.; Wang, Z.; Jin, G.; Zhao, M. Molecular isotopic insights into hydrodynamic controls on fluvial suspended particulate organic matter transport. Geochim. Cosmochim. Acta 2019, 262, 78–91. [Google Scholar] [CrossRef]
- Fagerlund, G. Determination of specific surface by the BET method. Mater. Struct. 1973, 6, 239–245. [Google Scholar] [CrossRef]
- Keiser, L.; Soreghan, G.S.; Joo, Y.J. Effects Of Drying Techniques on Grain-Size Analyses of Fine-Grained Sediment. J. Sediment. Res. 2014, 84, 893–896. [Google Scholar] [CrossRef]
- Fontugne, M.; Duplessy, J.C. Carbon isotope ratio of marine plankton related to surface water masses. Earth Planet. Sci. Lett. 1978, 41, 365–371. [Google Scholar] [CrossRef]
- Bird, M.; Robinson, R.; Oo, N.W.; Aye, M.M.; Lu, X.; Higgitt, D.; Swe, A.; Tun, T.; Win, S.L.; Aye, K.S.; et al. A preliminary estimate of organic carbon transport by the Ayeyarwady (Irrawaddy) and Thanlwin (Salween) Rivers of Myanmar. Quat. Int. 2008, 186, 113–122. [Google Scholar] [CrossRef]
- Lamb, A.L.; Wilson, G.P.; Leng, M.J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Sci. Rev. 2006, 75, 29–57. [Google Scholar] [CrossRef]
- Gaye-Haake, B.; Lahajnar, N.; Emeis, K.C.; Unger, D.; Rixen, T.; Suthhof, A.; Ramaswamy, V.; Schulz, H.; Paropkari, A.L.; Guptha, M.V.S.; et al. Stable nitrogen isotopic ratios of sinking particles and sediments from the northern Indian Ocean. Mar. Chem. 2005, 96, 243–255. [Google Scholar] [CrossRef]
- Perdue, E.M.; Koprivnjak, J.F. Using the C/N ratio to estimate terrigenous inputs of organic matter to aquatic environments. Estuar. Coast. Shelf Sci. 2007, 73, 65–72. [Google Scholar] [CrossRef]
- Ramaswamy, V.; Gaye, B.; Shirodkar, P.; Rao, P.; Chivas, A.; Wheeler, D.; Thwin, S. Distribution and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea. Mar. Chem. 2008, 111, 137–150. [Google Scholar] [CrossRef]
- Pinti, D.L.; Hashizume, K. Early Life Record from Nitrogen Isotopes. In Earliest Life on Earth: Habitats, Environments and Methods of Detection; Golding, S.D., Glikson, M., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 183–205. [Google Scholar]
- Hossain, M.S.; Sarker, S.; Sharifuzzaman, S.M.; Chowdhury, S.R. Primary productivity connects hilsa fishery in the Bay of Bengal. Sci. Rep. 2020, 10, 5659. [Google Scholar] [CrossRef]
- Lin, B.; Liu, Z.; Eglinton, T.I.; Kandasamy, S.; Blattmann, T.M.; Haghipour, N.; Huang, K.F.; You, C.F. Island-wide variation in provenance of riverine sedimentary organic carbon: A case study from Taiwan. Earth Planet. Sci. Lett. 2020, 539, 116238. [Google Scholar] [CrossRef]
- Aller, R.C.; Blair, N.E. Carbon remineralization in the Amazon–Guianas tropical mobile mudbelt: A sedimentary incinerator. Cont. Shelf Res. 2006, 26, 2241–2259. [Google Scholar] [CrossRef]
- Yao, P.; Zhao, B.; Bianchi, T.S.; Guo, Z.; Zhao, M.; Li, D.; Pan, H.; Wang, J.; Zhang, T.; Yu, Z. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: Implications for carbon preservation and authigenic mineral formation. Cont. Shelf Res. 2014, 91, 1–11. [Google Scholar] [CrossRef]
- Kuehl, S.A.; Pacioni, T.D.; Rine, J.M. Seabed dynamics of the inner Amazon continental shelf: Temporal and spatial variability of surficial strata. Mar. Geol. 1995, 125, 283–302. [Google Scholar] [CrossRef]
- Martin, D.P.; Nittrouer, C.A.; Ogston, A.S.; Crockett, J.S. Tidal and seasonal dynamics of a muddy inner shelf environment, Gulf of Papua. J. Geophys. Res. Earth Surf. 2008, 113, F01S07. [Google Scholar] [CrossRef]
- Aller, R.C.; Blair, N.E.; Xia, Q.; Rude, P.D. Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments. Cont. Shelf Res. 1996, 16, 753–786. [Google Scholar] [CrossRef]
- Aller, R.C. Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors. Mar. Chem. 1998, 61, 143–155. [Google Scholar] [CrossRef]
- Zhao, B.; Yao, P.; Bianchi, T.S.; Arellano, A.R.; Wang, X.; Yang, J.; Su, R.; Wang, J.; Xu, Y.; Huang, X.; et al. The remineralization of sedimentary organic carbon in different sedimentary regimes of the Yellow and East China Seas. Chem. Geol. 2018, 495, 104–117. [Google Scholar] [CrossRef]
- Bao, R.; Zhao, M.; McNichol, A.; Galy, V.; McIntyre, C.; Haghipour, N.; Eglinton, T.I. Temporal constraints on lateral organic matter transport along a coastal mud belt. Org. Geochem. 2019, 128, 86–93. [Google Scholar] [CrossRef]
- Bridgestock, L.; Henderson, G.M.; Holdship, P.; Khaing, A.M.; Naing, T.T.; Myint, T.A.; Htun, W.W.; Khant, W.; Thu, W.M.; Chi, M.A.N.; et al. Dissolved trace element concentrations and fluxes in the Irrawaddy, Salween, Sittaung and Kaladan Rivers. Sci. Total Environ. 2022, 841, 156756. [Google Scholar] [CrossRef]
- Nyunt, T.; Moe, A.; Zaya, K.; Sone, S. Some critical mineral and element occurrences and potential in Myanmar. Thai Geosci. J. 2023, 4, 11–32. [Google Scholar]
- Vinayachandran, P.N.; Shetye, S.R.; Sengupta, D.; Gadgil, S. Forcing mechanisms of the Bay of Bengal circulation. Curr. Sci. India 1996, 71, 753–763. [Google Scholar]
- Hacker, P.; Firing, E.; Hummon, J.; Gordon, A.L.; Kindle, J.C. Bay of Bengal currents during the Northeast Monsoon. Geophys. Res. Lett. 1998, 25, 2769–2772. [Google Scholar] [CrossRef]
- Kim, H.T.; Kim, J.G. Heavy Metal Concentrations in the Mollusc Gastropod, Cipangopaludina chinensis malleata from Upo Wetland Reflect the Level of Heavy Metals in the Sediments. J. Ecol. Environ. 2006, 29, 453–460. [Google Scholar] [CrossRef]
- Qi, L.; Wu, Y.; Chen, S.; Wang, X. Evaluation of Abandoned Huanghe Delta as an Important Carbon Source for the Chinese Marginal Seas in Recent Decades. J. Geophys. Res.-Oceans 2021, 126, e2020JC017125. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Zhao, X.; Sun, C.; Nie, T.; Hu, Y.; Wang, C. Impacts of Climate Change and Human Perturbations on Organic Carbon Burial in the Pearl River Estuary Over the Last Century. Front. Mar. Sci. 2022, 9, 848757. [Google Scholar] [CrossRef]
- Allison, M.A.; Nittrouer, C.A.; Ogston, A.S.; Mullarney, J.C.; Nguyen, T.T. Sedimentation and Survival of the Mekong Delta: A Case Study of Decreased Sediment Supply and Accelerating Rates of Relative Sea Level Rise. Oceanography 2017, 30, 98–109. [Google Scholar] [CrossRef]
- Le, T.P.Q.; Le, N.D.; Dao, V.N.; Rochelle-Newall, E.; Nguyen, T.M.H.; Marchand, C.; Duong, T.T.; Phung, T.X.B. Change in carbon flux (1960–2015) of the Red River (Vietnam). Environ. Earth Sci. 2018, 77, 658. [Google Scholar] [CrossRef]
- Le, N.D.; Le, T.P.Q.; Phung, T.X.B.; Duong, T.T.; Didier, O. Impact of hydropower dam on total suspended sediment and total organic nitrogen fluxes of the Red River (Vietnam). Proc. Int. Assoc. Hydrol. Sci. 2020, 383, 367–374. [Google Scholar] [CrossRef]
- Li, D.; Yao, P.; Bianchi, T.S.; Zhang, T.; Zhao, B.; Pan, H.; Wang, J.; Yu, Z. Organic carbon cycling in sediments of the Changjiang Estuary and adjacent shelf: Implication for the influence of Three Gorges Dam. J. Mar. Syst. 2014, 139, 409–419. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, B.; Du, J.; Zhang, G.; Hou, L. Nutrient burial and environmental changes in the Yangtze Delta in response to recent river basin human activities. Environ. Pollut. 2019, 249, 225–235. [Google Scholar] [CrossRef]
- Lu, T.; Wang, H.; Wu, X.; Bi, N.; Hu, L.; Bianchi, T.S. Transport of particulate organic carbon in the lower Yellow River (Huanghe) as modulated by dam operation. Glob. Planet. Change 2022, 217, 103948. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flynn, E.R.; Kuehl, S.A. Investigating Human Influence on Offshore Terrestrial Organic Carbon Trends in a High-Energy Delta: The Ayeyarwady Delta, Myanmar. J. Mar. Sci. Eng. 2025, 13, 163. https://doi.org/10.3390/jmse13010163
Flynn ER, Kuehl SA. Investigating Human Influence on Offshore Terrestrial Organic Carbon Trends in a High-Energy Delta: The Ayeyarwady Delta, Myanmar. Journal of Marine Science and Engineering. 2025; 13(1):163. https://doi.org/10.3390/jmse13010163
Chicago/Turabian StyleFlynn, Evan R., and Steven A. Kuehl. 2025. "Investigating Human Influence on Offshore Terrestrial Organic Carbon Trends in a High-Energy Delta: The Ayeyarwady Delta, Myanmar" Journal of Marine Science and Engineering 13, no. 1: 163. https://doi.org/10.3390/jmse13010163
APA StyleFlynn, E. R., & Kuehl, S. A. (2025). Investigating Human Influence on Offshore Terrestrial Organic Carbon Trends in a High-Energy Delta: The Ayeyarwady Delta, Myanmar. Journal of Marine Science and Engineering, 13(1), 163. https://doi.org/10.3390/jmse13010163