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Abstract: This paper examines the control challenges faced by underactuated Autonomous Un-
derwater Vehicles (AUVs) under ocean current disturbances. It proposes a Backstepping Integral
Sliding Mode Control (BISMC) strategy to enhance their adaptability and robustness. The BISMC
strategy integrates the system decomposition capability of the backstepping control method with
the rapid response and robustness advantages of the Sliding Mode Control method, enabling the
design of a heading controller and a double closed-loop depth controller. By introducing an integral
component, the strategy eliminates steady-state errors caused by ocean currents, accelerating system
convergence and improving accuracy. Furthermore, a saturation function is employed to mitigate
output chattering issues. Simulation results demonstrate that the BISMC controller significantly
enhances the control precision and anti-disturbance capabilities of AUVs under low-frequency ocean
current disturbances, showcasing exceptional adaptive and self-disturbance rejection performance.

Keywords: autonomous underwater vehicles; ocean current disturbances; motion control; sliding
mode control; steady-state error

1. Introduction

Since the dawn of the 21st century, the ocean has emerged as a new frontier for global
exploration and development. With advances in marine scientific research, Autonomous
Underwater Vehicles (AUVs) have become pivotal in the exploration, development, and
study of marine resources, thanks to their remarkable capabilities in autonomous sensing,
decision making, and control [1,2]. The degree of autonomy in AUVs is a key metric for
assessing their technological progress, while the optimization of motion control systems
forms the foundation for achieving high autonomy. However, in the complex and dynamic
underwater environment, AUVs face numerous challenges, including strong nonlinear
dynamics, internal coupling effects, difficult-to-model dynamic parameters, and unpre-
dictable external disturbances, particularly from random ocean currents. These currents
significantly impact heading stability and speed control, increasing the complexity of con-
trol strategies. Given the critical importance of energy efficiency for long-distance and
prolonged AUV operations, the slender rotating body structure has become the standard
in underactuated AUV design due to its efficiency. Nonetheless, this structure’s design—
having fewer control degrees of freedom than motion degrees of freedom—places higher
demands on control strategy formulation. In real marine environments, disturbances from
ocean currents and waves are both common and variable [3,4]. Failing to address these dis-
turbances effectively can severely undermine control performance or even lead to instability
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in AUV operations. Therefore, exploring robust control strategies with effective disturbance
rejection capabilities is crucial for the safe and efficient operation of underactuated AUVs
in complex ocean current environments.

Extensive research has been conducted on adaptive and robust control strategies
for underactuated AUVs in challenging marine environments, with the development of
accurate disturbance models serving as a prerequisite for efficient robust controller de-
sign. For instance, Lu Liu et al. developed an output feedback path-following controller
that combines an extended state observer with a projection neural network, effectively
addressing internal uncertainties and external disturbances [5]. Shen et al. proposed a
novel model predictive control framework (LMPC) based on Lyapunov stability, which en-
hances trajectory tracking accuracy through online optimization techniques and introduces
a disturbance observer to estimate comprehensive disturbances [6]. Kim et al. integrated a
sliding mode controller with a conventional time-delay controller to improve the position
control performance of AUVs in disturbed environments [7]. Notably, much existing re-
search simplifies ocean current disturbances, often treating them as constant or periodically
varying disturbance forces. While this simplification captures some influence of ocean
currents, it fails to accurately represent their time-varying and unpredictable nature in real
environments. To design motion controllers for AUVs that can adapt flexibly to various
ocean current conditions, this paper delves into the multidimensional impacts of ocean
currents on underactuated AUVs, providing robust technical support to enhance AUV
operational efficiency in complex marine settings.

Furthermore, numerous advanced control algorithms have been widely applied in
underwater vehicles, including Fuzzy control [8], PID control [9,10], Linear Quadratic Reg-
ulator (LQR) [11,12], Backstepping Control (BC) [13], Sliding Mode Control (SMC), Model
Predictive Control (MPC) [6,14,15], Adaptive Control [16], and Robust Control [17]. Among
these, SMC demonstrates significant potential in addressing the challenges discussed in
this paper, owing to its strong anti-disturbance capabilities and adaptability to model uncer-
tainties. However, traditional SMC faces issues of control overshoot and output chattering,
necessitating ongoing optimization and refinement. Significant breakthroughs have been
achieved in the SMC field. Hangil Joe et al. proposed a second-order SMC for AUVs subject
to modeling errors and unknown environmental disturbances, effectively suppressing chat-
tering and improving control accuracy [18]. Konar et al. introduced fractional-order fuzzy
SMC, offering a novel solution for depth control in underwater robots, with simulations
confirming its excellent transient response and control performance [19]. Haomiao Yu et al.
developed a Proportional-Integral-Derivative Sliding Mode Control (PIDSMC) method,
enhancing the anti-disturbance capability of SMC and strengthening motion control robust-
ness [20]. Nhut Thanh, Xiaoqiang Dai, Jian Xu, and Jianguo Wu combined the advantages
of BC and SMC, proposing backstepping sliding mode control strategies that significantly
improve error convergence speed and system stability under uncertainties and unknown
disturbances [20–24]. Although convergence speed has greatly improved, instances remain
where tracking errors do not converge to zero within a finite time. To address this issue, Lei
Qiao et al. proposed two innovative methods: Adaptive Integral Terminal Sliding Mode
Control (AITSMC) and Fast Integral Terminal Sliding Mode Control (AFITSMC), which not
only accelerate convergence speed but also achieve zero-error convergence within a finite
time frame, enhancing the system’s resistance to dynamic uncertainties and time-varying
external disturbances [25]. Van et al. designed a controller that combines adaptive neural
networks with integral sliding mode, using switching control terms to optimize error
approximation while integral terms eliminate steady-state errors, further enhancing system
robustness [26].

In summary, recognizing the limitations of existing ocean current disturbance models,
which often simplify currents to total disturbance forces, this paper innovatively employs a
velocity vector synthesis method, transforming absolute velocity into a relative velocity
that incorporates current effects. This approach establishes a more realistic kinematic
and dynamic model for AUVs in marine environments. Regarding control strategy, this
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paper proposes Backstepping Integral Sliding Mode Control (BISMC), integrating the
system decomposition benefits of BC with the rapid response and robustness of SMC. By
incorporating Dynamic Surface Control (DSC) technology, the “explosion of derivatives”
phenomenon is effectively mitigated, optimizing the controller’s transient performance.
Additionally, the inclusion of integral terms in the SMC component accelerates convergence
and eliminates steady-state errors, enhancing overall robustness. The use of saturation
functions in place of traditional switching functions also effectively suppresses control
output chattering. To improve depth control accuracy, this paper presents a dual-loop
control structure, employing integral sliding mode as the outer loop and BISMC as the
inner loop, thereby achieving enhanced control precision.

The remainder of this paper is structured as follows: Section 2 delves into the motion
model, rudder force model, and ocean current disturbance model for underactuated AUVs,
laying the essential groundwork for the design of efficient control algorithms. Section 3
elaborates on the BISMC method and the design of heading and depth controllers based on
it. Additionally, a Lyapunov stability analysis will be conducted to theoretically demon-
strate the effectiveness of the proposed control strategy for AUV motion control in complex
marine environments. Section 4 will validate the effectiveness and superiority of the pro-
posed method through numerical simulations and comparative experiments. By analyzing
experimental results under various operational conditions, the significant advantages of
BISMC in enhancing AUV motion control performance will be fully demonstrated. Finally,
Section 5 provides a comprehensive summary of this research.

2. Preliminaries and AUV Modeling
2.1. Model Analysis and Simplification

To model the motion and attitude of the AUV while it is underwater, it is common
to establish a body-fixed coordinate system, denoted as {B}, and an inertial coordinate
system, denoted as {I} (as shown in Figure 1). Euler angles can be utilized to define the
angular relationships between the inertial coordinate system and the body-fixed coordinate
system of the AUV. These angles also facilitate the description of the AUV’s position and
orientation in three-dimensional space. Specifically, the coordinates (x, y, z) of the AUV’s
body-fixed coordinate system {B} within the inertial coordinate system {I} are determined
by the relative attitude angles (ϕ, θ, ψ) between the two coordinate systems.
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Figure 1. The AUV reference frame.

The motion model serves as the foundation for underwater robot motion control,
ensuring that the controller maintains robust performance even in the face of various
uncertainties present in the underwater environment. If the constructed AUV motion
model is overly complex, it can complicate the control system, increase the difficulty
of controller design, and potentially lead to control system failure. Conversely, if the
motion model is too simplistic, it can significantly diminish the performance of the control
system and hinder its ability to accurately represent the true motion patterns of AUV [27].
Therefore, it is essential to optimize the spatial motion model of underactuated AUVs
effectively. Based on this premise, the following assumptions are made:
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Assumption 1. The origin of the AUV’s body-fixed coordinate system is established at its center of
gravity to facilitate improved analysis and modeling.

Assumption 2. The object of study is an underactuated AUV with a cylindrical body that
possesses two planes of symmetry: the left–right symmetric QBxBzB-plane and the up–down
symmetric QBxByB-plane.

Assumption 3. The AUV is designed with significant static roll stability, such that roll amplitudes
in the marine environment are small. Consequently, the roll motion is disregarded in this paper [28].

Based on the above assumptions, referring to relevant papers [29], and using the
Newton–Euler equations for rigid bodies and the Lagrangian formulation, we derive the
model for a five-degree-of-freedom underactuated AUV:{ .

η = J(η)v
M

.
v + C(v)v + D(v)v + g(η) = d + τ

(1)

In Equation (1), η =
[
x y z θ ψ]T represents the position and attitude vector

of the AUVs, v =
[
u v w q r]T denotes the velocity vector of the AUV in the body-

fixed coordinate system, and J(η) ∈ R5×5 is the transformation matrix that converts linear
and angular velocities from the body-fixed coordinate system to the inertial coordinate
system. M ∈ R5×5 is the inertia matrix, which includes the rigid body inertia matrix and
added mass. C(v) ∈ R5×5 represents the matrix containing the centripetal and Coriolis
forces due to the mass matrix and added mass. D(v) ∈ R5×5 is the damping force and
torque matrix due to hydrodynamic effects, and g(η) ∈ R5×1 is the restoring force and
torque vector. d =

[
dx dy dz dθ dψ

]T is the environmental disturbance force matrix,

and τ =
[
τx 0 0 τq τr

]T is the control force matrix, where τx represents the thrust
produced by the propeller, τq represents the pitch moment produced by the horizontal
rudder angle, and τr represents the yaw moment produced by the vertical rudder angle.

2.2. Rudder Force Model

The mathematical model that describes the dynamics of the vertical and horizontal
rudders of the underactuated AUV is as follows (The rudder blade structure and rudder
mechanism model are shown in Figure 2):{

δr = τr/(2xNCLNρAV2)
δq = τq/(2xMCLMρAV2)

(2)

.
δ = Krud

δd − δ

Trud
(3)

Here, xN and xM are the distances from the rudders to the center of buoyancy; CLN and
CLM are the lift coefficients of the rudder blades; ρ is the density of seawater; A is the area
of the rudder blade; V is the resultant velocity of the AUV, and V =

√
u2 + v2 + w2; Krud is

the rudder servo control gain; Trud is the time constant of the servo; δd is the commanded
rudder angle; and δr and δq are the measured rudder angles.
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2.3. Ocean Current Disturbance Model

This paper employs the velocity vector synthesis method to superimpose the dis-
turbances caused by ocean currents on the AUV, converting the absolute velocity into a
relative velocity that takes into account the current velocity during the trajectory calculation
process. Our approach applies real-time uncertain disturbances to the AUV to simulate
the uncertainties of the real marine environment. Let the velocity of the ocean current in
the inertial coordinate system be UC, the angle between the projection of the velocity on
the OI xIyI horizontal plane and the OI xI-axis be the horizontal flow direction angle ψc,
and the angle between the projection of the velocity on the OI xIzI vertical plane and the
OI xI-axis be the vertical flow direction angle θc. Then, the velocity of the ocean current in
the inertial coordinate system uc, vc and wc is expressed as follows:

uc = UC cos(θc) cos(ψc)
vc = UC cos(θc) sin(ψc)
wc = UC sin(θc)

(4)

Through the transformation matrix that converts from the inertial coordinate system
to the body-fixed coordinate system, the velocity of the AUV affected by the ocean currents
uc, vc and wc can be determined.

ur = u − (uc cos(ψ) cos(θ) + vc sin(ψ) cos(θ)− wc sin(θ))
vr = v − (−uc sin(ψ) + vc cos(ψ))
wr = w − (uc cos(ψ) sin(θ) + vc sin(ψ) sin(θ) + wc cos(θ)

(5)

By substituting Equation (5) into Equation (1), the motion model of the AUV under
ocean current disturbance is obtained as:

Kinematic equation:

.
x = ur cos(ψ) cos(θ)− vr sin(ψ) + wr cos(ψ) sin(θ) + uc.
y = ur sin(ψ) cos(θ)− vr cos(ψ) + wr sin(ψ) sin(θ) + vc.
z = −ur sin(θ) + wr cos(θ) + wc.
θ = q
.
ψ = r/ cos(θ)

(6)

Dynamic equation:
(m − X .

u)
.
u = Xuuur|ur|+ Xwqwrq + Xvrvrr + Xqqqq + Xrrr|r|+ m(vrr − wrq) + τx

(m − Y .
v)

.
v = Yrrr|r|+ Yvvvr|vr|+ Yuvurvr + Yururr − murr

(m − Z .
w)

.
w = Zuqurq + Zwwwr|wr|+ Zqqq|q|+ Zuwurwr + murq

(Izz − N.
r)

.
r = Nvvvr|vr|+ Nuvurvr + Nururr + Nrrr|r|+ τr

(Iyy − M .
q)

.
q = Muwurwr + Mqqq|q|+ Mwwwr|wr|+ Muqurq + ZBB sin(θ) + τq

(7)
Here, X∗∗, Y∗∗, Z∗∗, N∗∗ and M∗∗ represent the various hydrodynamic coefficients of

the AUV, ZB is the distance between the center of buoyancy and the center of gravity, B is
the magnitude of the buoyant force, and Izz and Iyy are the moments of inertia about the Z
and Y axes.

In order to meet the convergence conditions for control in the next section, several
reasonable assumptions and lemmas are presented as follows:

Assumption 4. The direction angles ψc, θc of the ocean current change slowly, and sampling is
conducted randomly within the range [−π, π].

Assumption 5. The velocity UC of the ocean current has an upper bound, satisfying |UC| ≤
UC,

∣∣∣ .
UC

∣∣∣ ≤ .
UC, where UC,

.
UC are positive constants.
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Remark 1. Due to the continuously changing marine environment and limited energy, the
disturbances acting on the AUV can be considered as unknown time-varying but bounded signals
with finite rates of change. Therefore, Assumptions 4 and 5 are reasonable.

Remark 2. As shown in the dynamics model (7), the AUV discussed in this paper has three linear
degrees of freedom. However, since there are no actuators in the sway direction, the number of
independent control inputs is two. Therefore, the AUV is a second-order underactuated system.

Remark 3. For marine robots, there is inherent actuator saturation [4]. Therefore, the propeller
thrust, rudder angle of the vertical fin, and rudder angle of the directional fin for the AUV discussed
here should be bounded, i.e., |τx|≤ τx max , |τr|≤ τrmax and

∣∣τq
∣∣≤ τqmax , where τx max, τrmax and

τqmax are positive constants.

3. Backstepping Integral Sliding Mode Controller Design

To achieve effective motion control, the proposed BISMC controller exhibits strong
motion control performance in the presence of ocean currents along with precise and robust
control to address high coupling nonlinearity and model uncertainties. The design of
this controller integrates backstepping control and sliding mode control methodologies,
with enhancements made to improve performance. The control principle block diagram is
depicted in Figure 3.
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3.1. Heading Controller Design

To simplify the complexity of the controller design, the model for heading control is
presented as follows:{ .

ψ = r
(Izz − N.

r)
.
r = Nvvv|v|+ Nuvuv + Nurur + Nrrr|r|+ τr

(8)

Stabilize the heading error ψe: {
ψe = ψ − ψd.
ψe = r −

.
ψd

(9)

Define the Lyapunov function:

V1 =
1
2

ψ2
e (10)
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Then, .
V1 = ψe

.
ψe = ψe(r −

.
ψd) (11)

Define the heading angular velocity error re:

re = r − rd (12)

Then, .
V1 = ψe(re + rd −

.
ψd) (13)

Define
a1 = −k1ψe +

.
ψd (14)

where k1 is a strictly positive constant.
In traditional backstepping design, if rd = −k1ψe +

.
ψd is chosen, it may lead to a

“differentiation explosion” when computing
.
rd. By adopting the dynamic surface control

method and using a first-order integral filter to calculate the derivative of the virtual control,
this drawback can be overcome. Let rd be the output of the low-pass filter 1

τs+1 for a1(as
shown in Figure 4):
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And a1 satisfies: {
τ

.
rd + rd = a1

rd(0) = a1(0)
(15)

Here, τ is a strictly positive constant, and the filtering error generated is e1 = rd − a1.
The heading control model is classified as a second-order system. The first layer

stabilizes the heading angle using backstepping dynamic surface control, while the second
layer stabilizes the heading angular velocity through sliding mode variable structure
control. To eliminate the steady-state error associated with sliding mode control, an integral
of the tracking error is incorporated into the sliding mode surface, resulting in the integral
sliding mode surface defined as follows:{

sψ = re + c1
∫

re.
sψ =

.
re + c1re

(16)

Here, c1 is a strictly positive constant.
Define the Lyapunov function:

V2 = V1 +
1
2

s2
ψ +

1
2

e1 (17)

Then,
.

V2 =
.

V1 + sψ s ˙ψ + e1
.
e1

= ψe(re + e1 + a1 −
.
ψd)

+sψ[(Nvvvr|vr|+ Nuvurvr + Nururr + Nrrr|r|+ τr)/(Izz − N.
r)−

.
a1 + c1re] + e1(− e1

τ + C1)

(18)
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where C1 = c1
.
ψe −

..
ψd = c1(re + e1 − c1ψe)−

..
ψd.

The control law for heading control is designed as:

τr = (Izz − N.
r)[−ET − Psψ − c1re − ψe − (e1C1)/u +

.
a1

− 1
(Izz−N.

r)
(Nvvvr|vr|+ Nuvurvr + Nururr + Nrrr|r|)] (19)

T =

{ sψ

M ,
∣∣sψ

∣∣ ≤ M
sign(sψ),

∣∣sψ

∣∣ > M
(20)

Here, E, P and M are strictly positive constants.

Remark 4. According to (20), the proposed observer has a saturation function instead of a discon-
tinuous signum function. As a result, unwanted oscillatory effects can be reduced significantly.

3.2. Depth Controller Design

The model for depth control is simplified as follows:
.
z = −uθ
.
θ = q

(Iyy − M .
q)

.
q = Muwuw + Mqqq|q|+ Mwww|w|+ Muquq + ZBB sin(θ) + τq

(21)

Depth error formula: {
ze = z − zd.

ze = −uθ − .
zd

(22)

Depth control utilizes a dual-loop control strategy, with the integral sliding mode
controller functioning as the outer loop (as shown in Figure 5).
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The integral sliding mode surface is defined as follows:{
sz = ze + c1

∫
ze.

sz = −uθ − .
zd + c1ze

(23)

Select the reaching law:

.
sz = −E1sign(sz)− P1sz (24)

Obtain the desired pitch angle θd as the virtual control input:

θd = (E1T1 + P1sz + c1ze)/u (25)

T1 =

{ sz
M1

, |sz| ≤ M1

sign(sz), |sz| > M1
(26)
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Here, E1, P1 and M1 are strictly positive constants.
Backstepping integral sliding mode control serves as the outer loop. Define the pitch

error formula: {
θe = θ − θd.
θe = q −

.
θd

(27)

The subsequent derivation principle is the same as that for heading control (refer to
Equations (8)–(17)), so the specific steps are omitted.

Then, the control law for depth control is designed as:

τq = (Iyy − M .
q)[−E2T2 − P2sθ +

.
a2 − c2qe − (θeqe)/sθ

− 1
(Iyy−M .

q)
(Muwurwr + Mqqq|q|+ Mwwwr|wr|+ Muqurq + ZBB sin(θ)] (28)

T2 =

{ sθ
M2

, |sθ | ≤ M2

sign(sθ), |sθ | > M2
(29)

Here, E2, P2, M2 are strictly positive constants.

3.3. Lyapunov Stability Verification

This section analyzes the stability of the proposed heading controller algorithm, and
the same method can also be used to prove the stability of the depth control.

Theorem 1. For Equation (18), there exists a positive constant Q (Q > 0) such that V2(0) ≤ Q,
which implies that all signals in the closed-loop system are bounded and converge.

Theorem 2. Let V2 = V1 +
1
2 s2 + 1

2 e1 = Q at this point; then, C1 is bounded, denoted as D1;

thus, C2
1

D2
1
− 1 ≤ 0.

Proof. Substituting the control law Equation (18) into the equation for
.

V2, we obtain:
.

V2 = ψe(re + e1)− c1ψ2
e − k1|s| − k2s2 + e1(−

e1

τ
+ C1)

= ψe(re + e1)− c1ψ2
e − k1|s| − k2c2

2r2
e − k2c2c3re

∫
re − k2c2

3(
∫

re)
2
+ e1(−

e1

τ
+ C1)

≤ |ψe||re|+ |ψe||e1| − k2c2c3|re|
∣∣∫ re

∣∣− c1ψ2
e − k1|s| − k2c2

2r2
e − k2c2

3(
∫

re)
2 −

e2
1

τ
+ |e1C1|

≤ 1
2
(ψ2

e + r2
e ) +

1
2
(ψ2

e + e2
1)−

1
2

k2c2c3[r2
e + (

∫
re)2]− c1ψ2

e − k1|s| − k2c2
2r2

e − k2c2
3(
∫

re)
2 −

e2
1

τ
+

1
2

e2
1C2

1 +
1
2

= (1 − c1)ψ
2
e + (

1
2
− 1

2
k2c2c3)r2

e + (
1
2
+

1
2

C2
1 −

1
τ
)e2

1 − k1|s| − k2c2
2r2

e − k2c2
3(
∫

re)
2
+

1
2

(30)

There exists a positive constant h (h > 0), such that:

c1 ≥ 1 + h, k2c2c3 ≥ 1
2
+ h,

1
τ
≥ 1

2
D1 +

1
2
+ h

Then,

.
V2 ≤ −hψ2

e − hr2
e + (

1
2

C1 −
1
2

D2
1 − h)e2

1 − k1|s| − k2c2
2r2

e − k2c2
3(
∫

re)
2
+

1
2

= −2hV2 + (
1
2

C1 −
1
2

D2
1)e

2
1 − k1|s| − k2c2

2r2
e − k2c2

3(
∫

re)
2
+

1
2

≤ −2hV2 +
1
2

(31)

Since at this point V2 = Q, then Equation (31) can be rewritten as
.

V2 ≤ −2hQ + 1
2 . To

ensure that
.

V2 ≤ 0, take −2hQ + 1
2 ≤ 0; we can derive that h ≥ 1

4p .
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Equation (31) shows that when h ≥ 1
4p , if V2(0) ≤ p, then

.
V2 ≤ 0, and consequently

V2(t) ≤ p.
Furthermore, based on the above reasoning, the following convergence analysis can

be performed. According to Inequality Lemma [30], the solution to the inequality equation
.

V2 ≤ −2hV2 +
1
2 is:

V(t) ⩽ e−2h(t−t0)V(t0) +
e−2ht

2

∫ t

t0

eη1τdτ = e−2h(t−t0)V(t0) +
1

4h
(1 − e−2h(t−t0)) (32)

Then,

lim
t→∞

V(t) ⩽
1

4h
(33)

Thus, V(t) converges asymptotically, with the convergence accuracy depending on h.
Furthermore, since 1

τ ≥ 1
2 C1 +

1
2 + h, if τ → 0 is taken, then h → +∞ can be taken,

which is the reason why the low-pass filter can be designed as 1
τs+1 . □

4. Simulation Verification
4.1. Parameters of the Underactuated AUV

To verify the effectiveness and robustness of the proposed motion controller, a sim-
ulation environment was developed using MATLAB R2022b software (MathWorks, Inc.,
Natick, United States). The simulation model of the underactuated AUV is based on phys-
ical data (as shown in Table 1) from the “Sprite 200”(as shown in Figure 6) robot in the
author’s laboratory, with the controller parameters provided in Tables 2 and 3.

Table 1. AUV parameter list in the simulations.

Parameter Value Parameter Value

ρ 1000 (kg/m3) Yuv −21.01
m 11 (kg) Yur 3.834
L 1.2 (m) Z .

w −26.08
W 106.0 (N) Zww −96.22
B 107.9 (N) Zqq −41.9

lxx 0.016 (kg · m2) Zuw −21.01
lyy 0.8 (kg · m2) Zuq −3.834
lzz 0.8 (kg · m2) M .

q −2.918
ZB 0.0296 Mqq −112.4
X .

u −0.683 Mww 2.107
Xuu −1.428 Muw 1.591
Xwq −26.08 Muq −1.325
Xqq −1.279 N .

r −2.918
Xvr −26.08 Nrr −56.21
Xrr −1.279 Nvv −2.107
Y .

v −26.08 Nuv −1.591
Yvv −96.22 Nur −1.325
Yrr −0.419
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Table 2. Heading controller parameters.

BC SMC BISMC

Parameter Value Parameter Value Parameter Value

k1 2 c1 1 k1 2
k2 10 E 6 τ 0.025

P 2 c1 0.5
E 6
P 2
M 5

Table 3. Depth controller parameters.

BC SMC ISMC BISMC

Parameter Value Parameter Value Parameter Value Parameter Value

k1 1.5 c1 2 c1 1 k1 1.5
k2 6 c2 4 E1 10 τ 0.025
k3 2 E 10 P1 3 c2 0.5

P 3 M1 5 E2 10
P2 3
M2 5

This paper presents a comprehensive evaluation of BISMC through four simulation
experiments. Case 1 validates fundamental functionality under ideal conditions. Case 2
testes robustness against static disturbances, while Case 3 assesses adaptability in dynamic
environments. Case 4 poses the ultimate challenge with random disturbances, mirroring
real oceanic conditions.

Additionally, to analyze the AUV motion control performance more clearly and
quantitatively, data analysis was conducted on the heading and depth errors. Four key
performance indicators are as follows: (1) IAE (Integral of Absolute Error), expressed as
IAE =

∫ t
0 |e(t)|dt; (2) AVE (Average Value of the Absolute Errors), expressed as AVE =

(1/t)
∫ t

0 |e(t)|dt; (3) ITAE (Integrated Time Absolute Error), expressed as ITAE =
∫ t

0 t|e(t)|dt;
and (4) ASSE (Average Steady State Error), expressed as ASSE = (1/t)

∫ t
0 |e(t)|dt, where t

represents the time after the error converges and stabilizes. In consideration of the impact of
ocean current disturbances that arise after the first expected value in the course of heading
tracking, we select data subsequent to this first expected value for subsequent calculation
and analysis to ensure the accuracy of statistical data.

4.2. Simulation Model Validation

In order to ensure the accuracy, reliability, and practicality of the simulation model,
an underactuated AUV entity turning test was conducted on the Shazhou Jinhu Lake in
Zhangjiagang Chain(as shown in Figure 7). The trajectory of the AUV was exported from
the mounted Doppler sensor. During the test, the wind speed was around 1.5 m/s, and the
wind direction was westerly.
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Figure 8 presents a comparison of the turning rates between the physical model and
the simulation under different rudder angles. It is evident that the two are similar and
correspond well with each other. Based on this result, we can conclude that the simulation
model we have constructed is effective and reliable, and can be utilized for further analysis
and research.
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4.3. Case Results

The AUV follows headings of [0◦, 20◦, 40◦, 10◦] at 30 s intervals and depths of [0 m,
−10 m, −30 m, −20 m] at 50 s intervals. The initial position and velocity of the AUV are
both set at [x y z ψ θ]T = [0 0 0 0 0]T , [u v w r q]T = [0 0 0 0 0]T . The propeller speed was
set to 1200 RPM, and the longitudinal speed stabilized at 2.5 m/s after reaching equilibrium.
The disturbance of ocean currents in the simulation is introduced into the motion model
after the first expected value of AUV tracking. The settings of ocean currents in Cases 2, 3,
and 4 are as follows (The ocean current speed for Case 4 is shown in Figure 9):
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Figure 9. In Case 4, the ocean current velocity is generated by a Gaussian function.

Case 2: 
Uc = 0.3 m/s
ψc = 45◦

θc = 45◦

Case 3: 
Uc = 0.3 m/s
ψc = 10◦ sin(0.2t) + 45◦

θc = 10◦ sin(0.2t) + 45◦

Case 4: {
ψc = 10◦ sin(0.2t) + 45◦

θc = 10◦ sin(0.2t) + 45◦
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As evident from the comparative analysis in Figure 10, under the scenario set in case
1, all three controllers exhibit the capability to track the desired heading and depth, with
BISMC demonstrating faster convergence. In the scenarios set by case 2 and case 3, both the
BC and SMC controllers exhibit certain static and dynamic errors. Although SMC exhibits
smaller steady-state errors due to its lower sensitivity to external disturbances, it still cannot
fully counteract deviations caused by environmental factors such as ocean currents. In
contrast, BISMC, with its built-in integral term, is able to completely eliminate steady-state
errors in motion control, ensuring that tracking errors tend towards zero, thereby achieving
a more precise control effect.

Figures 11 and 12 clearly show that during the 50 to 80 s interval when the AUV
executes the 10 m dive command, the horizontal rudder of BISMC does not exhibit any
signs of saturation during operation. Furthermore, when the AUV is commanded to
dive to a deeper depth of 30 m (corresponding to the 100 to 130 s interval), there are
no obvious overshoot phenomena observed during the control process of BISMC. These
results effectively demonstrate the remarkable effectiveness of the double closed-loop
control design in enhancing depth control accuracy and preventing actuator oversaturation.
Additionally, the control output curve of BISMC is smoother compared to SMC, effectively
overcoming the issue of chattering.
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Figure 10. Tracking curves for (a) heading and (b) depth in Cases 1, 2, and 3: BC, SMC, and BISMC
all successfully track the desired values in Case 1, with BISMC exhibiting the fastest convergence
speed; BC and SMC exhibit static errors in Case 2 and dynamic errors in Case 3; BISMC performs the
best among the three cases.
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Figure 11. Vertical rudder output curve in Case 1. From 32–36 s, significant chattering is observed
in SMC.
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Figure 12. Horizontal rudder output curve in Case 1. Both BC and SMC exhibit oversaturation and
overshoot phenomena while tracking depth. Noticeable chattering is observed in SMC during the
intervals of 54–62 s and 102–110 s.

Table 4 further reinforces the above observations by showcasing that BISMC achieves
the lowest values for the three performance indicators of IAE, AVE, and ITAAE. Specifically,
in Case 1, for heading control, BISMC reduces the average performance metrics by 15.6%
compared to BC and 12.6% compared to SMC, while for depth control, the reductions are
5% and 1.8%, respectively. This result indicates that the integral term in BISMC effectively
mitigates internal system disturbances. In Case 2, for heading control, BISMC outperforms
BC by an average of 29.3% and SMC by 16.4%, while for depth control, the improvements
are 33.5% and 28.7%, respectively. Similarly, in Case 3, BISMC reduces the average perfor-
mance metrics for heading control by 28.9% compared to BC and 16.5% compared to SMC,
and for depth control, the reductions are 37.2% and 32.8%, respectively.

Table 4. Performance comparison in Cases 1, 2, and 3.

Performance
Metrics BC SMC BISMC BC SMC BISMC BC SMC BISMC

IAE
ψe 248.5 239.7 210 287.5 248 210 286.1 248.1 210
ze 246.5 239.2 233.9 394.8 369.6 266.1 395.3 370.8 251.7

AVE
ψe 2.07 1.998 1.75 2.395 2.067 1.75 2.384 2.068 1.75
ze 1.232 1.196 1.17 1.974 1.848 1.33 1.977 1.854 1.259

ITAE
ψe (104) 1.682 1.623 1.412 2.136 1.736 1.412 2.128 1.736 1.412
ze (104) 2.593 2.493 2.464 4.325 4.002 2.795 4.353 4.040 2.661

Figure 13 reveals the limitations of BISMC in motion control under the disturbance
of random ocean current environments. In contrast, the conventional SMC demonstrates
superior performance in heading and depth tracking, with minimal fluctuations after
error convergence. The core of this phenomenon lies in the inherent anti-disturbance
characteristics of SMC, which makes it particularly adept at handling high-frequency and
random ocean current fluctuations, in stark contrast to the low-frequency sea conditions
described in previous cases 2 and 3. However, it is noteworthy that SMC’s high-precision
tracking capability comes at the cost of high-frequency and severe vibrations in the control
rudder (as shown in Figures 14 and 15), posing a significant challenge to the rudder
actuators of Autonomous Underwater Vehicles (AUVs). This can exacerbate wear and
shorten their service life, thus limiting its practical application. Since BISMC incorporates
a saturation function mechanism in the design of its control law, it effectively eliminates
the chattering issue in control output but weakens its ability to counter high-frequency
disturbances. As seen in Table 5, while BISMC has a higher steady-state error than SMC, it
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exhibits advantages in IAT, AVE, and ITAE performance indicators, indicating that BISMC
converges faster with less accumulated error during the convergence process.
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Figure 13. Heading and depth tracking in Case 4. SMC exhibits minimal fluctuations after error
convergence.
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Figure 14. Vertical rudder output curve in Case 4. SMC’s rudder angle output exhibits the most
severe chattering.
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Figure 15. Horizontal rudder output curve in Case 4. SMC’s rudder angle output experiences the
most intense chattering.

Table 5. Performance comparison in Case 4.

Performance Metrics BC SMC BISMC

IAE
ψe 249.7 239.6 211.7
ze 275 270.5 269.4

AVE
ψe 2.081 1.997 1.765
ze 1.375 1.353 1.348

ITAE
ψe (104) 1.706 1.621 1.428
ze (104) 2.909 2.852 2.845
ASSE

ψe 0.584 0.098 0.129
ze 0.518 0.114 0.199

In summary, although BISMC shows certain deficiencies in dealing with high-frequency
ocean current disturbances, it still ensures that AUVs can quickly converge and maintain
smooth control output, a feature that holds significant value in practical applications.

5. Conclusions

In this work, a Backstepping Integral Sliding Mode Control (BISMC) approach is
proposed. Based on this method, a heading controller and a double closed-loop depth
controller are designed, addressing issues such as model inaccuracies and ocean current
disturbances faced by underactuated Autonomous Underwater Vehicles (AUVs) in com-
plex marine environments. At the theoretical level, leveraging Lyapunov stability theory,
the global uniform asymptotic stability of the entire BISMC control system is proven by
constructing an appropriate Lyapunov function, thereby ensuring long-term stable opera-
tion of the control system. In the simulation experiments, comprehensive results from four
case studies demonstrate that BISMC exhibits superior performance under low-frequency
ocean current disturbances, boasting faster convergence speed, higher control accuracy, and
stronger anti-disturbance capability compared to traditional Sliding Mode Control (SMC)
and Backstepping Control (BC). While BISMC has limitations in resisting high-frequency
random ocean currents, overall, the simulation experiments have fully validated the theo-
retical feasibility and practical effectiveness of the BISMC strategy, laying a solid foundation
for further physical verification and improvements.
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