Enhancing Underwater Images through Multi-Frequency Detail Optimization and Adaptive Color Correction
<p>Raw underwater images. Underwater images commonly suffer from (<b>a</b>) color casts, (<b>b</b>) artifacts, and (<b>c</b>) blurred details.</p> "> Figure 2
<p>The overview of our framework. First, the EFED module detects edge information in the image using an efficient network architecture. Subsequently, the original image and the extracted edge map are fed into the MCPFA module. The MCPFA module leverages an attention mechanism to fuse information from different color spaces and scales, enhancing the image and ultimately producing the enhanced result.</p> "> Figure 3
<p>Pixel difference convolution flowchart [<a href="#B36-jmse-12-01790" class="html-bibr">36</a>]. * for point multiplication. First, calculating the difference between a target pixel and its neighboring pixels, then multiplying these differences by the corresponding weights in the convolution kernel and summing the results, and finally, outputting the sum as the feature value of the target pixel.</p> "> Figure 4
<p>Edge detection structure diagram. First, the original image undergoes multiple downsampling layers within the backbone network, extracting multi-scale edge features. Subsequently, these features are fed into four parallel auxiliary networks. The auxiliary networks utilize dilated convolutions to enlarge the receptive field, sampling global information and fusing features from different scales. This process enables refined edge processing. Finally, the auxiliary networks output a high-quality edge map.</p> "> Figure 5
<p>MCSF module. Integrates information from HSV, Lab, and RGB color spaces, along with edge information, to provide comprehensive features for subsequent image enhancement steps.</p> "> Figure 6
<p>CF-MHA architecture. First, the input feature map is divided into frequency bands based on scale channels. Then, each band undergoes multi-head attention computation independently. Color-aware weights are learned based on the attenuation levels of different colors at different locations. Finally, the multi-head attention outputs, adjusted by the color-aware weights, are fused to produce the final enhanced feature, effectively mitigating the color attenuation issue in underwater images.</p> "> Figure 7
<p>Visual comparison of the full-reference data on the test dataset of EUVP. From left to right; (<b>a</b>) original underwater image, (<b>b</b>) UDCP [<a href="#B10-jmse-12-01790" class="html-bibr">10</a>], (<b>c</b>) HE [<a href="#B47-jmse-12-01790" class="html-bibr">47</a>], (<b>d</b>) CLAHE [<a href="#B11-jmse-12-01790" class="html-bibr">11</a>], (<b>e</b>) LRS [<a href="#B48-jmse-12-01790" class="html-bibr">48</a>], (<b>f</b>) FUnIE-GAN [<a href="#B3-jmse-12-01790" class="html-bibr">3</a>], (<b>g</b>) U-shape [<a href="#B41-jmse-12-01790" class="html-bibr">41</a>], (<b>h</b>) Semi-UIR [<a href="#B49-jmse-12-01790" class="html-bibr">49</a>], (<b>i</b>) our method and (<b>j</b>) reference image (recognized as ground-truthing (GT)).</p> "> Figure 8
<p>Visual comparison of non-reference data from RUIE on the UCCS, UTTS, and UIQS datasets. From left to right: for (1) bluish-biased image, (2) bluish-green biased image, and (3) greenish-biased image data in the UCCS dataset with different color biases, and (4) underwater image quality data in the UIQS dataset that contains underwater images of various qualities for specific underwater mission, and (5) underwater target mission data in the image dataset UTTS for a specific underwater mission. From left to right: (<b>a</b>) original underwater image, (<b>b</b>) UDCP [<a href="#B10-jmse-12-01790" class="html-bibr">10</a>], (<b>c</b>) HE [<a href="#B47-jmse-12-01790" class="html-bibr">47</a>], (<b>d</b>) CLAHE [<a href="#B11-jmse-12-01790" class="html-bibr">11</a>], (<b>e</b>) LRS [<a href="#B48-jmse-12-01790" class="html-bibr">48</a>], (<b>f</b>) FUnIE-GAN [<a href="#B3-jmse-12-01790" class="html-bibr">3</a>], (<b>g</b>) U-shape [<a href="#B41-jmse-12-01790" class="html-bibr">41</a>], (<b>h</b>) Semi-UIR [<a href="#B49-jmse-12-01790" class="html-bibr">49</a>] and (<b>i</b>) our method.</p> "> Figure 9
<p>Visual comparison of reference data on the test dataset of EUVP. From left to right: (<b>a</b>) the original image, (<b>b</b>) Sobel [<a href="#B19-jmse-12-01790" class="html-bibr">19</a>], (<b>c</b>) Canny [<a href="#B22-jmse-12-01790" class="html-bibr">22</a>], (<b>d</b>) Laplace [<a href="#B21-jmse-12-01790" class="html-bibr">21</a>], (<b>e</b>) RCF [<a href="#B53-jmse-12-01790" class="html-bibr">53</a>], (<b>f</b>) ours and (<b>g</b>) ours on ground truth.</p> "> Figure 10
<p>Results of color space selection evaluation. Tests are performed on the test dataset of EUVP to obtain PSNR and SSIM results for each color space model test.</p> "> Figure 11
<p>Results of ablation experiments on different components. From left to right: (<b>a</b>) Input, (<b>b</b>) U-net, (<b>c</b>) U + EFED, (<b>d</b>) U + MCSF, (<b>e</b>) U + CF-MHA, (<b>f</b>) U + EFED + MCSF, (<b>g</b>) U + MCSF + CF-MHA, (<b>h</b>) U + CF-MHA + EFED, (<b>i</b>) MCPFA, (<b>j</b>) GT. And zoomed-in local details.</p> "> Figure 12
<p>The results of underwater target recognition. From left to right: (<b>a</b>) original underwater image, (<b>b</b>) UDCP [<a href="#B10-jmse-12-01790" class="html-bibr">10</a>], (<b>c</b>) HE [<a href="#B47-jmse-12-01790" class="html-bibr">47</a>], (<b>d</b>) CLAHE [<a href="#B11-jmse-12-01790" class="html-bibr">11</a>], (<b>e</b>) LRS [<a href="#B48-jmse-12-01790" class="html-bibr">48</a>], (<b>f</b>) FUnIE-GAN [<a href="#B3-jmse-12-01790" class="html-bibr">3</a>], (<b>g</b>) U-shape [<a href="#B41-jmse-12-01790" class="html-bibr">41</a>], (<b>h</b>) Semi-UIR [<a href="#B49-jmse-12-01790" class="html-bibr">49</a>] and (<b>i</b>) our method.</p> "> Figure 13
<p>The results of the Segment Anything Model. From left to right: (<b>a</b>) original underwater image, (<b>b</b>) UDCP [<a href="#B10-jmse-12-01790" class="html-bibr">10</a>], (<b>c</b>) HE [<a href="#B47-jmse-12-01790" class="html-bibr">47</a>], (<b>d</b>) CLAHE [<a href="#B11-jmse-12-01790" class="html-bibr">11</a>], (<b>e</b>) LRS [<a href="#B48-jmse-12-01790" class="html-bibr">48</a>], (<b>f</b>) FUnIE-GAN [<a href="#B3-jmse-12-01790" class="html-bibr">3</a>], (<b>g</b>) U-shape [<a href="#B41-jmse-12-01790" class="html-bibr">41</a>], (<b>h</b>) Semi-UIR [<a href="#B49-jmse-12-01790" class="html-bibr">49</a>] and (<b>i</b>) our method.</p> "> Figure 14
<p>Enhancement results of a real underwater cage environment. From left to right: (<b>a</b>) original underwater image, (<b>b</b>) UDCP [<a href="#B10-jmse-12-01790" class="html-bibr">10</a>], (<b>c</b>) HE [<a href="#B47-jmse-12-01790" class="html-bibr">47</a>], (<b>d</b>) CLAHE [<a href="#B11-jmse-12-01790" class="html-bibr">11</a>], (<b>e</b>) LRS [<a href="#B48-jmse-12-01790" class="html-bibr">48</a>], (<b>f</b>) FUnIE-GAN [<a href="#B3-jmse-12-01790" class="html-bibr">3</a>], (<b>g</b>) U-shape [<a href="#B41-jmse-12-01790" class="html-bibr">41</a>], (<b>h</b>) Semi-UIR [<a href="#B49-jmse-12-01790" class="html-bibr">49</a>] and (<b>i</b>) our method.</p> ">
Abstract
:1. Introduction
- (1)
- We propose a novel multi-frequency information fusion architecture for image enhancement tasks. This architecture effectively extracts high-frequency and low-frequency information in the preprocessing stage, significantly improving the detail rendition and contour sharpness of images in complex and noisy environments;
- (2)
- We propose MCPFA, which effectively integrates multiple color spaces and high- and low-frequency information and dynamically adjusts the feature importance through the designed multi-scale channel attention to focus on the key areas and details to enhance the overall quality of the output image;
- (3)
- Our dual multi-color space image enhancement structure leverages RGB, Lab, and HSV color spaces in both the network architecture and loss function, promoting structural alignment and mitigating color distortion, edge artifacts, and detail loss common in existing methods.
2. Related Work
2.1. Underwater Image Enhancement
2.1.1. Physics-Based Methods
2.1.2. Non-Physical-Based Methods
2.1.3. Deep Learning-Based Methods
2.2. Edge Detection
2.3. Attention Mechanisms
3. Methods
3.1. Efficient Fusion Edge Detection Pre-Training
3.1.1. Pixel Difference Convolution
3.1.2. Efficient Multi-Scale Network
3.2. Multi-Scale Color Parallel Frequency-Division Attention
3.2.1. Multi-Color Space Fusion
3.2.2. Multi-Scale Positional Encoding
3.2.3. Channel-Wise Frequency-Division Multi-Head Attention (CF-MHA)
3.3. Loss Function
4. Experiments
4.1. Implementation Details
4.2. Datasets
4.3. Comparison Experiments
4.3.1. Full-Reference Evaluation
4.3.2. Non-Reference Evaluation
4.3.3. Evaluation of Computational Efficiency
4.3.4. Evaluation of Edge Detection
4.4. Ablation Studies
4.4.1. Experiments on Multi-Color Space Fusion
4.4.2. Experiments on Loss Functions
4.4.3. Overall Experiments
4.5. Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raveendran, S.; Patil, M.D.; Birajdar, G.K. Underwater image enhancement: A comprehensive review, recent trends, challenges and applications. Artif. Intell. Rev. 2021, 54, 5413–5467. [Google Scholar] [CrossRef]
- Han, M.; Lyu, Z.; Qiu, T.; Xu, M. A review on intelligence dehazing and color restoration for underwater images. IEEE Trans. Syst. Man Cybern. Syst. 2018, 50, 1820–1832. [Google Scholar] [CrossRef]
- Islam, M.J.; Xia, Y.; Sattar, J. Fast underwater image enhancement for improved visual perception. IEEE Robot. Autom. Lett. 2020, 5, 3227–3234. [Google Scholar] [CrossRef]
- Schettini, R.; Corchs, S. Underwater image processing: State of the art of restoration and image enhancement methods. EURASIP J. Adv. Signal Process. 2010, 2010, 1–14. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Bekaert, P. Color balance and fusion for underwater image enhancement. IEEE Trans. Image Process. 2017, 27, 379–393. [Google Scholar] [CrossRef]
- Zhao, S.; Mei, X.; Ye, X.; Guo, S. MSFE-UIENet: A Multi-Scale Feature Extraction Network for Marine Underwater Image Enhancement. J. Mar. Sci. Eng. 2024, 12, 1472. [Google Scholar] [CrossRef]
- McGlamery, B.L. A computer model for underwater camera systems. In Ocean Optics VI; SPIE: France, Paris, 1980; Volume 208, pp. 221–231. [Google Scholar]
- Jaffe, J.S. Computer modeling and the design of optimal underwater imaging systems. IEEE J. Ocean. Eng. 1990, 15, 101–111. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar] [PubMed]
- Drews, P.; Nascimento, E.; Moraes, F.; Botelho, S.; Campos, M. Transmission estimation in underwater single images. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Sydney, NSW, Australia, 2–8 December 2013; pp. 825–830. [Google Scholar]
- Reza, A.M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol. 2004, 38, 35–44. [Google Scholar] [CrossRef]
- Fan, X.; Lu, L.; Shi, P.; Zhang, X. Underwater image enhancement algorithm combining color correction and multi-scale fusion. In Proceedings of the 2021 18th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Chiang Mai, Thailand, 19–22 May 2021; pp. 140–143. [Google Scholar]
- Yang, J.; Huang, H.; Lin, F.; Gao, X.; Jin, J.; Zhang, B. Underwater Image Enhancement Fusion Method Guided by Salient Region Detection. J. Mar. Sci. Eng. 2024, 12, 1383. [Google Scholar] [CrossRef]
- Li, C.; Guo, C.; Ren, W.; Cong, R.; Hou, J.; Kwong, S.; Tao, D. An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 2019, 29, 4376–4389. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Anwar, S.; Porikli, F. Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recognit. 2020, 98, 107038. [Google Scholar] [CrossRef]
- Lu, J.; Li, N.; Zhang, S.; Yu, Z.; Zheng, H.; Zheng, B. Multi-scale adversarial network for underwater image restoration. Opt. Laser Technol. 2019, 110, 105–113. [Google Scholar] [CrossRef]
- Liu, X.; Gao, Z.; Chen, B.M. IPMGAN: Integrating physical model and generative adversarial network for underwater image enhancement. Neurocomputing 2021, 453, 538–551. [Google Scholar] [CrossRef]
- Wu, S.; Luo, T.; Jiang, G.; Yu, M.; Xu, H.; Zhu, Z.; Song, Y. A two-stage underwater enhancement network based on structure decomposition and characteristics of underwater imaging. IEEE J. Ocean. Eng. 2021, 46, 1213–1227. [Google Scholar] [CrossRef]
- Sobel, I.E. Camera Models and Machine Perception; Stanford University: Stanford, CA, USA, 1970. [Google Scholar]
- Roberts, L.G. Machine Perception of Three-Dimensional Solids; Massachusetts Institute of Technology: Cambridge, MA, USA, 1963. [Google Scholar]
- Marr, D.; Hildreth, E. Theory of edge detection. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1980, 207, 187–217. [Google Scholar]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 6, 679–698. [Google Scholar] [CrossRef]
- Xie, S.; Tu, Z. Holistically-nested edge detection. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1395–1403. [Google Scholar]
- Farabet, C.; Couprie, C.; Najman, L.; LeCun, Y. Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1915–1929. [Google Scholar] [CrossRef]
- Shen, W.; Wang, X.; Wang, Y.; Bai, X.; Zhang, Z. Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3982–3991. [Google Scholar]
- Bertasius, G.; Shi, J.; Torresani, L. Deepedge: A multi-scale bifurcated deep network for top-down contour detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 4380–4389. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef]
- Xu, K.; Ba, J.; Kiros, R.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, attend and tell: Neural image caption generation with visual attention. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; PMLR: London, UK, 2015; pp. 2048–2057. [Google Scholar]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. (Nips), 2017. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11534–11542. [Google Scholar]
- Su, Z.; Liu, W.; Yu, Z.; Hu, D.; Liao, Q.; Tian, Q.; Pietikäinen, M.; Liu, L. Pixel difference networks for efficient edge detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 5117–5127. [Google Scholar]
- Liu, L.; Fieguth, P.; Kuang, G.; Zha, H. Sorted random projections for robust texture classification. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 391–398. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Huang, Y.; Yuan, F.; Xiao, F.; Lu, J.; Cheng, E. Underwater image enhancement based on zero-reference deep network. IEEE J. Ocean. Eng. 2023, 48, 903–924. [Google Scholar] [CrossRef]
- Li, C.; Anwar, S.; Hou, J.; Cong, R.; Guo, C.; Ren, W. Underwater image enhancement via medium transmission-guided multi-color space embedding. IEEE Trans. Image Process. 2021, 30, 4985–5000. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Zhu, C.; Bian, L. U-shape transformer for underwater image enhancement. IEEE Trans. Image Process. 2023, 32, 3066–3079. [Google Scholar] [CrossRef] [PubMed]
- Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Instance normalization: The missing ingredient for fast stylization. arXiv 2016, arXiv:1607.08022. [Google Scholar]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. In Proceedings of the Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 694–711. [Google Scholar]
- Panetta, K.; Gao, C.; Agaian, S. Human-visual-system-inspired underwater image quality measures. IEEE J. Ocean. Eng. 2015, 41, 541–551. [Google Scholar] [CrossRef]
- Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
- Liu, R.; Fan, X.; Zhu, M.; Hou, M.; Luo, Z. Real-world underwater enhancement: Challenges, benchmarks, and solutions under natural light. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 4861–4875. [Google Scholar] [CrossRef]
- Pizer, S.M.; Amburn, E.P.; Austin, J.D.; Cromartie, R.; Geselowitz, A.; Greer, T.; Romeny, B.t.H.; Zimmerman, J.B.; Zuiderveld, K. Adaptive histogram equalization and its variations. Comput. Vision Graph. Image Process. 1987, 39, 355–368. [Google Scholar] [CrossRef]
- Srinivasan, S.; Balram, N. Adaptive contrast enhancement using local region stretching. In Proceedings of the 9th Asian Symposium on Information Display, New Delhi, India, 8–12 October 2006; pp. 152–155. [Google Scholar]
- Huang, S.; Wang, K.; Liu, H.; Chen, J.; Li, Y. Contrastive semi-supervised learning for underwater image restoration via reliable bank. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 18145–18155. [Google Scholar]
- Korhonen, J.; You, J. Peak signal-to-noise ratio revisited: Is simple beautiful? In Proceedings of the 2012 Fourth International Workshop on Quality of Multimedia Experience, Melbourne, Australia, 5–7 July 2012; pp. 37–38. [Google Scholar]
- Yang, M.; Sowmya, A. An underwater color image quality evaluation metric. IEEE Trans. Image Process. 2015, 24, 6062–6071. [Google Scholar] [CrossRef]
- Berman, D.; Levy, D.; Avidan, S.; Treibitz, T. Underwater single image color restoration using haze-lines and a new quantitative dataset. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 2822–2837. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cheng, M.M.; Hu, X.; Wang, K.; Bai, X. Richer convolutional features for edge detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3000–3009. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Ravi, N.; Gabeur, V.; Hu, Y.T.; Hu, R.; Ryali, C.; Ma, T.; Khedr, H.; Rädle, R.; Rolland, C.; Gustafson, L.; et al. Sam 2: Segment anything in images and videos. arXiv 2024, arXiv:2408.00714. [Google Scholar]
Method | PSNR↑ | SSIM↑ | MSE↓ | UIQM↑ |
---|---|---|---|---|
UDCP [10] | 16.39 | 0.636 | 19.87 | 2.013 |
HE [47] | 13.61 | 0.614 | 34.43 | 2.823 |
CLAHE [11] | 12.82 | 0.490 | 35.78 | 2.705 |
LRS [48] | 17.37 | 0.780 | 13.45 | 2.524 |
FUnIE-GAN [3] | 19.41 | 0.810 | 8.478 | 2.856 |
U-shape [41] | 20.34 | 0.821 | 7.706 | 2.918 |
Semi-UIR [49] | 21.73 | 0.727 | 5.678 | 2.803 |
Ours | 23.45 | 0.821 | 3.745 | 2.920 |
Method | UCCS | UIQS | UTTS | |||
---|---|---|---|---|---|---|
UIQM↑ | UCIQE↑ | UIQM↑ | UCIQE↑ | UIQM↑ | UCIQE↑ | |
UDCP [10] | 2.146 | 0.525 | 2.216 | 0.504 | 2.550 | 0.523 |
HE [47] | 3.068 | 0.571 | 3.058 | 0.606 | 3.128 | 0.616 |
CLAHE [11] | 3.049 | 0.594 | 3.005 | 0.586 | 2.930 | 0.604 |
LKS [48] | 2.875 | 0.543 | 2.934 | 0.596 | 3.019 | 0.600 |
FUnIE-GAN [3] | 3.087 | 0.503 | 3.020 | 0.510 | 3.064 | 0.526 |
U-shape [41] | 3.031 | 0.538 | 2.956 | 0.546 | 3.100 | 0.545 |
Semi-UIR [49] | 3.078 | 0.553 | 3.023 | 0.566 | 3.193 | 0.575 |
Ours | 3.101 | 0.610 | 3.089 | 0.599 | 3.211 | 0.609 |
Method | FLOPs (GB)↓ | Param. (MB)↓ | Time (s)↓ |
---|---|---|---|
UDCP [10] | × | × | 0.329 |
HE [47] | × | × | 0.038 |
CLAHE [11] | × | × | 1.235 |
LRS [48] | × | × | 0.341 |
FUnIE-GAN [3] | 10.24 | 7.023 | 0.018 |
U-shape [41] | 5.56 | 30.13 | 0.756 |
Semi-UIR [49] | 33.94 | 19.39 | 0.362 |
Ours | 3.705 | 27.01 | 0.088 |
Combinations | Color Space | PSNR↑ | SSIM↑ | ||
---|---|---|---|---|---|
RGB | Lab | HSV | |||
RGB | √ | 21.26 | 0.720 | ||
Lab | √ | 18.23 | 0.694 | ||
HSV | √ | 16.02 | 0.672 | ||
RGB + Lab | √ | √ | 20.23 | 0.804 | |
RGB + HSV | √ | √ | 19.94 | 0.812 | |
Lab + HSV | √ | √ | 18.67 | 0.746 | |
MCSF | √ | √ | √ | 23.45 | 0.832 |
Combinations | Loss Function | PSNR↑ | SSIM↑ | ||
---|---|---|---|---|---|
Color Loss | SSIM Loss | UIQM Loss | |||
Color loss | √ | 21.26 | 0.720 | ||
SSIM loss | √ | 21.23 | 0.774 | ||
UIQM loss | √ | 18.02 | 0.702 | ||
Color + SSIM loss | √ | √ | 22.95 | 0.812 | |
Color + UIQM loss | √ | √ | 22.60 | 0.804 | |
SSIM + UIQM loss | √ | √ | 21.63 | 0.776 | |
All loss | √ | √ | √ | 23.45 | 0.821 |
Method | Module | PSNR↑ | SSIM↑ | Times (s)↓ | ||
---|---|---|---|---|---|---|
EFED | MCSF | CF-MHA | ||||
U-net [54] | 16.39 | 0.726 | 0.0456 | |||
U + EFED | √ | 15.61 | 0.750 | 0.0580 | ||
U + MCSF | √ | 17.34 | 0.490 | 0.0578 | ||
U + CF-MHA | √ | 12.82 | 0.710 | 0.0575 | ||
U + EFED + MCSF | √ | √ | 16.41 | 0.481 | 0.0732 | |
U + EFED + CF-MHA | √ | √ | 20.34 | 0.811 | 0.0762 | |
U + MCSF + CF-MHA | √ | √ | 18.73 | 0.727 | 0.0679 | |
MCPFA | √ | √ | √ | 23.45 | 0.821 | 0.0885 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Jin, J.; Lin, F.; Huang, H.; Yang, J.; Xie, Y.; Zhang, B. Enhancing Underwater Images through Multi-Frequency Detail Optimization and Adaptive Color Correction. J. Mar. Sci. Eng. 2024, 12, 1790. https://doi.org/10.3390/jmse12101790
Gao X, Jin J, Lin F, Huang H, Yang J, Xie Y, Zhang B. Enhancing Underwater Images through Multi-Frequency Detail Optimization and Adaptive Color Correction. Journal of Marine Science and Engineering. 2024; 12(10):1790. https://doi.org/10.3390/jmse12101790
Chicago/Turabian StyleGao, Xiujing, Junjie Jin, Fanchao Lin, Hongwu Huang, Jiawei Yang, Yongfeng Xie, and Biwen Zhang. 2024. "Enhancing Underwater Images through Multi-Frequency Detail Optimization and Adaptive Color Correction" Journal of Marine Science and Engineering 12, no. 10: 1790. https://doi.org/10.3390/jmse12101790
APA StyleGao, X., Jin, J., Lin, F., Huang, H., Yang, J., Xie, Y., & Zhang, B. (2024). Enhancing Underwater Images through Multi-Frequency Detail Optimization and Adaptive Color Correction. Journal of Marine Science and Engineering, 12(10), 1790. https://doi.org/10.3390/jmse12101790