Investigation of Energy Losses Induced by Non-Uniform Inflow in a Coastal Axial-Flow Pump
<p>Geometry structure of a coastal axial-flow pump.</p> "> Figure 2
<p>Mesh of the coastal axial-flow pump.</p> "> Figure 3
<p>Grid independence analysis.</p> "> Figure 4
<p>Definition of the inflow deflection angle.</p> "> Figure 5
<p>Test bench photo.</p> "> Figure 6
<p>The external characteristic parameters of CFD and test at <math display="inline"><semantics> <mi>θ</mi> </semantics></math> = 0°.</p> "> Figure 7
<p>The (<b>a</b>) efficiency and (<b>b</b>) head curves under three inflow deflection angles.</p> "> Figure 8
<p>The axial velocity at the impeller inlet with three inflow deflection angles under (<b>a</b>) 0.8<span class="html-italic">Q</span><sub>des</sub>, (<b>b</b>) 1.0<span class="html-italic">Q</span><sub>des</sub>, and (<b>c</b>) 1.2<span class="html-italic">Q</span><sub>des</sub>.</p> "> Figure 9
<p>TEP distribution with three inflow deflection angles under 0.8<span class="html-italic">Q</span><sub>des</sub>, 1.0<span class="html-italic">Q</span><sub>des</sub>, and 1.2<span class="html-italic">Q</span><sub>des</sub>.</p> "> Figure 10
<p>TEP percentage of hydraulic components with three inflow deflection angles under (<b>a</b>) 0.8<span class="html-italic">Q</span><sub>des</sub>, (<b>b</b>) 1.0<span class="html-italic">Q</span><sub>des</sub>, and (<b>c</b>) 1.2<span class="html-italic">Q</span><sub>des</sub>.</p> "> Figure 11
<p>The division diagram of (<b>a</b>) turbo surface and (<b>b</b>) part of impeller.</p> "> Figure 12
<p>The volume-averaged TEPR in the impeller with three inflow deflection angles under (<b>a</b>) 0.8<span class="html-italic">Q</span><sub>des</sub>, (<b>b</b>) 1.0<span class="html-italic">Q</span><sub>des</sub>, and (<b>c</b>) 1.2<span class="html-italic">Q</span><sub>des</sub>.</p> "> Figure 13
<p>The TEPR distribution on the turbo surface of the impeller with three inflow deflection angles under (<b>a</b>) 0.8<span class="html-italic">Q</span><sub>des</sub>, (<b>b</b>) 1.0<span class="html-italic">Q</span><sub>des</sub>, and (<b>c</b>) 1.2<span class="html-italic">Q</span><sub>des</sub>. (<span class="html-italic">R</span>* = 0.95).</p> "> Figure 14
<p>The division diagram of (<b>a</b>) turbo surface and (<b>b</b>) part of guide vanes.</p> "> Figure 15
<p>The volume-averaged TEPR in the guide vanes with three inflow deflection angles under (<b>a</b>) 0.8<span class="html-italic">Q</span><sub>des</sub>, (<b>b</b>) 1.0<span class="html-italic">Q</span><sub>des</sub>, and (<b>c</b>) 1.2<span class="html-italic">Q</span><sub>des</sub>.</p> "> Figure 16
<p>The TEPR distribution on the turbo surface of the guide vanes with three inflow deflection angles under (<b>a</b>) 0.8<span class="html-italic">Q</span><sub>des</sub>, (<b>b</b>) 1.0<span class="html-italic">Q</span><sub>des</sub>, and (<b>c</b>) 1.2<span class="html-italic">Q</span><sub>des</sub>. (<span class="html-italic">R</span>* = 0.1).</p> "> Figure 17
<p>The radial distribution of the circumferential velocity of the guide vanes outlet under (<b>a</b>) 0.8<span class="html-italic">Q</span><sub>des</sub>, (<b>b</b>) 1.0<span class="html-italic">Q</span><sub>des</sub>, and (<b>c</b>) 1.2<span class="html-italic">Q</span><sub>des</sub>.</p> "> Figure 18
<p>TEPR distribution in the outlet of guide vanes with three inflow deflection angles under (<b>a</b>) 0.8<span class="html-italic">Q</span><sub>des</sub>, (<b>b</b>) 1.0<span class="html-italic">Q</span><sub>des</sub>, and (<b>c</b>) 1.2<span class="html-italic">Q</span><sub>des</sub>.</p> "> Figure 18 Cont.
<p>TEPR distribution in the outlet of guide vanes with three inflow deflection angles under (<b>a</b>) 0.8<span class="html-italic">Q</span><sub>des</sub>, (<b>b</b>) 1.0<span class="html-italic">Q</span><sub>des</sub>, and (<b>c</b>) 1.2<span class="html-italic">Q</span><sub>des</sub>.</p> "> Figure 19
<p>The position of vertical mid section of the outflow conduit.</p> "> Figure 20
<p>The TEPR distibution and velocity vector in the vertical mid section of the outflow conduit with three inflow deflection angles under (<b>a</b>) 0.8<span class="html-italic">Q</span><sub>des</sub>, (<b>b</b>) 1.0<span class="html-italic">Q</span><sub>des</sub>, and (<b>c</b>) 1.2<span class="html-italic">Q</span><sub>des</sub>.</p> "> Figure 20 Cont.
<p>The TEPR distibution and velocity vector in the vertical mid section of the outflow conduit with three inflow deflection angles under (<b>a</b>) 0.8<span class="html-italic">Q</span><sub>des</sub>, (<b>b</b>) 1.0<span class="html-italic">Q</span><sub>des</sub>, and (<b>c</b>) 1.2<span class="html-italic">Q</span><sub>des</sub>.</p> ">
Abstract
:1. Introduction
2. Numerical Simulation
2.1. Three-Dimensional Model and Mesh
2.2. Governing Equations and Boundary Conditions
2.3. Entropy Production Theory
3. Test Validation
4. Results and Discussion
4.1. Pump Performance under Different Inflow Deflection Angles
4.2. Distribution of TEP under Different Inflow Deflection Angles
4.3. Distribution of TEPR under Different Inflow Deflection Angles
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
(m) | Design head |
(m3/s) | Design flow rate |
(r/min) | Rotation speed |
(J/(kg K)) | Specific entropy |
(kg/m3) | Water density |
(W/m2) | Heat flux density |
(K) | Thermodynamic temperature |
(m/s) | Fluid velocity |
(m/s) | Axial velocity |
(m/s) | Circumferential velocity |
(W/(m3)) | Viscous dissipation rate |
(W/(m3·K)) | Entropy production rate originated from direct dissipation |
(W/(m3·K)) | Entropy production rate originated from indirect dissipation |
(W/K) | Total entropy production |
(°) | Inflow deflection angle |
R* | Radial coefficient |
Rs (mm) | Shroud radius |
Rh (mm) | Hub radius |
BEP | Best efficiency point |
TEP | Total entropy production |
TEPR | Total entropy production rate |
References
- Xie, C.; Tang, F.; Liu, C.; Yang, F. Model test analysis of impeller selection in large vertical axial flow pumping system. Trans. Chin. Soc. Agric. Mach. 2017, 48, 94–99+131. [Google Scholar]
- Yang, F.; Zhao, H.; Liu, C.; He, J.; Tang, F. Experiment and analysis on outlet flow pattern and pressure fluctuation in inlet conduit of vertical axial-flow pumping system. Trans. Chin. Soc. Agric. Mach. 2017, 48, 141–146+113. [Google Scholar]
- Liu, C.; Liang, H.; Yan, J.; Yang, F.; Chen, F.; Yang, H. PIV measurements of intake flow field in axial-flow pump. Trans. Chin. Soc. Agric. Mach. 2015, 46, 33–41. [Google Scholar]
- Peng, G.; Chen, Q.; Zhou, L.; Pan, B.; Zhu, Y. Effect of blade outlet angle on the flow field and preventing overload in a centrifugal pump. Micromachines 2020, 11, 811. [Google Scholar] [CrossRef]
- Li, J.; Tang, L.; Zhang, Y. The influence of blade angle on the performance of plastic centrifugal pump. Adv. Mater. Sci. Eng. 2020, 2020, 7205717. [Google Scholar] [CrossRef]
- Han, W.; Zhang, T.; Su, Y.L.; Chen, R.; Qiang, Y.; Han, Y. Transient Characteristics of Water-Jet Propulsion with a Screw Mixed Pump during the Startup Process. Math. Probl. Eng. 2020, 2020, 5691632. [Google Scholar] [CrossRef]
- Wei, Q.; Sun, X.; Asaad, Y.S.; Li, C. Impacts of blade inlet angle of diffuser on the performance of a submersible pump. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2020, 234, 613–623. [Google Scholar]
- Chen, J.; Shi, W.; Zhang, D. Influence of blade inlet angle on the performance of a single blade centrifugal pump. Eng. Appl. Comput. Fluid Mech. 2021, 15, 462–475. [Google Scholar] [CrossRef]
- Wang, W.; Tai, G.; Pei, J.; Pavesi, G.; Yuan, S. Numerical investigation of the effect of the closure law of wicket gates on the transient characteristics of pump-turbine in pump mode. Renew. Energy 2022, 194, 719–733. [Google Scholar] [CrossRef]
- Kan, N.; Liu, Z.; Shi, G.; Liu, X. Effect of Tip Clearance on Helico-Axial Flow Pump Performance at Off-Design Case. Processes 2021, 9, 1653. [Google Scholar] [CrossRef]
- Cheng, H.; Li, H.; Yin, J.; Gu, X.; Hu, Y.; Wang, D. Investigation of the distortion suction flow on the performance of the canned nuclear coolant pump. In Proceedings of the 2014 ISFMFE-6th International Symposium on Fluid Machinery and Fluid Engineering, Wuhan, China, 22–25 October 2014; pp. 1–6. [Google Scholar]
- Zhao, G.; Liang, N.; Zhang, Y.; Cao, L.; Wu, D. Dynamic behaviors of blade cavitation in a water jet pump with inlet guide vanes: Effects of inflow non-uniformity and unsteadiness. Appl. Ocean. Res. 2021, 117, 102889. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Zhu, X.; Sun, D.; Meng, F. Influence of asymmetric inflow on the transient pressure fluctuation characteristics of a vertical mixed-flow pump. Proc. Inst. Mech. Eng. Part A J. Power Energy 2022, 09576509221096926. [Google Scholar] [CrossRef]
- Long, Y.; Dezhong, W.; Yin, J.; Hu, Y.; Ran, H. Numerical investigation on the unsteady characteristics of reactor coolant pumps with non-uniform inflow. Nucl. Eng. Des. 2017, 320, 65–76. [Google Scholar]
- Wang, Y.; Wang, P.; Tan, X.; Xu, Z.; Ruan, X. Research on the non-uniform inflow characteristics of the canned nuclear coolant pump. Ann. Nucl. Energy 2018, 115, 423–429. [Google Scholar] [CrossRef]
- Xu, R.; Long, Y.; Wang, D. Effects of rotating speed on the unsteady pressure pulsation of reactor coolant pumps with steam-generator simulator. Nucl. Eng. Des. 2018, 333, 25–44. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z.; Wang, P.; Wang, J.; Ruan, X. Numerical and experimental analysis on the non-uniform inflow characteristics of a reactor coolant pump with a steam generator channel head. Eng. Appl. Comput. Fluid Mech. 2020, 14, 477–490. [Google Scholar]
- Cao, P.; Wang, Y.; Kang, C.; Li, G.; Zhang, X. Investigation of the role of non-uniform suction flow in the performance of water-jet pump. Ocean. Eng. 2017, 140, 258–269. [Google Scholar] [CrossRef]
- Cao, P.; Zhu, R. Prediction and Evaluation of Waterjet Pump Performance under Nonuniform Inflow Using Parallel Compressor Theory. Water 2021, 13, 99. [Google Scholar] [CrossRef]
- Luo, X.; Ye, W.; Huang, R.; Wang, Y.; Du, T.; Huang, C. Numerical investigations of the energy performance and pressure fluctuations for a waterjet pump in a non-uniform inflow. Renew. Energy 2020, 153, 1042–1052. [Google Scholar] [CrossRef]
- Kock, F.; Herwig, H. Local entropy production in turbulent shear flows: A high-Reynolds number model with wall functions. Int. J. Heat Mass Transf. 2004, 47, 2205–2215. [Google Scholar] [CrossRef]
- Herwig, H.; Kock, F. Direct and indirect methods of calculating entropy generation rates in turbulent convective heat transfer problems. Heat Mass Transf. 2007, 43, 207–215. [Google Scholar] [CrossRef]
- Kock, F.; Herwig, H. Entropy production calculation for turbulent shear flows and their implementation in CFD codes. Int. J. Heat Fluid Flow 2005, 26, 672–680. [Google Scholar] [CrossRef]
- Shen, S.; Qian, Z.; Ji, B. Numerical analysis of mechanical energy dissipation for an axial-flow pump based on entropy generation theory. Energies 2019, 12, 4162. [Google Scholar] [CrossRef]
- Wang, L.; Lu, J.; Liao, W.; Guo, P.; Feng, J.; Luo, X.; Wang, W. Numerical investigation of the effect of T-shaped blade on the energy performance improvement of a semi-open centrifugal pump. J. Hydrodyn. 2021, 33, 736–746. [Google Scholar] [CrossRef]
- Ji, L.; Li, W.; Shi, W.; Tian, F.; Agarwal, R. Diagnosis of internal energy characteristics of mixed-flow pump within stall region based on entropy production analysis model. Int. Commun. Heat Mass Transf. 2020, 117, 104784. [Google Scholar] [CrossRef]
- Fei, Z.; Zhang, R.; Xu, H.; Feng, J.; Mu, T.; Chen, Y. Energy performance and flow characteristics of a slanted axial-flow pump under cavitation conditions. Phys. Fluids 2022, 34, 035121. [Google Scholar] [CrossRef]
Parameters | Unit | Value |
---|---|---|
Impeller | ||
Blade number | 3 | |
Impeller diameter | mm | 300 |
Hub diameter | mm | 120 |
Tip clearance radius | mm | 0.3 |
Guide vanes | ||
Vane number | 6 | |
Hub dimeter | mm | 108 |
Outlet diameter | mm | 325 |
Measurement Instrument | Measurement Items | Maximum Measurement Value | Measurement Uncertainty |
---|---|---|---|
Intelligent electromagnetic flowmeter | Flow rate | 1800 m3/h | EQ = 0.2% |
Intelligent torque and speed sensor | Speed and Torque | 200 N·m | EM = 0.1% EN = 0.1% |
Intelligent differential pressure transmitter | Head | 10 m | EH = 0.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, F.; Li, Y.; Chen, J. Investigation of Energy Losses Induced by Non-Uniform Inflow in a Coastal Axial-Flow Pump. J. Mar. Sci. Eng. 2022, 10, 1283. https://doi.org/10.3390/jmse10091283
Meng F, Li Y, Chen J. Investigation of Energy Losses Induced by Non-Uniform Inflow in a Coastal Axial-Flow Pump. Journal of Marine Science and Engineering. 2022; 10(9):1283. https://doi.org/10.3390/jmse10091283
Chicago/Turabian StyleMeng, Fan, Yanjun Li, and Jia Chen. 2022. "Investigation of Energy Losses Induced by Non-Uniform Inflow in a Coastal Axial-Flow Pump" Journal of Marine Science and Engineering 10, no. 9: 1283. https://doi.org/10.3390/jmse10091283
APA StyleMeng, F., Li, Y., & Chen, J. (2022). Investigation of Energy Losses Induced by Non-Uniform Inflow in a Coastal Axial-Flow Pump. Journal of Marine Science and Engineering, 10(9), 1283. https://doi.org/10.3390/jmse10091283