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Abstract: Field-scale prediction methods that use remote sensing are significant in many global
projects; however, the existing methods have several limitations. In particular, the characteristics
of smallholder systems pose a unique challenge in the development of reliable prediction methods.
Therefore, in this study, a fast and reproducible new approach to wheat prediction is developed
by combining predictors derived from optical (Sentinel-2) and radar (Sentinel-1) sensors using a
diverse set of machine learning and deep learning methods under a small dataset domain. This study
takes place in the wheat belt region of Ethiopia and evaluates forty-two predictors that represent the
major vegetation index categories of green, water, chlorophyll, dry biomass, and VH polarization
SAR indices. The study also applies field-collected agronomic data from 165 farm fields for training
and validation. According to results, compared to other methods, a combined automated machine
learning (AutoML) approach with a generalized linear model (GLM) showed higher performance.
AutoML, which reduces training time, delivered ten influential parameters. For the combined
approach, the mean RMSE of wheat yield was from 0.84 to 0.98 ton/ha using ten predictors from the
test dataset, achieving a 99% confidence interval. It also showed a correlation coefficient as high as
0.69 between the estimated yield and measured yield, and it was less sensitive to the small datasets
used for model training and validation. A deep neural network with three hidden layers using the
ten influential parameters was the second model. For this model, the mean RMSE of wheat yield
was between 1.31 and 1.36 ton/ha on the test dataset, achieving a 99% confidence interval. This
model used 55 neurons with respective values of 0.1, 0.5, and 1 × 10−4 for the hidden dropout
ratio, input dropout ratio, and l2 regularization. The approaches implemented in this study are
fast and reproducible and beneficial to predict yield at scale. These approaches could be adapted
to predict grain yields of other cereal crops grown under smallholder systems in similar global
production systems.

Keywords: automated machine learning; crop phenology; deep learning; remote sensing; sensor
fusion; smallholder; wheat; yield prediction

1. Introduction

Smallholder systems, which refer to farm units less that are than 2 ha in area and man-
aged by family labor, are important global agricultural systems [1]. Low crop productivity
has been one of the salient problems of these systems and affects food security in many
parts of the world. For instance, Ethiopia, where smallholder systems are predominant,
imported wheat with a value of USD 431,176 thousand in 2020 [2,3].

Crop yield prediction is one of the tools that enables decision makers to enhance yield
and increase profitability [4,5]. Since crop productivity influences the overall supply chain,
crop monitoring and early prediction are vital in food security, crop insurance, marketing,
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and financial decision-making projects. Remote sensing (RS)-based prediction methods
are preferred over traditional agricultural surveys. Yield estimation methods based on
the vegetation index (VI) and derived from optical sensors are the most widely exploited
methods. These methods, which can be placed under the parametric regression group,
were developed based on an explicit association between spectral information and a given
bio-physical variable [6]. That is, crop yield has an inherently functional relationship
with canopy characteristics, biomass, and chlorophyll content. Remote sensing-derived
indices represent a canopy-level reflectance response that is related to canopy attributes
(biochemical, physiological, and morphological).

In general, the development of robust field-scale prediction methods have well-known
constraints. However, these constraints increase both in number and complexity un-
der a smallholder system. Existing prediction methods, which often operate at national
and regional scales, exploit the potential of the well-established coarse spatial resolution
sensors (for instance, MODIS, which has a 250–1000 m spatial resolution) and medium
temporal resolution sensors (for instance, Landsat, which has a temporal resolution of
16 days). Nonetheless, the resolution of these sensors has limited their application for
field-scale prediction and, more importantly, for smallholder systems with peculiar charac-
teristics such as small farm sizes. For instance, in Africa, the median size of a crop farm
is between 1 and 2 ha, and most farms are less than 5 ha [7]. To this end, the availability
of high-temporal and -spatial resolution sensors that are in the public domain, such as,
Sentinel-2 have introduced a big opportunity for field-scale yield prediction.

Some studies have applied high-resolution sensors for monitoring smallholder sys-
tems. Multiple sensors, including skysat, RapidEye, and Sentinel-2 (S2), have been applied
to monitor smallholder maize fields in Kenya. The MERIS terrestrial chlorophyll index
(MTCI) utilizes the red edge band and showed superior performance over commonly used
vegetation indices. Landscape heterogeneity, small field sizes, and intercropping practices
challenged yield mapping [8]. The leaf area index (LAI) is a major morphological variable
that is a useful proxy for yield forecasting and crop management practices [9,10].

Radar remote sensing, notably synthetic aperture radar (SAR), is another type of RS
used for crop monitoring. It is advantageous over optical sensors due to its capacity to
penetrate clouds and its independence from sun illumination [11]. Moreover, it is sensitive
to changes in the canopy structure and biomass as well as to the water content of an earth’s
surface, which means that it has wider applications in agriculture. Sentinel-1(S1) is recently
available SAR data with a high temporal resolution (at every 5–6 days) that is under the
public domain [12–14]. It has been applied for studying crop productivity. The time series
backscatter cross-polarization ratio (VH/VV) derived from S1 was applied to provide
information about the yield of wheat at the field-scale. The duration of full vegetation
showed a positive association with yield (r = 0.61). Conversely, the day of the year with the
maximum VH/VV value was negatively associated with yield (r = 0.56) [15].

Over the years, despite the types of VIs having increased, most of them have lost
their predictive power when applied in other observation setups. This is associated with
their inherent formulation. That is, originally, they could be developed under specific
experimental designs, scales (leaf, plant, and canopy), sensor types (multispectral, hyper-
spectral or SAR), and environmental conditions. During verification studies and/or in
scaling environments, the adoption of an environment similar to that of the original setting
is often difficult; hence, achieving reproducibility is problematic. Moreover, factors, such as
variability in the surface properties as well as in the sun and viewing geometry influence
their capacity [16,17].

Data mining methods, which describe the relationship between the vegetation indices
used as predictors and field-collected data, for instance, crop yield used as a response, are
other key components of prediction methods. There are three major categories, namely
statistical, machine learning, and deep learning that constitute data mining approaches.
Compared to the widely used traditional statistical methods, machine learning and deep
learning are both promising and contemporary methods. Deep neural networks (DNNs) are
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networks with many hidden layers and represent an upgrade to shallow neural networks
(SNNs). A study evaluated several vegetation indices and LAI derived from simulated S2
and hyperspectral images for maize biomass prediction using deep neural networks. The
DNN algorithm helped to improve the estimation accuracy of maize biomass; the three-
band water index was the superior model, with R2, RMSE, and RRMSE values of 0.76,
2.84 t/ha, and 38.22%, respectively [18].

Though machine learning and deep learning methods have revealed superior per-
formance over classical statistical methods, as they are developed using big data, their
successful application often demands many observations. Field-collected crop yield, which
is a response variable in the regression process, is expensive data, and hence, it is rarely
available. Inherently, crop yield is a function of several parameters that pertain to climatic
(temperature, rainfall), soil, input (crop variety, fertilizer, herbicides), management prac-
tices, and cropping patterns. A reliable and robust prediction method needs to incorporate
the parameters that influence crop yield. This results in the addition of many potential
predictors in the regression process. Thus, the application of data mining methods should
be implemented within the context of small datasets and in contexts with higher data
dimensionality. Nonetheless, recent studies have also applied deep learning methods with
small datasets. The key motivation for using neural networks in deep learning is that they
are ideal for processing multiple array formats in non-linear modules [19].

Under heterogeneous, small farm fields and small observation datasets, a robust
predication method will ideally have the following characteristics: the integration of
influential predictors derived from vegetation indices that are a proxy of crop-growing
factors and the application of sensors with an appropriate resolution capacity; in particular,
the spatial resolution will enable smaller field sizes to be represented, while the temporal
resolution will be good enough to monitor crop phenology. Such models would also utilize
mandatory field-collected data, including data regarding the measured yield, input applied,
management practices, and phenological information. These data mining methods also
need to represent the complex relationship between the predictors and response variables
powerfully using a small number of observations. Moreover, the method would be required
to be repeatable and reproducible so that it could be applied in similar contexts and be
scaled up. Previous research has applied machine learning to wheat yield prediction in
Ethiopia. For instance, a study assessed the potential of an NDVI predictor with cloudy
restored values for wheat yield prediction [20]. Nonetheless, the study was limited in terms
of spatial area coverage, farm heterogeneity, the number of field-collected yield data, and
the number of potential predictors considered and was incomprehensive in addressing the
diverse data mining methods.

In this regard, this study was motivated by the general objective of integrating ma-
chine learning and remote sensing technology for farm-level wheat yield prediction in
smallholder systems. Within this framework, three specific objectives were set: First, the
study aimed to evaluate the potential of selected vegetation indices derived from Sentinel-2
data that were representative of an optical sensor as wheat yield predictors. The second
objective was to evaluate the potential of selected SAR indices derived from S1 data as
wheat yield predictors. The third aim was to apply fast, reproducible, and open-source
statistical, machine learning, and deep learning algorithms for wheat yield prediction under
a small dataset domain.

2. Materials and Methods
2.1. Study Area Description

This study was located in one of the predominant wheat-growing regions of central
Ethiopia (Figure 1a), which covers three districts (locally known as weredas): Arsi Sire,
Dodota, and Ludehetosa (Figure 1b). The total area coverage is estimated to be 125,492 ha.
Though elevation ranges between 1263 and 2984 m above sea level (masl), low- and
mid-altitude landscapes dominate (Figure 1b). The farming system of the study area is
characterized as rainfed and smallholder; this study selected 165 wheat farm fields through
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randomization (Figure 1b). The area of the study farms spans from 0.12 to 2.13 ha, with an
average area of 0.53 ha, and most of them, as shown in the histogram in Figure 1c, have an
area that is less than the average farm size.
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2.2. Dataset Description

In this study, two major groups of datasets were applied: field-collected agronomic
data and satellite images. The major field-collected data included yield harvest, input
utilization (fertilizers and herbicides), and crop calendar data. Wheat fields that were
selected through randomization were demarcated using GPS (Global Positioning System),
and the accuracy of each farm’s unit boundaries was checked and corrected by overlaying
the polygons on Google Earth.

The study applied S2 and S1 images, which represent the optical and synthetic aperture
radar (SAR) groups of satellite sensors, respectively. Sentinel-2 images are higher resolution
(10 m spatial and 5-day temporal resolutions), while S1 SAR images equipped with a
C-band have a spatial resolution of 10 m and temporal resolution of 12 days. Temporally,
this study focused on the year 2020 during the major crop growing season, which spans
from July to November. The multispectral analysis of the S2 data focused on the post-grain-
filling period, which is a critical period for wheat yield prediction [21,22]. The specific
dates that were analyzed were 5 October 2020, 10 October 2020, 15 October 2020, and
20 October 2020. On the other hand, the S1 data analysis included the whole wheat-
growing period and considered 12-day intervals. Seven S1 images taken from 4 August
to 27 October 2020 were used in this analysis. Based on wheat phenology, images from
the dates 4 August 2020–21 September 2020 represent the tillering and grain-filling stage,
while those from 3 October 2020–27 October 2020 represent the post-grain-filling stage [23].

2.3. Sentinel-2 Preprocessing and Vegetation Indices

The retrieved raw S2 images were preprocessed from level-1C to level-2A using the
SNAP atmospheric correction algorithm. A resampling procedure was applied to obtain
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quality scene classification output, which was then used to prepare the cloud mask layer.
The presence of many vegetation indices revealing various levels of accuracy and potential
for crop yield prediction resulted in it being difficult to pick the best-performing ones.
Thus, to achieve a full representation of the various categories, eight indices from four
major categories (green VI, water index, chlorophyll index, and biomass index) were
applied [24,25]. The selected indices as well as with their respective formulae are presented
in Table 1.

Table 1. Vegetation indices with their major categories derived from Sentinel-2 images.

Name Formula Bands Type/Category Sources

NDVI: Normalized
Difference Vegetation Index

(B8 − B4)/(B8 + B4) B8 = 842 nm, B4 = 665 nm Green Vegetation Index [26]

GNDVI: Green Normalized
Difference Vegetation Index

(B8 − B3)/(B8 + B3) B8 = 842 nm, B3 = 560 nm Green Vegetation Index [27]

S2REP: Sentinel-2Red-Edge
Position Index

705 + 35 × ((B4 + B7)/
2 − B5)/(B6 - B5)

B7 = 783 nm, B6 = 740 nm, B5 = 705 nm,
B4 = 665 nm

Green Vegetation Index [28]

NDI45: Normalized
Difference Index

(B5 − B4)/(B5 + B4) B5 = 705 nm, B4 = 665 nm Green Vegetation Index [29]

NDWI: Normalized
Difference Water Index

(B8 − B12)/(B8 − B12) B12 = 2190 nm, B8 = 842 nm Water Index [30]

MCARI: Modified
Chlorophyll Absorption
Ratio Index

((B5 − B4) − 0.2 ×
(B5 − B3)) × (B5/B4)

B5 = 705 nm, B4 = 665 nm, B3 = 560 nm Chlorophyll
Index

[31]

LAI: Leaf Area Index Dry Biomass Index [32]

Fapar: Fraction of Absorbed Photosynthetically Active Radiation Dry Biomass Index [32]

All the vegetation indices were derived using the SNAP platform in the Thematic Land
Processor. The green, water, and chlorophyll indices were computed under the toolsets of
the radiometric vegetation index and water radiometric index processors, while the Dry
Biomass Indices were computed using a biophysical processor.

2.4. Sentinel-1 Data Processing and SAR Indices

A total of 8 Level-1 Ground Range Detected (GRD) Sentinel-1A interferometric wide
images with a 10m spatial and 12-day temporal resolution were downloaded from the
Copernicus Open Access hub. Conventional SAR preprocessing operations, viz. apply-
ing the orbit file, thermal noise removal, radiometric calibration, multi-looking, speckle
filtering, terrain correction, and radiometric normalization were applied. The output
SAR data were then projected onto WGS 1984 Universal Mercator (UTM) coordinates for
further processing.

Sentinel-1 data are available both in single- and dual-polarization modes. This study
refers to previous studies [33,34] and selectively applied σ0 during VH polarization, as it
revealed higher potential as a crop yield predictor. The C-band of the polarimetric SAR
data has a limited capability to penetrate into the crop canopy, making less affected by
the soil background. Thus, these data were considered to be a suitable candidate for the
biomass estimation of crops [34]. In this study, two groups of indices: the single-date
and combined-date indices were derived using σ0 during VH polarization. The single-
date indices were computed for each of the eight dates, whereas the SAR normalized
difference index (SNDVH), SAR simple difference index (SSDVH), and SAR simple ratio
index (SSRVH) were the combined-date indices (Table 2).
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Table 2. The five types of SAR indices used in this study.

Index Formula Remark Sources

σ0
VH,F * σ0

VH,F Single date (8 dates) [34]

σ0
VH,P ** σ0

VH,P Single date (8 dates) [34]

Normalized Difference Index
(SNDVH) (σ0

VH,P − σ0
VH,F)/(σ0

VH,P + σ0
VH,F)

Combined dates (F = 16 August
and P = 3 October) [33]

Simple Difference Index
(SSDVH) σ0

VH,P − σ0
VH,F

Combined dates (F = 16 August
and P = 3 October) [33]

Simple Ratio Index (SSRVH) σ0
VH,P/σ0

VH,F
Combined dates (F = 16 August

and P = 3 October) [33]

* F denotes tillering and grain-filling stage, and P ** denotes post-grain-filling stage.

2.5. Setting of Predictor Variables

All of the vegetation indices derived from the S2 and S1 sensors, comprising a total of
forty-two indices, were aggregated per farm boundary to set the final predictors. Thus, for
each of the farms, a mean value of all of the pixel values per farm boundary was calculated.
Then, the mean values for each farm unit were weighted per the farm area to standardize
the per hectare area. Finally, these values were added as predictors to develop predictive
regression models. The overall methodology followed by the study (from input to output)
is presented in Figure 2.
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2.6. Data Mining Methods
2.6.1. Nonlinear Regression (nlsLM)

In general, as presented in previous studies, there is an exponential relationship
between the crop yield response and some SAR indices [33]. Thus, this study applied
a non-linear model, which is abbreviated as nlsLM, to fit the relationship [35]. For the
response variable (wheat yield (ton/ha)), as part of data preprocessing, outliers were
identified and removed. Due to the small number of observations employed, a leave-one-
out cross-validation (LOOCV) technique was applied. LOOCV is a special case of the
k-fold cross-validation technique in which the number of folds is the same as the number
of observations. It reduces bias and randomness and controls overfitting, and it offers
a comprehensive evaluation, as it uses all of the samples for validation. The model’s
goodness of fit was assessed using the root mean square error (RMSE) and leave-one-out
cross-validation root mean square error (LOO RMSE) [36].

2.6.2. Machine Learning Models

Machine learning algorithms have been effective in modeling the complex relationship
between predictor variables and crop yield. Among the available options, this study
applied the H2O machine learning platform, as it is in the public domain and includes
various machine learning algorithms [37]. For the effective and systematic exploitation of
the platform, we applied three methods: AutoML (automated machine learning), GLM
(generalized linear model), and deep learning. Automated machine learning methods are
more recent algorithms that are becoming increasingly popular. Automating the end-to-
end machine learning process enables quick and straightforward solutions and models.
The AutoML process in H2O provides a model explainability interface that enhances
our understanding of the learning process against the very black-box nature of machine
learning methods. Another interesting feature of H2O’s AutoML process is that it is
designed as a package that contains various sub-algorithms, including GLM (generalized
linear models), GBM (gradient boosting machine), DRF (distributed random forest), XRT
(extremely randomized trees), deep learning, and stacked ensembles. The steps of the
learning process applied in this study are as follows: First, an AutoML was implemented
using a dataset partitioned into 80:20 ratios for training and testing, respectively. Second, the
top algorithm from AutoML was picked for further in-depth hyperparameter optimization
in a stand-alone GLM model. This process was repeated 30 times, and the hyperparameters
with the lowest RMSE values and that appeared more frequently on both the training and
test datasets were selected as the best ones. The number of repetitions kept at 30 because, in
general (even though it was possible for some parameters to be determined earlier), it was
possible to determine the most frequently appearing best values across the hyperparameters
at that point.

Then, the best hyperparameters were applied using 80:20 ratios for training and
testing. Due to the stochastic nature of machine learning methods, with every run of an
algorithm potentially giving a different output, mean values were reported with their
confidence intervals. As the nature of the population distribution and standard deviation
of the population are unknown, the t-interval was used. Therefore, the algorithm was run
30 times, which is the minimum number of samples required to apply the t-interval.

2.6.3. Deep Learning

This study implemented a deep learning algorithm using the total number of forty-two
predictors as well as the 10 most influential predictors obtained from AutoML. The learning
process of deep learning models may involve searching for the optimal values of many
parameters. However, in this study, the learning process focused on the architecture of the
neural network and on controlling overfitting problems. Moreover, as deep learning in
H2O uses an adaptive learning rate, it does not require tuning. To exploit the potential of
the algorithm, the study followed the following steps:
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1. Search for an optimal number of neurons for one, two, and three hidden layers using
a separate setup for each using a grid with a random discrete search strategy using
the training dataset.

2. Search for the optimal values of the hyperparameters, such as type of activation
function, hidden dropout ratios, input dropout ratios, l1 regularization, and l2 regu-
larization, using the training dataset. The range of the values that were searched is
presented in Appendix A.

3. Select the best combination of tuned hyperparameters and apply them to the training,
cross-validation, and the test datasets.

4. Tweak parameters for controlling overfitting, such as hidden dropout ratios, input
dropout ratios, l1, and l2, using the training, CV, and test datasets.

5. Apply the final selected parameters thirty times (due to stochasticity) and compute
the CI for the mean value.

3. Results
3.1. Non-Linear Data Modeling between Wheat Grain Yield and SAR Indices

Based on the non-linear modeling, there is an exponential relationship between the
single-date SAR indices and the wheat grain yield (ton/ha). Figure 3 shows the results of
the non-linear model plots (represent by black fitting lines) for four dates within the tillering
and grain-filling growth stage (Figure 3a–d represent non-linear models for the dates of
4 August, 16 August, 9 September, and 21 September, respectively). On the other hand, the
three plots in Figure 4 present outputs for three dates: 3 October (Figure 4a), 15 October
(Figure 4b), and 27 October (Figure 4c) for the post-grain-filling stage. The comparisons
between the two stages: the tillering and grain-filling stage (Figure 3) and post-grain-filling
stage (Figure 4), revealed a closer result. Across all of the dates and the two growing stages,
the RMSE, with one exception (Figure 4b with 1.23 RMSE value), was 1.22 ton/ha, whereas
the LOO RMSE ranged from 1.22 ton/ha to 1.73 ton/ha, showing closer results between
the stages. In general, across the two stages, the plots between the single-date σ0

VH,F and
σ0

VH,P indices and wheat grain yield (ton/ha) revealed an exponential function.
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Similar to the single-date indices, the combined-date VH polarized indices resulted in
an RMSE of 1.2 ton/ha (Figure 5). Nonetheless, the SND (Figure 5a) and SSR (Figure 5c)
showed better performance and revealed closer values between LOO RMSE and RMSE,
implying the absence of overfitting. For SND (Figure 5b), the LOO RMSE and RMSE
achieved results of 1.32 ton/ha and 1.24 ton/ha, respectively. For SSR, 1.20 ton/ha and
1.22 ton/ha were obtained for the LOO RMSE and RMSE, respectively. Conversely, the SSD
model had an RMSE of 1.2 ton/ha compared to a higher value of 1.79 ton/ha for the LOO
RMSE. The higher value of the LOO RMSE could be due to the presence of more noise
in the dataset, which, in turn, is associated with the wider data range in the SSD value
(−5–10).
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3.2. Modeling Using AutoML

Automated machine learning, AutoML, offers a quick method for training and can
achieve satisfactory results in a short amount of time. In this study, the process of training
an AutoML started by using all forty-two variables as predictors. To obtain conclusive
output, AutoML training was implemented repeatedly. Out of the ten runs of the AutoML
method, the GLM model, which is one of the components of the AutoML method, was the
top-performing one as it came first in seven cases (see Table 3 for an average value of the
ten runs).

Table 3. Table showing the performance of the top four component algorithms of the AutoML model.

No Model Name Mean Residual Deviance RMSE (ton/ha) MSE (ton/ha) MAE (ton/ha)

1 GLM 1 0.87 0.93 0.87 0.74
2 Stacked Ensemble

Best Of Family
0.89 0.94 0.89 0.75

3 GBM Grid 0.94 0.97 0.94 0.78
4 GBM 2 0.95 0.97 0.95 0.78

According to the average values, the GLM 1 model revealed average values of
0.93 ton/ha, 0.87 ton/ha, and 0.74 ton/ha for the RMSE, MSE, and MAE, respectively.
The stacked Ensemble Best of Family algorithm was the second-best performing algo-
rithm. Various GBM were also among the top algorithms, and, most importantly, they
constitute the top models, appearing repeatedly at the top of the list. Given the small
number of observations in this study on the one hand and the large number of predictors
on the other hand, it is imperative to select the most important variables. Thus, according
to the variable importance plots developed using the two best performing models, viz.
GLM (see Appendix B) and GBM (see Appendix C), the ten most important variables were
selected: LAI1020, LAI1010, NDVI1020, VH1015, MCARI1005, NDI451015, Fapar1020,
NDWI1005, GNDVI1010, and NDWI1020. Of all of the predictors, LAI became the most
influential predictor. Moreover, the predictors derived from S2 were found to be more
important than those derived from the S1 sensors.

3.3. Modeling and Validation of GLM Model

The most important variables were selected using an AutoML algorithm. The GLM
model was found to be the top model compared to the other components of the AutoML.
In this section, to fully exploit the potential of the GLM model, hyperparameter tuning was
implemented by employing the top ten most important variables. For the GLM model,
alpha was the most important hyperparameter; a grid search process was implemented to
obtain the best value of alpha and the corresponding lambda value. Thus, alpha = 0.0 and
lambda = 0.02808 were found to be the best hyperparameters. These hyperparameters were
applied using five-fold CV. Due to the stochastic nature of the machine learning algorithms,
we determined the CI for the population mean (Table 4) of wheat yield. Accordingly,
we achieved a 99% confidence level for the unknown RMSE (ton/ha) of the mean of the
population on the training dataset, with a value of 0.84 to 0.88. Likewise, for the test dataset,
the 99% CI was 0.84–0.98.

In addition to the average values that were reported, scatter plots were also helpful to
examine the correlation between the estimated (predicted) and measured yields. For the
test dataset, six scatter plots for six GLM models using different seeds were computed (see
Figure 6). Accordingly, the correlation coefficient (r) between the estimated and measured
yield ranges from 0.69 to 0.19. Since the study was implemented using a small dataset
domain, careful handling of the outliers is critical, and outliers were removed.
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Table 4. Table showing RMSE (ton/ha) CI values of 99% for training, CV, and test datasets.

No Dataset Mean (ton/ha) 99% CI (ton/ha) p-Value t df

1 Train 0.86 0.84–0.88 p-value < 2.2 × 10−16 144.73 28
2 CV 0.93 0.91–0.96 p-value < 2.2 × 10−16 125.36 28
3 Test 0.91 0.84–0.98 p-value < 2.2 × 10−16 37.74 28
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Figure 6. Scatter plots showing the performance of GLM on the test dataset for six randomly selected
seeds. The red lines represent a 1:1 line between estimated and measured yields. (A–F) refer to six
plots prepared using six randomly generated numbers (seeds).

However, by summarizing the information from the six scatter plots, it can be observed
that the performance of the models is weak at higher yield values (beyond 4 ton/ha). This
could partly be associated with the non-normal sample distribution property of the response
variable (measured yield). The response variable has an average value of 2.88 ton/ha and a
median of 2.62 ton/ha, which are almost the same. However, the dataset has a range of
0–7 ton/ha, and this resulted in the histogram being skewed to the left (see Figure 7). Even
after outliers were removed, the models showed limitations at higher values.
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3.4. Modeling and Validation of Deep Learning

When applying deep learning models, the number of neurons is the most important
parameter. In this study, tuning for the optimal values for the number of neurons was
implemented separately for one, two, and three hidden layers. In general, among the
three groups, models with two hidden layers were inferior. Since the purpose of this study
was to find the best model, the results below focus on the other two groups; however, the
summary for all three groups will be presented later on (Table 5). Accordingly, for one
hidden layer, as shown in Figure 8, two major characteristics were observed. Initially, as
the number of neurons increased the error decreased; however, it started to increase as the
number of neurons increased further. In particular, the error values increased steadily as
the number of neurons passed a value of 1000. Thus, the number of neurons in the region
where the global minimum was expected ranged from 0–1000.

Table 5. Table showing the number of neurons of the lowest three error values for three hidden layers.

Metric

Number of Hidden Layers

One Hidden Layer Two Hidden Layers Three Hidden Layers

No of Neurons No of Neurons No of Neurons

150 75 80 55 35 90 55 35 100

RMSE (ton/ha) 1.20 1.20 1.21 1.23 1.24 1.25 1.18 1.20 1.20
MAE (ton/ha) 0.98 0.97 0.97 0.98 1.01 1.00 0.95 0.97 0.98

RMSLE (ton/ha) 0.32 0.31 0.31 0.32 0.32 0.32 0.32 0.32 0.33

As a result, out of the total range (0–7000), the learning process targeted the limited
range (0–1000) to identify the global minima value. Thus, detailed learning was imple-
mented, and results are displayed using Figure 9.

Likewise, Figure 10 presents the performance for three hidden layers. Based on the
three metrics used, lower error metrics were found when the number of neurons was less
than 100.
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In the previous section (Figures 8–10), the overall trend of the number of neurons
against the error metrics was presented. To identify the optimal number of neurons yielding
the lowest error value, the lowest three error values for each of the three hidden layers
were computed (Table 5). The comparison across the three groups of hidden layers showed
that 55 number of neurons of the three hidden layer group revealed the lowest MAE and
RMSE values of 0.95 ton/ha and 1.18 ton/ha, respectively.

Nonetheless, for one hidden layer 80 and 75 neurons revealed an RMSLE value of
0.31 ton/ha, which was the lowest one in the group.

Therefore, for subsequent parameter tuning, 80 neurons were selected for one hidden
layer, and 55 neurons were selected for three hidden layers. Among the various hyperpa-
rameters available for deep learning, in this study, we selected the most important ones: the
type of activation function, the hidden dropout ratio, output dropout ratio, l1 regularization,
and l2 regularization. These parameters were searched using a grid search strategy, and
the optimal hyperparameters were obtained and are presented in Table 6. In both groups,
tanh drop out activation function and input dropout ratio values of 0.5 are the best values.

Table 6. Optimal hyperparameters selected based on performance on training, CV, and test datasets.

No Hidden Layer Neurons Activation Function Hidden Drop
out Ratio

Input Drop
out Ratio L1 L2

1 One 80 Tanh Dropout 0.5 0.5 0.1 0.1
2 Three 55 Tanh Dropout 0.1, 0.1, 0.1 0.5 0.0 1.0 × 10−5

Finally, for two hidden layers, the best hyperparameters were applied, and the CI was
computed. Thus, Tables 7 and 8 revealed that the mean RMSE of wheat yield at a 99% CI
for one and three hidden layers, respectively. For the networks with one hidden layer, the
RMSE on the training dataset was 1.24 ton/ha, while a value of 1.42 ton/ha was obtained
on the test dataset. This result was obtained using the total number of predictors (42) used
in the study.

Table 7. Showing RMSE (ton/ha) values at a 99% CI for the training, CV, and test datasets for one
hidden layer.

No Dataset Mean (ton/ha) 99% CI (ton/ha) p-Value t df

1 Train 1.24 1.23–1.24 <2.2 × 10−16 478.10 28
2 CV 1.26 1.25–1.27 <2.2 × 10−16 316.67 28
3 Test 1.42 1.41–1.43 <2.2 × 10−16 388.82 28

Table 8. Table showing RMSE (ton/ha) values at 99% CI for training, CV, and test datasets for three
hidden layers.

No Dataset Mean (ton/ha) 99% CI (ton/ha) p-Value t df

1 Train 1.20 1.20–1.21 <2.2 × 10−16 360.58 28
2 CV 1.20 1.19–1.21 <2.2 × 10−16 259.10 28
3 Test 1.34 1.31–1.36 <2.2 × 10−16 141.53 28

Compared to the outputs obtained using one hidden layer, three hidden layers revealed
better outputs. As shown in Table 8, mean RMSE values of 1.20 ton/ha and 1.34 ton/ha were
obtained using the training and test datasets, respectively. These values were obtained using
10 predictors identified based on their variable importance using the AutoML algorithm
presented under Section 3.2. Although the ten parameters were applied for one hidden
layer, the performance did not improve.

In addition to metric-based validation, model performance was assessed using scatter
plot analysis. As shown in Figure 11, six scatter plots for six DNN models using three
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hidden layers using the test dataset were prepared. The scatter plots present the correlation
between the estimated yield and measured yield. In general, there is a positive correlation,
and a strong association is displayed in the range of less than 4 ton/ha. Similar to the
GLM model performance discussed in Section 3.4, the DNN model showed limitations at
higher values.
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4. Discussion

This study aimed to develop a method for remote sensing-based wheat yield prediction
in smallholding and heterogeneous farming systems. The study obtained predictors from
vegetation indices derived from high-resolution optical and SAR sensors. Eight vegetation
indices were computed from S2 optical sensors, and five SAR indices were calculated
from the S1 sensor data. Considering the complex relationship between the predictors
and response variables, data mining methods, which can be grouped under three broad
categories: statistical, machine learning, and deep learning, were applied. Unlike common
approaches to machine learning and deep learning implementation, due to the scarcity of
the response variable (field-collected wheat grain yield), in this study, data mining methods
were implemented under a small dataset domain.

In harnessing the phenological information of the wheat, VH backscatter SAR indices
were computed for single and combined dates. Single-date indices were calculated for two
stages: the tillering and grain-filling stage and the post-grain-filling stage. For both stages,
as determined in previous studies [33], an exponential relationship existed between the
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single-date SAR index and wheat grain yield. The non-linear modeling of the two stages
revealed closer outputs. For the two stages, the LOO RMSE ranged between 1.22 ton/ha
and 1.73 ton/ha, while the RMSE was 1.22 ton/ha. The similarity of the outputs from
the two stages suggests that the SAR indices could be used by either of them, offering
comparable results.

The smaller gap between the RMSE and LOO RMSE values, the combined-date indices,
such as SND and SSR showed relatively improved performance over the rest of the SAR
indices. SND and SSR achieved values of1.32 ton/ha and 1.20 ton/ha as well as values of
1.24 ton/ha and 1.22 ton/ha for LOORMSE and RMSE, respectively. This shows that the
combined-date indices offer increased capacity over single-date indices. It is intuitive to
expect indices to integrate wider phenological information to outperform narrow ones.

Overall, in this study, the performance of the SAR indices as wheat yield predictors
compared to other predictors is weak. Since the SAR parameters are sensitive to many bio-
physical variables, including the plant structure, leaf size, stem density, biomass, and plant
water content, they have immense potential to determine important crop parameters [38].
Nonetheless, the application of the SAR signal in agriculture is complicated, as the signal is
sensitive to soil moisture and surface roughness, and SAR backscatter is also influenced
by the inherent properties of the SAR signal, such as its frequency, incidence angle, and
polarization [39]. On the other hand, some previous studies revealed strong prediction
capability. For instance, using the SSDVH predictor, rice yield was estimated with RMSE
value of 0.74 ton/ha and with a relative error of 7.93% [33].

For wheat, it was asserted that the relationship between the polarimetric SAR param-
eters and wheat height is complex. Weak correlations are reported at the early and late
growth stages. At the stem elongation stage, relationships are negative, and correlations
are weak between most of the polarimetric SAR parameters and wheat height. A relatively
good but negative association with wheat height was revealed using HV and Yamaguchi
helix scattering with R2 = 0.57 and R2 = 0.39, respectively, during the middle growing
stage [40].

Among the constituent algorithms of the AutoML package, the GLM and GBM yield
improved performance. Using the ten influential parameters, the GLM model revealed an
RMSE of 0.84–0.98 ton/ha for the mean population at a 99% CI on the test dataset, while
the performance on the training dataset was 0.84–0.88 ton/ha. The narrower gap between
the two performances implies that the model has a good generalization error. This model
used an alpha value of 0 and a lambda value of 0.02808. An alpha value of 0 represents
ridge regression that is theoretically expected to offer better results when the prediction
power is spread out over the various features. This is well-observed in this study, where a
number of predictors were found to be important (see Appendix B).

Among the 42 predictor variables derived from both optical and SAR indices covering
the tillering and grain-filling stage and post-grain-filling stage, in the post-grain-filling stage
(i.e., LAI1020), the leaf area index is the most influential parameter. In maize fields, the leaf
area index obtained from field instrument measurements outperformed fifteen vegetation
indices, showing a higher association with biomass, with R2 = 0.89, RMSE = 2.27 ton/ha,
and RRMSE = 30.55%. In particular, in good agreement with this study, the leaf area index
obtained during the grain-filling stage (relative root mean squared error (RRMSE) = 29.83%)
shows improved performance over early stages (RRMSE = 38.87%) [16]. Likewise, the
LAI from the Sen2-Agri estimates derived using inverse radiative transfer modeling re-
vealed better capability than various vegetation indices, with R2 values of 0.68, 0.62, 0.80,
and 0.48 for cotton, maize, millet and sorghum, respectively [24]. This implies that the
S2-derived leaf area index is good enough for monitoring yield variability and can be used
to replace the field-measured leaf area index. On the other hand, the rest of the predictors
representing the green, water, and chlorophyll index groups showed closer potential and
were inferior to the biomass indices (in this case, the leaf area index).

The present study implemented a deep learning model emphasizing the architecture
of the neural network. Due to their inherent complexity, deep learning models are likely to
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overfit during training. This is especially more likely when using a small dataset. Deep
learning models apply several regularization techniques to control overfitting. This study
applied the three widely applied regularization techniques: L1, L2, and dropout. In general,
regularization techniques, when applied in deep learning models, offer a robust model via
reducing the complexity of the network. L1 regularization forces the weight parameter
to become zero, whereas L2 forces the parameters towards zero. Dropout methods make
the training process noisy. In neural networks, dropouts are implemented per layer, i.e.,
on hidden layers and on the visible or input layers. In this study, three number ranges of
neurons: 0–6000, 0–1000, and 0–500, were searched for one, two, and three hidden layers. A
model with three hidden layers with 55 neurons each and with the tanh dropout activation
function showed improved performance. At a 99% confidence interval, the mean RMSE
was 1.31–1.36 ton/ha on the test dataset. Moreover, this model had hidden dropout ratio,
input dropout ratio, and l2 regularization values of 0.1, 0.5, and 0.00001, respectively.

On the other hand, the model with one hidden layer revealed a 99% CI of 1.41–1.43 ton/ha
for the mean RMSE. The optimal hyperparameter values of the model are 80 neurons, the
tanh dropout activation function, a hidden dropout ratio of 0.5, an l1 regularization value
of 0.1, an input dropout ratio of 0.5, and an l2 regulation value of 0.1. The deep learning
model using three hidden layers had a 99% CI of 1.31–1.36 ton/ha for the mean RMSE and
outperformed the model with one hidden layer, indicating that this could be associated
with the former model that used the ten most influential parameters and the later model
using the full set of predictors. Nonetheless, the combination of the ten influential parame-
ters with a model with one hidden layer did not show any improvement over using the
full number of predictors.

Deep learning methods are applied because they are expected to deliver better results
compared to machine learning algorithms. Comparing the machine learning and deep
learning approaches for crop yield prediction is not a straightforward process. This is
because the design and implementation of various studies are characterized by a diverse
set of factors, viz. different algorithms, data sources, platforms, crop types, features (data
groups), categories, and evaluation performance metrics. Moreover, there is also diversity
in the motivation of deep learning, such as processing multiple array formats in nonlinear
modules, integrating multiple parameters accurately, automating and/or simplifying tasks,
capturing time dependencies, and the capability of generalizing and revealing superior
models [19]. Nonetheless, there are some relevant studies. Convolutional neural network
(CNN), deep neural network (DNN), and long short-term memory (LSTM) are the best-
performing deep learning algorithms used in crop yield prediction. Wheat is second to
maize in terms of the most studied crop in deep learning. Supervised deep learning is the
most widely applied deep learning method for crop yield prediction [19].

With the ultimate objective of developing a better model, this study applied three
major methods, namely the non-linear model, automated machine learning, and a deep
learning model. Among the constituent algorithms of the AutoML package, the GLM model
was the top one. Thus, the study proceeded with the GLM model via hyperparameter
tuning, which resulted in a significant improvement, causing it to outperform the rest of the
models. Accordingly, a GLM model employing the ten most influential parameters revealed
the best prediction results. Thus, the developed method employs both the capability of the
AutomL package as well as the capability of GLM to search for hyperparameters. In terms
of performance, revealing higher wheat prediction capability, this combined approach
seems synergetic and fast compared to deep learning and non-linear models. Moreover, as
the study was implemented under a small dataset and because the AutoML offered the ten
most influential parameters, this contributed to the obtained performance improvement.
From a practical perspective, this has invaluable significance. The efficient and effective
training of machine learning models is often a very daunting task. Nonetheless, in this
study, better results were obtained using an automated machine learning method that can
be easily implemented by experts with limited skills in data mining methods. This implies
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the scalability of the approach to environments with limited access to well-skilled experts
and robust off-the-shelf data mining platforms.

The comparison of the performance of the three data mining methods should be con-
sidered under the context and purpose of the study. First, the results from the nlsLM model
were inferior to those of other models, mainly because it only used one type of predictor
(derived from SAR). Initially, this method was chosen by referring to previous studies in
which robust prediction capability was reported, hence causing it to be selected as a stand-
alone method [33]. However, as the variable importance plot (see Appendices B and C)
showed the importance of several predictors, the use of a single predictor might not offer
satisfactory results. Second, for the combined method, an AutoML with tuned GLM, was
the superior model. This was largely because it was determined the AutoML method
offers a better fitting model after comparing the range of sub-algorithms that constituent
the model. For instance, in this study, the AutoML revealed that the GLM model was
better fitting compared to models such as the deep learning and stacked ensemble models,
among others. Third, the performance of deep learning models should also be interpreted
cautiously. This study applied a comprehensive (considering networks with one to three
layers) and a rigorous (several hyperparameters) implementation approach. However, due
to the wider complexity and resources of the deep learning models, different untested
configurations might be possible and could unleash different capability.

The implementation of the current study under a small dataset domain resulted
in both pros and cons. The advantages include, for instance, the LOOCV technique in
nlsLM, which is theoretically expected to offer less biased model performance output,
being easily implemented because the computational demand was inexpensive. In H2O
platform’s reproducible results could be obtained using a deep learning algorithm if the
system was deployed using a core and the same seed. In this regard, the use of a small
dataset enabled availing reproducible results. Additionally, when the deployment of the
algorithm did not offer reproducible results, for instance, the GLM model in H2O did not
support reproducibility, the use of a small number of observations eased algorithms used
to compute a CI from running repeatedly.

On the downside, machine learning and deep learning methods are commonly de-
veloped using big observation datasets, and the adoption of such methods under a small
data set is associated with major constraints, such as controlling the bias-variance trade-
off, overfitting, and the careful handling of outliers. As a solution, in this study, several
techniques were applied during data preprocessing, model development, and validation
to address the constraints of the small dataset. Outlier removal and LOOCV were used
during nlsLM modeling. Average values of error metrics were computed while the GLM
and deep learning models were developed. Moreover, relevant predictors obtained from
the AutoML model were used to develop the GLM algorithm. Furthermore, the mean and
confidence interval values were computed to develop and validate the tuned GLM and
deep learning algorithms.

5. Conclusions

This study was set to evaluate the potential of selected vegetation indices derived
from Sentinel-2 and Sentinel-1 data as a wheat yield predictor. Moreover, it applied fast,
reproducible, and open-source statistical, machine learning, and deep learning algorithms
for wheat yield prediction under a small dataset domain.

The study successfully derived wheat yield predictors using optical (S2) and SAR (S1)
sensors. The development of the indices considers the representation of important phe-
nological information and various groups of indices. The study exploited the potential
of three groups of data mining methods and presented fast and reproducible wheat yield
prediction approaches.

A combined method, the AutoML with GLM hyperparameter tuning, showed higher
performance over the rest of the methods. The AutoML, with minimum effort and within
a short amount of time, was good enough to deliver the ten most influential parameters
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and was the top-performing algorithm among its constituents. The method revealed a
mean RMSE of 0.84–0.97 ton/ha at a 99% CI using the ten parameters. The leaf area index
obtained from the post-grain-filling stage was found to be the most influential parameter
compared to all the rest of the optical and SAR-derived parameters.

Though the study applied a wide range of values for one, two, and three hidden
layers, the lowest error metrics were found using a small number of neurons. A deep
neural network with three hidden layers using the ten influential parameters outperformed
networks with one and two hidden layers. It revealed a mean RMSE of 1.31–1.36 ton/ha on
the test dataset at a 99% CI. This model used 55 neurons with hidden dropout ratio, input
dropout ratio, and l2 regularization values of 0.1, 0.5, and 0.00001, respectively.

The optimal models obtained from the three data mining approaches take advantage
of the phenological information, and the information from the post-grain-filling stage
in particular.

Although various machine learning and deep neural networks have been developed
and are widely available, the effective and efficient training of them is challenging. In
this regard, the AutoML with GLM hyperparameters method is especially useful, as it is
fast and reproducible and can potentially be applied in similar crop production systems.
Moreover, it could be adapted to predict grain yields for other cereals crops using high
resolution satellite sensors. Furthermore, as H2O is available under the public domain, it
could be widely used in resource-poor setups. Future studies might compare the current
approach and platform with widely used platforms for crop yield prediction, such as Keras
and Tensorflow [19].

On the other hand, improved performance in terms of reliability and robustness could
be sought by incorporating additional potential predictors that represent, for instance, soil
and climatic variability, among others.
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Appendix A

Table A1. Table showing hyperparameters tuned with their range of respective values applied in the
study for deep learning models.

No Hidden Layer Neurons Activation Types Hidden Drop
out Ratios

Input Drop
out Ratios L1 L2

1 One
From 0–100 at an interval
of 5, 100–800 at an
interval of 50, 1000–6000
at an interval of 1000

Tanh, tanh with dropout,
rectifier, rectifier with
dropout, maxout, maxout
with dropout

0, 0.1, 0.2, 0.5 0, 0.0001, 0.001,
0.05, 0.1, 0.2,0.5

0.00001,
0.0001,
0.01, 0.05,
0.1

0.00001,
0.0001,
0.01, 0.05,
0.1

2 Two
From 0–100 at an interval
of 5, from 100–800 at an
interval of 50, and 1000

Tanh, tanh with dropout,
rectifier, rectifier with
dropout, maxout, maxout
with dropout

0, 0.1, 0.2, 0.5 0,0.0001, 0.001,
0.05, 0.1, 0.2,0.5

0.00001,
0.0001,
0.01, 0.05,
0.1

0.00001,
0.0001,
0.01, 0.05,
0.1

3 Three
From 0–100 at an interval
of 5, from 150–500 at an
interval of 50

Tanh, tanh with dropout,
rectifier, rectifier with
dropout, maxout, maxout
with dropout

0, 0.1, 0.2, 0.5 0,0.0001, 0.001,
0.05, 0.1, 0.2,0.5

0.00001,
0.0001,
0.01, 0.05,
0.1

0.00001,
0.0001,
0.01, 0.05,
0.1
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