Willingness to Pay to Adopt Conservation Agriculture in Northern Namibia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methodology
3. Results and Discussion
3.1. Results
3.2. Discussion
4. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lai, C.; Chan, C.; Halbrendt, J.; Shariq, L.; Roul, P.; Idol, T.; Ray, C.; Evensen, C. Comparative economic and gender, labour analysis of conservation agriculture practices in tribal villages in India. Int. Food Agribus. Manag. Rev. 2012, 15, 73–86. [Google Scholar]
- Yu, T.; Mahe, L.; Li, Y.; Wei, X.; Deng, X.; Zhang, D. Benefits of Crop Rotation on Climate Resilience and Its Prospects in China. Agronomy 2022, 12, 436. [Google Scholar] [CrossRef]
- Remmert, D. Conservation Agriculture: Time to Recap the Benefits; Institutes for Public Policy Research: London, UK, 2020; Available online: https://ippr.org.na/wp-content/uploads/2020/09/IPPR_HSF_CONAGRI_Web-1.pdf (accessed on 8 February 2025).
- MAWF. Comprehensive Conservation Agriculture Programme for Namibia 2015–2019; Ministry of Agriculture, Water and Forestry: Windhoek, Namibia, 2015. [Google Scholar]
- Kerdiles, H.; Rembold, F.; Pérez-Hoyos, A. Seasonal Monitoring in Namibia: Severe Drought Affecting Cereal Production and Pastoral Areas in Northern and Central Namibia; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Suchithkumar, C.; Reddy, S.; Divyavani, P.; Divya, S.; Sravya, M.; Mani, M.; Manoharan, G.; Kumar, S. Modern Challenges in Agriculture. AIP Conf. Proc. 2024, 2971, 040051. [Google Scholar] [CrossRef]
- Haring, S.; Schmulevich, S.P.; Manser, G.M.; Cooper, M.H. Rethinking scientists’ ongoing participation in “feeding the world”. Front. Sustain. Food Syst. 2023, 7, 1174704. [Google Scholar] [CrossRef]
- Jat, M.L.; Chakraborty, D.; Ladha, J.K.; Rana, D.S.; Gathala, M.K.; McDonald, A.; Gerard, B. Conservation agriculture for sustainable intensification in South Asia. Nat. Sustain. 2020, 3, 336–343. [Google Scholar] [CrossRef]
- Soares, J.C.; Santos, C.S.; Carvalho, S.M.P.; Pintado, M.M.; Vasconcelos, M.W. Preserving the nutritional quality of crop plants under a changing climate: Importance and strategies. Plant Soil 2019, 443, 1–26. [Google Scholar] [CrossRef]
- Jat, H.S.; Datta, A.; Choudhary, M.; Sharma, P.C.; Jat, M.L. Conservation Agriculture: Factors and drivers of adoption and scalable innovative practices in Indo-Gangetic plains of India—A review. Int. J. Agric. Sustain. 2020, 19, 40–55. [Google Scholar] [CrossRef]
- Mendelsohn, J.; Jarvis, A.; Roberts, C.; Robertson, T. Atlas of Namibia: A Portrait of the Land and Its People, 3rd ed.; David Philip Publishers: Cape Town, South Africa, 2010. [Google Scholar]
- Finke, G.; Gee, K.; Kreiner, A.; Amunyela, M.; Braby, R. Namibia’s way to Marine Spatial Planning—Using existing practices or instigating its own approach? Mar. Policy 2020, 121, 104107. [Google Scholar] [CrossRef]
- Matanyaire, C.M. Pearl Millet Production System(s) in the Communal Areas of Northern Namibia: Priority Research foci Arising from a Diagnostic Study; ICRISAT Conference paper No.CP 1063; ICRISAT: Patancheruvu, India, 1996. [Google Scholar]
- Krebs, J. A Preliminary Survey on Soil Management Practices and Land Units on Soil Organic Carbon of Small-Scale Communal Farmers in North Central Namibia. Landscape Ecology and Nature Conservation. Master’s Thesis, Greifswald Universität, Greifswald, Germany, 2014. [Google Scholar]
- Ghaley, B.B.; Rusu, T.; Sandén, T.; Spiegel, H.; Menta, C.; Visioli, G.; O’Sullivan, L.; Gattin, I.T.; Delgado, A.; Liebig, M.A.; et al. Assessment of benefits of conservation agriculture on soil functions in arable production systems in Europe. Sustainability 2018, 10, 794. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Wang, J.; Li, X.; Guo, Q.; Yu, Z.; Yang, T.; Zhang, H. Long-term no-tillage and different residue amounts alter soil microbial community composition and increase the risk of maize root rot in northeast China. Soil Tillage Res. 2020, 196, 104452. [Google Scholar] [CrossRef]
- Mutua, J.; Muriuki, J.; Gachie, P.; Bourne, M.; Capis, J. Conservation Agriculture with Trees: Principles and Practice; Technical Manual No. 21; World Agroforestry Centre: Nairobi, Kenya, 2014. [Google Scholar]
- Corsi, S. Conservation Agriculture: Training Guide for Extension Agents and Farmers in Eastern Europe and Central Asia; FAO: Rome, Italy, 2019. [Google Scholar]
- Mkomwa, S.; Kassam, A.H.; Freindrich, T.; Shula, R.K. Conservation Agriculture in Africa: Building Resilient Farming Systems in a Changing Climate; CABI International: Wallingford, UK, 2017. [Google Scholar]
- Rowen, E.K.; Regan, K.H.; Barbercheck, M.E.; Tooker, J.F. Is tillage beneficial or detrimental for insect and slug management? A meta-analysis. Agric. Ecosyst. Environ. 2020, 294, 106849. [Google Scholar] [CrossRef]
- Su, Y.; Gabrielle, B.; Beillouin, D.; Makowski, D. High probability of yield gain through conservation agriculture in dry regions for major staple crops. Sci. Rep. 2021, 11, 3344. [Google Scholar] [CrossRef]
- Rasaily, R.G.; Li, H.; He, J.; Wang, Q.; Lu, C. Influence of no tillage-controlled traffic system on soil physical properties in double cropping area of North China plain. Afr. J. Biotechnol. 2012, 11, 856–864. [Google Scholar] [CrossRef]
- Meseret, D. Land Degradation in Amhara Region of Ethiopia: Review on Extent, Impacts and Rehabilitation Practices. J. Environ. Earth Sci. 2016, 6, 120–130. [Google Scholar]
- Wu, C.; Liu, G.; Huang, C.; Liu, Q. Soil quality assessment in Yellow River Delta: Establishing a minimum data set and fuzzy logic model. Geoderma 2019, 334, 82–89. [Google Scholar] [CrossRef]
- Kassam, A.; Coates, D. The global uptake of conservation agriculture and the impact on water-related ecosystem services. In The Oxford Handbook of Food, Water and Society; Oxford Academic: Oxford, UK, 2018. [Google Scholar] [CrossRef]
- Yang, T.; Siddique, K.H.M.; Liu, K. Cropping systems in agriculture and their impact on soil health—A review. Glob. Ecol. Conserv. 2020, 23, e01118. [Google Scholar] [CrossRef]
- Taapopi, M.; Kamwi, J.M.; Siyambango, N. Perception of Farmers on Conservation Agriculture for Climate Change Adaptation in Namibia. Environ. Nat. Resour. Res. 2018, 8, 33–43. [Google Scholar] [CrossRef]
- Li, H.; He, J.; Wang, Q.; Li, H.; Sivelli, A.; Lu, C.; Lu, Z.; Zheng, Z.; Zhang, X. Effects of Permanent Raised Beds on Soil Chemical Properties in a Wheat-Maize Cropping System. Soil Sci. 2013, 178, 46–53. [Google Scholar]
- Hermans, T.D.G.; Dougill, A.J.; Peacock, C.L.; Eze, S.; Thierfelder, C. Combining local knowledge and soil science for integrated soil health assessments in conservation agriculture systems. J. Environ. Manag. 2021, 286, 112192. [Google Scholar] [CrossRef]
- Sharma, H.; Kaur, S.; Sahoo, C.; Saini, A. Conservation Agriculture: Principles and Advantages. In Climate Change and Agriculture—Its Impact and Mitigation Potential; Kripa Drishti Publications: Pune, India, 2024. [Google Scholar]
- Bell, R.W.; Haque, M.E.; Jahiruddin, M.; Rahman, M.M.; Begum, M.; Miah, M.A.M.; Islam, M.A.; Hossen, M.A.; Salahin, N.; Zahan, T.; et al. Conservation Agriculture for Rice-Based Intensive Cropping by Smallholders in the Eastern Gangetic Plain. Agriculture 2018, 9, 5. [Google Scholar] [CrossRef]
- El-Shater, T.; Mugera, A.; Yigezu, Y.A. Implications of Adoption of Zero Tillage (ZT) on Productive Efficiency and Production Risk of Wheat Production. Sustainability 2020, 12, 3640. [Google Scholar] [CrossRef]
- Farooq, M.; Siddique, K.H.M. Conservation Agriculture: Concepts, brief history, and impacts on agricultural systems. In Conservation Agriculture; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Gracia-Romero, A.; Vergara-Diaz, O.; Thierfelder, C.; Cairns, J.E.; Kefauver, S.C.; Araus, J.L. Phenotyping conservation agriculture management effects on ground and aerial remote sensing assessments of maize hybrids performance in Zimbabwe. Remote Sens. 2018, 10, 349. [Google Scholar] [CrossRef]
- Kidane, S.M.; Lambert, D.M.; Eash, N.S.; Roberts, R.K.; Thierfelder, C. Conservation Agriculture and Maize Production Risk: The Case of Mozambique Smallholders. Agron. J. 2019, 111, 2636–2646. [Google Scholar] [CrossRef]
- FAO. Conservation Agriculture. Understanding the Context; FAO: Rome, Italy, 2017. [Google Scholar]
- Hobbs, P.R. Conservation Agriculture: What Is It and Why Is It Important for Future Sustainable Food Production? J. Agric. Sci. 2007, 145, 127–137. [Google Scholar] [CrossRef]
- He, J.; Zhang, Z.; Li, H.; Wang, Q. Development of small/medium size no-till and minimum-till seeders in Asia: A review. Int. J. Agric. Biol. Eng. 2014, 7, 1–12. [Google Scholar]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of conservation agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Derpsch, R.; Friedrich, T.; Kassam, A.; Li, H. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agric. Biol. Eng. 2010, 3, 1–25. [Google Scholar] [CrossRef]
- FAO. The Economics of Conservation Agriculture; FAO: Rome, Italy, 2001. [Google Scholar]
- IFAD. Designing and Implementing Conservation Agriculture in Sub-Saharan Africa: Environment and Climate Change; IFAD: Rome, Italy, 2016. [Google Scholar]
- Friedrich, T.; Derpsch, R.; Kassam, A. Overview of the Global Spread of Conservation Agriculture. Field Actions Sci. Rep. 2012. Available online: https://journals.openedition.org/factsreports/1941 (accessed on 8 February 2025).
- Giller, K.E.; Hijbeek, R.; Andersson, J.A.; Sumberg, J. Regenerative Agriculture: An agronomic perspective. Outlook Agric. 2021, 50, 13–25. [Google Scholar] [CrossRef]
- Ranaivoson, L.; Naudin, K.; Ripoche, A.; Rabeharisoa, L.; Corbeels, M. Effectiveness of conservation agriculture in increasing crop productivity in low input rainfed rice cropping systems under humid subtropical climate. Field Crop. Res. 2019, 239, 104–113. [Google Scholar] [CrossRef]
- Hermans, T.D.G.; Whitfield, S.; Dougill, A.J.; Thierfelder, C. Bridging the disciplinary gap in conservation agriculture research, in Malawi. A review. Agron. Sustain. Dev. 2020, 40, 3. [Google Scholar] [CrossRef]
- Sims, B.; Corsi, S.; Gbehounou, G.; Kienzle, J.; Taguchi, M.; Friedrich, T. Sustainable Weed Management for Conservation Agriculture: Options for Smallholder Farmers. Agriculture 2018, 8, 118. [Google Scholar] [CrossRef]
- Von Hase, F. Facilitating Conservation Agriculture in Namibia Through Understanding Farmers’ Planned Behaviour and Decision Making. Master’s Thesis, Swedish University of Agricultural Sciences, Alnarp, Sweden, 2013. [Google Scholar]
- Giller, K.E.; Witter, E.; Corbeels, M.; Tittonell, P. Conservation Agriculture and Smallholder Farming in Africa: The Heretic’s View. Field Crops Res. 2009, 114, 23–34. [Google Scholar] [CrossRef]
- Lindwall, C.W.; Sonntag, B. Landscape Transformed: The History of Conservation Tillage and Direct Seeding; Knowledge Impact in Society: Saskatoon, SK, Canada, 2010. [Google Scholar]
- Singh, R.; Kumari, T.; Verma, P.; Singh, B.P.; Raghubanshi, A.S. Compatible package-based agriculture systems: An urgent need for agro-ecological balance and climate change adaptation. Soil Ecol. Lett. 2021, 4, 187–212. [Google Scholar] [CrossRef]
- Abdulai, A.N. Impact of conservation agriculture technology on household welfare in Zambia. Agric. Econ. 2016, 47, 729–741. [Google Scholar] [CrossRef]
- Grabowski, P.P.; Kerr, J.M. Resource constraints and partial adoption of conservation agriculture by hand-hoe farmers in Mozambique. Int. J. Agric. Sustain. 2014, 12, 37–53. [Google Scholar] [CrossRef]
- Mhambi-Musimwa, K.N. The Socio Economic Effects of Conservation Farming in Drought Mitigation: A case study of Mpima women in Kabwe, Zambia. Master’s Thesis, The University of Zambia, Lusaka, Zambia, 2009. [Google Scholar]
- Michler, J.D.; Baylis, K.; Arends-Kuenning, M.; Mazvimavi, K. Conservation agriculture and climate resilience. J. Environ. Econ. Manag. 2018, 93, 148–169. [Google Scholar] [CrossRef] [PubMed]
- Amukuhu, B.N. Factors Affecting the Adoption of Sustainable Water Conservation Practices in Smallholder Farming System: A Case Study of Smallholder Farmers in Omusati Region, Namibia. Master’s Thesis, University of Namibia, Lusaka, Zambia, 2020. [Google Scholar]
- Fortunato, A.; Enciso, S. Food for Growth: A diagnostics of Namibia’s Agriculture Sector; Center for International Development at Harvard University Research Fellow and Graduate Student Working paper No. 154; Center for International Development at Harvard University: Cambridge, MA, USA, 2023. [Google Scholar]
- Shikangalah, R.N. The 2019 drought in Namibia: An overview. J. Namib. Stud. 2020, 27, 37–58. [Google Scholar]
- Hanley, N.; Mourato, S.; Wright, R.E. Choice modelling approaches: A superior alternative for environmental valuation? J. Econ. Surv. 2001, 15, 335–362. [Google Scholar] [CrossRef]
- Wang, Y.; Powers, D.A. Conditional Logit Model; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2020. [Google Scholar] [CrossRef]
- Sun, J.X.; Sinha, S.; Wang, S.; Maiti, T. Bias reduction in conditional logistic regression. Statist. Med. 2010, 30, 348–355. [Google Scholar] [CrossRef]
- Hauber, A.B.; González, J.M.; Groothuis-Oudshoorn, C.G.M.; Prior, T.; Marshall, D.A.; Cunningham, C.; IJzerman, M.J.; Bridges, J.F.P. Statistical Methods for the Analysis of Discrete Choice Experiments: A Report of the ISPOR Conjoint Analysis Good Research Practices Task Force. Sci. Direct Value Health 2016, 19, 300–315. [Google Scholar] [CrossRef]
- Lee, H.; Lynch, K.F.; Krischer, J.P. Nested case-control data analysis using weighted conditional logistic regression in The Environmental Determinants of Diabetes in the Young (TEDDY) study: A novel approach. Diabetes Metab. Res. Rev. 2020, 36, e3204. [Google Scholar] [CrossRef] [PubMed]
- Long, B.T. How have college decisions changed over time? An application of the conditional logistic choice model. J. Econom. 2004, 121, 271–296. [Google Scholar] [CrossRef]
- Ackerman, F. Critique of Cost-Benefit Analysis, and Alternative Approaches to Decision-Making: A Report to Friends of the Earth England, Wales and Northern Ireland; Friends of the Earth: London, UK, 2008. [Google Scholar]
- Hoffman, S.D.; Duncan, G.J. Multinomial and Conditional Logit Discrete-Choice Models in Demography. Demography 1988, 25, 415–427. [Google Scholar] [CrossRef] [PubMed]
- McFadden, D. The measurement of urban travel demand. J. Public Econ. 1974, 3, 303–328. [Google Scholar] [CrossRef]
- Gujarati, D.N. Econometrics by Example; Palgrave Macmillan: London, UK, 2015. [Google Scholar]
- Greenland, S.; Schwartzbaum, J.A.; Finkle, W.D. Problems due to Small Samples and Sparse Data in Conditional Logistic Regression Analysis. Am. J. Epidemiol. 2000, 151, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-L.; Duan, Y.; Grady, J. Unconditional or Conditional Logistic Regression Model for Age-Matched Case–Control Data? Front. Public Health 2018, 6, 57. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Cebada, E.; Díaz-Caro, C.; Nevado Gil, M.T.; Mirón Sanguino, Á.S. Does Water Pollution Influence Willingness to Accept the Installation of a Mine Near a City? Case Study of an Open-Pit Lithium Mine. Sustainability 2020, 12, 10377. [Google Scholar] [CrossRef]
- Que, S. Describing Local Community Acceptance with Discrete Choice Theory for Enhanced Community Engagement. Ph.D. Thesis, Missouri University of Science and Technology, Rolla, MO, USA, 2015. [Google Scholar]
- Berendsen, R. A Discrete Choice Experiment to Estimate Willingness to Pay for a Microfinance Product in Urban Romania. Masters’ Thesis, Wageningen University, Wageningen, The Netherlands, 2015. [Google Scholar]
- Kragt, M.; Bennett, J. Using Choice Experiments to Value River and Estuary Health in Tasmania with Individual Preference Heterogeneity; Environmental Economics Research Report; AgEcon Search: St. Paul, MN, USA, 2009. [Google Scholar]
- McMorrow, L.; O’Hara, M.C.; Hynes, L.; Cunningham, A.; Caulfield, A.; Duffy, C.; Keighron, C.; Mullins, M.; Long, M.; Walsh, D.; et al. The preferences of young adults with Type 1 diabetes at clinics using a discrete choice experiment approach: The D1 Now Study. Diabet. Med. 2018, 35, 1686–1692. [Google Scholar] [CrossRef]
- Train, K.E. Discrete Choice Methods with Simulation; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef]
- Gunatilake, H.; Yang, J.; Pattanayak, S.; Choe, K.A. Good Practices for Estimating Reliable Willingness-to-Pay Values in the Water Supply and Sanitation Sector; Economics and Research Department Technical Note Series No. 23; Asian Development Bank: Mandaluyong, Philippines, 2007. [Google Scholar]
- Hanley, N.; Ryan, M.; Wright, R. Estimating the monetary value of health care: Lessons from environmental economics. Health Econ. 2003, 12, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Hole, A.R.; Kolstad, J.R. Mixed logit estimation of willingness to pay distributions: A comparison of models in preference and WTP space using data from a health-related choice experiment. Empir. Econ. 2012, 42, 445–469. [Google Scholar] [CrossRef]
- Vass, C.M.; Rigby, D.; Payne, K. Investigating the Heterogeneity in Women’s Preferences for Breast Screening: Does the Communication of Risk Matter? Value Health 2018, 21, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Kallas, Z.; Gómez-Limón, J.A.; Arriaza, M. Are citizens willing to pay for agricultural multifunctionality? Agric. Econ. 2007, 36, 405–419. [Google Scholar] [CrossRef]
- Kennelly, B.; Flannery, D.; Considine, J.; Doherty, E.; Hynes, S. Modelling the preferences of students for alternative assignment designs using the discrete choice experiment methodology. Pract. Assess. Res. Eval. 2014, 19, 16. [Google Scholar]
- Jumamyradov, M.; Craig, B.M.; Munkin, M.; Greene, W. Comparing the Conditional Logit Estimates and True Parameters under Preference Heterogeneity: A Simulated Discrete Choice Experiment. Econometrics 2023, 11, 4. [Google Scholar] [CrossRef]
- Pandey, S. Crop rotation and intercropping techniques. In Modern Concept in Agronomy; ND Global Publication House: Chennai, India, 2024; pp. 38–54. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, Z.; Chen, Y.; Wang, Y.; Feng, S. Crop Rotation and Diversification in China: Enhancing Sustainable Agriculture and Resilience. Agriculture 2024, 14, 1465. [Google Scholar] [CrossRef]
- Giacometti, C.; Mazzon, M.; Cavani, L.; Triberti, L.; Baldoni, G.; Ciavatta, C.; Marzadori, C. Rotation and Fertilization Effects on Soil Quality and Yields in a Long Term Field Experiment. Agronomy 2021, 11, 636. [Google Scholar] [CrossRef]
- Adetunji, A.T.; Ncube, B.; Mulidzi, R.; Lewu, F.B. Management impact and benefit of cover crops on soil quality: A review. Soil Tillage Res. 2020, 204, 104717. [Google Scholar] [CrossRef]
- He, J.; Wang, Q.; Li, H.; Tullberg, J.N.; McHugh, A.D.; Bai, Y.; Zhang, X.; McLaughlin, N.; Gao, H. Soil physical properties and infiltration after long-term no-tillage and ploughing on the Chinese Loess Plateau. N. Z. J. Crop Hortic. Sci. 2009, 37, 157–166. [Google Scholar] [CrossRef]
- Mohaiuddin, G.; Debnath, S.; Maitra, S. Mulching: Materials, Advantages and Crop Production. In Protected Cultivation and Smart Agriculture; New Delhi Publishers: New Delhi, India, 2020; pp. 55–66. [Google Scholar]
- O’Dell, D.; Eash, N.S.; Hicks, B.B.; Oetting, J.N.; Sauer, T.J.; Lambert, D.M.; Thierfelder, C.; Muoni, T.; Logan, J.; Zahn, J.A.; et al. Conservation agriculture as a climate change mitigation strategy in Zimbabwe. Int. J. Agric. Sustain. 2020, 18, 250–265. [Google Scholar] [CrossRef]
- Tamburini, G.; Bommarco, R.; Wanger, T.C.; Kremen, C.; van der Heijden, M.G.A.; Liebman, M.; Hallin, S. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 2020, 6, eaba1715. [Google Scholar] [CrossRef]
- Rodenburg, J.; Lucie Büchi, L.; Haggar, J. Adoption by adaptation: Moving from Conservation Agriculture to conservation practices. Int. J. Agric. Sustain. 2020, 19, 437–455. [Google Scholar] [CrossRef]
Attribute | Levels |
---|---|
Intercropping | Monocropping |
Cereal and groundnut | |
Cereal and barbarnut | |
Cereal and cowpeas | |
Crop rotation | No rotation |
Rotating every cropping season | |
Rotating after skipping one cropping season | |
Rotating after skipping two cropping seasons | |
Frequency & duration of weeding/Ha | 1 Weeding @ 4 h/Ha |
2 Weeding @ 2 h/Ha | |
2 Weeding @ 3 h/Ha | |
2 Weeding @ 5 h/Ha | |
Mulching materials | No mulching |
Grass | |
Cereal stalks | |
Tree branches and leaves | |
Time of first soil preparation/Ha | 2 h, 2 h 30 min, 3 h, 4 h |
Cost of soil preparation/Ha | NAD 250, 300, 400, 500 |
1st Round | 2nd Round | 3rd Round | 4th Round | 5th Round | 6th Round | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Attribute | Coeff. | WTP1 | Coeff. | WTP2 | Coeff. | WTP3 | Coeff. | WTP4 | Coeff. | WTP5 | Coeff. | WTP6 |
Cost | 0.199 (0.235) | −0.380 (0.238) | −0.813 *** (0.260) | −0.312 (0.229) | 0.303 (0.192) | 0.310 (0.192) | ||||||
Intercro | −0.668 ** (0.263) | 3.35 | 0.033 (0.209) | 0.09 | −0.490 ** (0.232) | −0.60 | 0.254 (0.192) | 0.82 | 0.238 (0.181) | −0.78 | 0.021 (0.191) | −0.07 |
Rotation | 0.198 (0.229) | −0.99 | 0.708 *** (0.200) | 1.86 | 0.348 * (0.209) | 0.43 | 0.872 *** (0.188) | 2.79 | 0.795 *** (0.174) | −2.62 | 0.853 *** | −2.75 |
Time | 0.144 (0.235) | −0.72 | −0.524 ** (0.233) | −1.38 | 0.066 (0.189) | 0.08 | −0.238 (0.223) | −0.76 | −0.128 (0.207) | 0.42 | −0.791 *** (0.251) | 2.55 |
Wrate | 0.037 (0.225 | −0.19 | −0.788 *** (0.256) | −2.07 | −0.351 (0.230) | −0.43 | −0.791 *** (0.247) | −2.53 | −0.117 (0.200) | 0.39 | 0.144 (0.197) | −0.46 |
Mulch | 0.078 (0.190) | −0.39 | 0.138 *** (0.164) | 2.99 | 0.848 (0.165) | 1.04 | 0.667 * (0.168) | 2.14 | 0.240 (0.178) | −0.79 | 0.201 (0.181) | −0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiimi, T.; Uchezuba, D. Willingness to Pay to Adopt Conservation Agriculture in Northern Namibia. Agriculture 2025, 15, 568. https://doi.org/10.3390/agriculture15050568
Shiimi T, Uchezuba D. Willingness to Pay to Adopt Conservation Agriculture in Northern Namibia. Agriculture. 2025; 15(5):568. https://doi.org/10.3390/agriculture15050568
Chicago/Turabian StyleShiimi, Teofilus, and David Uchezuba. 2025. "Willingness to Pay to Adopt Conservation Agriculture in Northern Namibia" Agriculture 15, no. 5: 568. https://doi.org/10.3390/agriculture15050568
APA StyleShiimi, T., & Uchezuba, D. (2025). Willingness to Pay to Adopt Conservation Agriculture in Northern Namibia. Agriculture, 15(5), 568. https://doi.org/10.3390/agriculture15050568