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Abstract: In unstructured tea garden environments, accurate recognition and pose estima-
tion of tea bud leaves are critical for autonomous harvesting robots. Due to variations in
imaging distance, tea bud leaves exhibit diverse scale and pose characteristics in camera
views, which significantly complicates the recognition and pose estimation process. This
study proposes a method using an RGB-D camera for precise recognition and pose esti-
mation of tea bud leaves. The approach first constructs an for tea bud leaves, followed by
a dynamic weight estimation strategy to achieve adaptive pose estimation. Quantitative
experiments demonstrate that the instance segmentation model achieves an mAP@50 of
92.0% for box detection and 91.9% for mask detection, improving by 3.2% and 3.4%, respec-
tively, compared to the YOLOv8s-seg instance segmentation model. The pose estimation
results indicate a maximum angular error of 7.76◦, a mean angular error of 3.41◦, a median
angular error of 3.69◦, and a median absolute deviation of 1.42◦. The corresponding dis-
tance errors are 8.60 mm, 2.83 mm, 2.57 mm, and 0.81 mm, further confirming the accuracy
and robustness of the proposed method. These results indicate that the proposed method
can be applied in unstructured tea garden environments for non-destructive and precise
harvesting with autonomous tea bud-leave harvesting robots.

Keywords: YOLOv8s-seg model; adaptive pose estimation; RGB-D camera; precise
harvesting

1. Introduction
Tea is a globally important economic crop, highly regarded for its pharmacological

properties and rich nutritional content, making it popular among consumers [1]. Among
these, high-quality tea, known for its high nutritional and economic value, is particularly
sought after. However, the harvesting of high-quality tea relies on manual labor, with
a short harvesting period and strict standards, which makes labor shortages a critical
bottleneck that restricts production capacity and hampers the improvement of production
efficiency. Especially in China, with the acceleration of population aging and urbanization,
the reduction in labor force has further driven up production costs, leading to a decrease
in the yield of high-quality tea [2,3]. Therefore, developing a tea-bud-leaves autonomous-
harvesting robot is not only a necessary means to address current challenges, but also an
inevitable trend to drive the intelligent transformation of the high-quality tea industry and
improve production efficiency. In the unstructured tea garden environment, the shape,
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scale, and density of tea bud leaves vary significantly, presenting great challenges for the
harvesting task [4,5]. While positional information of tea bud leaves provides some spatial
data, it is insufficient for achieving precise and non-destructive harvesting. Autonomous
harvesting robots may experience failures in harvesting and damage to the target when
relying solely on positional data. Hence, three-dimensional (3D) pose estimation of the
harvesting target is crucial. The autonomous harvesting robot can adjust its harvesting
posture based on the 3D pose information of tea bud leaves, enabling precise and non-
destructive harvesting.

The target recognition technology of tea-bud-leaves harvesting robots is crucial for
autonomous harvesting. It primarily includes two major approaches: traditional digital
image processing techniques and deep learning methods [6]. Traditional digital image
processing techniques require manual feature extraction [7], which can provide tea-bud-
leaves segmentation results but often suffers from lower accuracy and higher demands for
image quality [8,9]. Karunasena et al. [10] combined digital image processing techniques
with machine learning to identify tea bud leaves, but their method achieved only 55%
accuracy. This approach has limited effectiveness, and fails to adequately address the
tea-bud-leaves recognition problem in complex environments. Zhang et al. [11] applied an
improved watershed algorithm for tea-bud-leaves segmentation under varying lighting
conditions. However, their study tested the method only on tea bud leaves that were not
occluded, and the performance of this approach in unstructured tea garden environments
has not been fully verified, particularly regarding its ability to handle irregular growth and
overlapping leaves. Therefore, traditional digital image processing methods still exhibit
significant shortcomings in complex environments. In contrast, deep learning methods
extract multi-level features through training, offering significant advantages when facing
challenges such as varying lighting conditions and complex backgrounds in unstructured
tea gardens [12,13]. Li et al. [14] optimized the Backbone, Neck, and loss function of
the YOLOv4 model, achieving tea-bud-leaves target detection in unstructured tea garden
environments. Chen et al. [15] used an improved YOLOv7 model for multi-scale and
multi-target tea-bud-leaves detection in such environments, attaining an excellent average
precision of 94.43%. Other researchers have also reported related work on target detection
for tea bud leaves [16–19]. However, target detection of tea bud leaves only provides the
bounding box of the target, and the background information within the bounding box can
interfere with the harvesting robot, impacting its performance.

Semantic segmentation and instance segmentation are effective methods for accu-
rately determining the locations of tea bud leaves. Lu et al. [20] utilized four methods—
Deeplabv3+, U-Net, HRNet_W18, and Fast-SCNN—to segment tea bud leaves, achieving
mean intersection-over-union (mIoU) scores of 78.59%, 79.64%, 81.00%, and 74.80%, re-
spectively. These results provide a solid foundation for pinpointing harvesting points for
tea bud leaves. Zhang et al. [21] applied an improved version of DeepLabv3+ to generate
masks for tea bud leaves, and used YOLOv7 to extract harvesting point locations from
these masks. However, the error rate increased significantly when the system faced diverse
leaf shapes and occlusion situations. In unstructured tea garden environments, the camera
often captures targets that vary in scale and shape, which complicates detection. To address
this challenge, Chen et al. [22] incorporated an attention mechanism and a multi-path ag-
gregation model into a semantic segmentation framework for tea bud leaves. This approach
substantially enhanced segmentation performance, especially in cases involving leaves
with different shapes. While these methods successfully identify the fine-grained positions
of tea bud leaves from RGB images, they do not consider the 3D information of the targets,
which limits the robot’s ability to perform precise operations in complex environments.
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The 3D pose of the harvesting target provides the robotic harvester with more accurate
spatial information, enabling it to navigate to the specified location and adjust its harvesting
posture accordingly [23]. This is critical for achieving non-destructive and precise harvest-
ing [24–26], as illustrated in Figure 1. In recent years, numerous researchers have focused
on pose estimation for harvesting targets. Lin et al. [27] proposed a guava pose estimation
method using an RGB-D camera, which involved recognizing both the fruit and branches.
By leveraging the spatial relationship between the two, they successfully estimated the
fruit’s pose, achieving an angular error of 23.43◦ ± 14.18◦. Luo et al. [28] utilized Mask
R-CNN to detect the grape and flower stem, and then applied the locally weighted scat-
terplot smoothing (LOWESS) algorithm and geometric analysis for stem pose estimation.
The average angular error in stem pose estimation was 22.2◦. Zhu et al. [29] introduced
a novel method for pitaya pose estimation, using the positional relationship between the
fruit and branches to estimate the fruit’s pose, achieving an average angular error of 8.8◦.
While these studies primarily target fruits with regular shapes, applying similar methods
to tea bud leaves, which have highly variable morphology, presents significant challenges.
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Figure 1. Robot adjusting picking pose based on estimated pose of tea bud leaves. In the figure, A
is the apex of the leaf, B is the apex of the tea bud, and C is the lowest point of the stem. D is the
centroid of the growth plane formed by A, B, and C. The line connecting D and C defines the pose of
the tea bud leaves.

This study addresses the challenging task of pose estimation for tea bud leaves in
unstructured tea garden environments by proposing a pose estimation method based on an
RGB-D camera. First, an improved YOLOv8s-seg instance segmentation model is employed
to obtain precise localization of the tea bud leaves. Then, a dynamic weight-based adaptive
estimation method is introduced for the pose estimation of tea bud leaves, enabling accurate
pose estimation in unstructured tea garden environments and providing a decision-making
basis for the autonomous tea-bud-leaves picking robot.

2. Materials and Methods
2.1. Data Acquisition and Processing

This study focuses on the Yinghong No. 9 cultivar, with image data collected in a
natural environment at South China Agricultural University in Guangzhou, Guangdong
Province, China. Due to the complex background in tea gardens, the appearance of tea bud
images varies with different viewing angles. To enhance the robustness and generalization
of the visual model proposed in this study, a multi-angle image data collection experiment
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was conducted using the Intel RealSense D405 depth camera. Multiple RGB and depth
images were captured from various angles. The RGB images were used for visual model
recognition, while the depth images provided 3D information to estimate the pose of the
tea bud leaves. The dataset consists of 1434 raw RGB images, which were labeled using
the LabelMe software (https://github.com/labelmeai/labelme, accessed on 17 August
2023). The label information is stored in “json” format. During the labeling process, the
one-bud-one-leaf approach was applied, with the labels “tea_Y”, “tea_I”, and “tea_V”
assigned to represent three distinct forms of tea bud leaves in the camera’s field of view.
Specifically, “tea_Y” indicates that the tea bud, tea leaf, and stem are clearly visible; “tea_I”
indicates that the tea bud and tea leaf overlap at a given angle, with the stem clearly visible;
and “tea_V” indicates that the tea bud and tea leaf are clearly visible, while the stem is
occluded. The tea garden environment for data collection and the labeled RGB images are
shown in Figure 2.
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Figure 2. Data collection schematic.

In unstructured tea garden environments, variations in lighting conditions and the
diverse morphology of tea bud leaves pose significant challenges to the accurate recognition
of tea bud leaves by the visual system. To address these challenges and improve the
robustness of the visual recognition model, data augmentation techniques such as mirroring,
contrast adjustment, and saturation modification were applied to the original dataset. This
resulted in a total of 2868 RGB images. The dataset statistics are shown in Table 1. The
dataset includes 6912 samples labeled as “tea_Y”, 3762 samples labeled as “tea_I”, and
3716 samples labeled as “tea_I”. The dataset was split into training, validation, and test
sets in an 8:1:1 ratio.

Table 1. Dataset statistics.

Datasets Image Samples
Label Category

tea_Y tea_I tea_V

train 2294 5519 3037 2965
val 286 719 353 355
test 288 674 372 396

Total 2868 6912 3762 3716

https://github.com/labelmeai/labelme
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2.2. Instance Segmentation Model for Tea Bud Leaves
2.2.1. YOLOv8 Segmentation Model

The YOLOv8 model is a SOTA model that has demonstrated significant advantages
in tasks such as image classification, object detection, pose estimation and instance seg-
mentation. In this study, the YOLOv8s-seg model is used as the baseline for obtaining
multi-morphological masks of tea bud leaves from RGB images. YOLOv8s-seg consists
of three main components: the Backbone, the Neck, and the Head. The Backbone is re-
sponsible for feature extraction from the input image, producing feature maps at different
scales. The Neck integrates these multi-scale feature maps from the Backbone to enhance
the model’s feature representation capability. The Head then makes accurate predictions
based on these features. To address the challenges posed by the diverse morphological
characteristics of tea bud leaves and the varying target scales in the complex, unstructured
tea garden environment, this study proposes a novel multi-morphological segmentation
model for tea bud leaves.

(i) The E-GELAN module is constructed and integrated into the Backbone for feature
extraction, excelling at capturing the detailed morphological features and contextual
information of tea bud leaves.

(ii) DCNv2 and the Dynamic Head are employed to enhance the Neck and YOLO Head,
improving the differential representation of global and local features.

(iii) The Wise-IoUv3 loss function is used to train the model, dynamically adjusting the
weights based on the varying shapes and scales of the targets, thereby enhancing the
model’s adaptability to the unstructured tea garden environment.

The instance segmentation model architecture is shown in Figure 3.
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2.2.2. E-GELAN Module

In this section, we introduce a novel E-GELAN module. The ELAN and Extended-
ELAN (E-ELAN) modules proposed in YOLOv7 [30] extract more diverse features along
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different gradient paths, thereby enhancing the model’s feature extraction capability.
YOLOv9 [31] balances inference speed and accuracy by combining the CSPNet module with
the ELAN module to design a generalized ELAN (GELAN). Inspired by this approach, we
propose a new Extended-GELAN (E-GELAN) module tailored for the multi-morphological
characteristics of tea bud leaves in the field of view. The E-GELAN module adopts a
multi-path aggregation strategy to enhance the ability to extract diverse features, enabling
the comprehensive capture of the morphological details and contextual information of tea
bud leaves. The structure of the E-GELAN module is shown in Figure 4.

Agriculture 2025, 15, x FOR PEER REVIEW 6 of 24 
 

 

 

Figure 3. Tea-bud-leaves instance segmentation model. 

2.2.2. E-GELAN Module 

In this section, we introduce a novel E-GELAN module. The ELAN and Extended-
ELAN (E-ELAN) modules proposed in YOLOv7 [30] extract more diverse features along 
different gradient paths, thereby enhancing the model’s feature extraction capability. 
YOLOv9 [31] balances inference speed and accuracy by combining the CSPNet module 
with the ELAN module to design a generalized ELAN (GELAN). Inspired by this ap-
proach, we propose a new Extended-GELAN (E-GELAN) module tailored for the multi-
morphological characteristics of tea bud leaves in the field of view. The E-GELAN module 
adopts a multi-path aggregation strategy to enhance the ability to extract diverse features, 
enabling the comprehensive capture of the morphological details and contextual infor-
mation of tea bud leaves. The structure of the E-GELAN module is shown in Figure 4. 

(a) (b) 

Figure 4. GELAN and E-GELAN modules. (a) GELAN module; (b) E-GELAN module. 

  

Figure 4. GELAN and E-GELAN modules. (a) GELAN module; (b) E-GELAN module.

2.2.3. DCNv2 and Dynamic Head

In unstructured tea garden environments, tea bud leaves exhibit diverse geometric
characteristics, making it difficult for traditional convolution operations to capture the
detailed morphological features. To improve the model’s ability to express both global and
local features distinctly, the convolutional module in the Neck of the YOLOv8s-seg model
is replaced with Deformable ConvNets v2 (DCNv2) [32]. This modification aims to guide
the model in adapting to variations in receptive field size across different morphological
shapes of tea bud leaves. The structure of the modified model is shown in Figure 5.
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DCNv2 employs learnable offsets and modulation scalars to design a deformable
convolution kernel that adaptively adjusts its shape, enabling it to capture different mor-
phological features of the targets in the input feature map. First, the size of the deformable
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convolution kernel and the predefined offsets are specified. For instance, with a 3 × 3 de-
formable convolution kernel, the number of sampling positions is K = 9, and the predefined
offset is pk ∈ {(−1,−1), (−1, 0), · · · (1, 1)}. The input feature map x is then processed
through DCNv2, and the output feature map y is computed as shown in Equation (1).

y(p) =
K

∑
k=1

µk•x(p + pk + ∆pk)•∆mk (1)

where p represents the position in the feature map, µk represents the weight at the sampling
position, and ∆pk and ∆mk represent the learnable offset and modulation scalar at the
sampling position, respectively. ∆pk is an unconstrained real number, while ∆mk ∈ [0, 1].

For the tea-bud-leaves instance segmentation model, an efficient and accurate Head
is particularly crucial. Although the YOLOv8s-seg Head has achieved notable success
in object detection, it still faces limitations in predicting tea bud leaves in unstructured
tea garden environments, primarily due to its reliance on a single feature for prediction.
To address this issue, this study adopts the Dynamic Head [33] for prediction, which
incorporates scale-awareness, spatial-awareness, and task-awareness capabilities. This
approach effectively enhances the model’s recognition accuracy for multi-morphological
tea bud leaves in unstructured tea garden environments. The structure of the Dynamic
Head is shown in Figure 6.
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The Dynamic Head receives outputs from different levels of the Neck and performs
upsampling or downsampling to unify the scale, constructing a 4-dimensional tensor F ∈
RL×H×W×C. If expressed as S = H × W, the output is a 3-dimensional tensor F ∈ RL×S×C.
The Dynamic Head applies attention mechanisms to different dimensions, with the specific
calculations shown in Equation (2).

W(F) = πC(πS(πL(F)•F)•F)•F (2)

where πL, πS and πC represent attention modules for the three different dimensions: L, S
and C, respectively. The scale-aware attention module πL is used to fuse features across
different scales in the feature map, the spatial-aware attention module πS enhances the
model’s spatial position discrimination capability, and the task-aware attention module πC

dynamically activates, according to the specific task. Their expressions are given by the
following equation:

πL(F)•F = σ( f (
1

SC ∑
S,C

F))•F (3)
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πS(F)•F =
1
L

L

∑
l=1

K

∑
k=1

µl,k•F(l; pk + ∆pk; c)•∆mk (4)

πC(F)•F = max(α1(F)•Fc + β1(F)•Fc, α2(F)•Fc + β2(F)•Fc) (5)

where f represents the linear transformation function of the 1 × 1 convolution, with
σ(x) = max(0, min(1, x+1

2 )). During the calculation of πS, the parameter variables are

consistent with those in DCNv2. In the calculation of πC, [α1, β1, α2, β2]
T is a hyper function

that controls the activation threshold, and Fc refers to the feature slices of the channels.

2.2.4. Wise-IoUv3 Loss Function

In image segmentation tasks, the loss function is used to evaluate the discrepancy be-
tween the predicted values and the ground truth. For tea-bud-leaves instance segmentation,
the targets are relatively small, and often become obscured by the complex background,
which makes traditional IoU loss functions inadequate for meeting the recognition require-
ments. To address this challenge, this study employs Wise-IoUv3 [34] as the loss function.
Wise-IoUv3 adaptively adjusts the weights based on the size and category of the targets,
thereby improving the detection performance for difficult-to-detect targets. The calculation
of Wise-IoUv3 is shown in Equation (6).

LWIoU = LIoU•RWIoU•r

LIoU = 1 − IoU

RWIoU = exp( (x−xgt)
2+(y−ygt)

2

(W2
g+H2

g)
∗ )

r = β

δαβ−δ

(6)

where LIoU represents the traditional IoU loss function, and a smaller value indicates better
model prediction performance. RWIoU denotes the distance metric function between the
predicted and ground-truth bounding boxes. x, y, xgt, and ygt represent the coordinates of
the predicted and ground-truth boxes, while Wg and Hg denote the width and height of
the minimum enclosing rectangle for the predicted and ground-truth boxes, respectively.
(W2

g + H2
g)

∗ represents the normalization factor, ensuring that the results are not influenced
by the size of the enclosing rectangle. r refers to the gradient gain, and β denotes the outlier
degree. α and δ are hyperparameters.

2.3. Dynamic Weight-Based Adaptive-Pose Estimation Method for Tea Bud Leaves
2.3.1. Tea-Bud-Leaves Local Point-Cloud Acquisition Based on ORBSLAM3

In the process of constructing the complete shape of tea bud leaves using an RGB-D
camera, significant challenges arise due to the discrepancies between the RGB images
and depth images obtained from a single-position sampling. As a result, it is essential
to combine point clouds from multiple-position sampling to create a comprehensive 3D
representation of the target [35]. Vision-based Simultaneous Localization and Mapping
(VSLAM) is a technology that enables real-time estimation of both the 3D structure of the
environment and the camera’s position. ORBSLAM3 [36], an advanced VSLAM algorithm,
performs exceptionally well in complex environments by detecting and matching ORB
feature points to extract key points from the field of view, and by employing graph opti-
mization techniques to construct dense point clouds. In this study, ORBSLAM3 is used to
estimate the camera position in real time, obtaining the rotation matrix R and translation
matrix T, as shown in Figure 7. The depth image is then converted into a 3D point cloud
using the camera’s intrinsic parameters. By utilizing the rotation matrix R and translation
matrix T from multiple-position sampling, the 3D point clouds from these different posi-
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tions are accurately aligned to generate a global, dense point cloud of the target. Finally, the
instance segmentation model’s output mask is used to delineate the target area, extracting
the local point cloud representing the complete shape of the tea bud leaves.
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A comparison between the point clouds obtained from a single sampling position and
those fused from multiple sampling positions, as shown in Figure 8, clearly demonstrates
the advantages of using ORBSLAM3 to estimate the camera’s pose from multiple sampling
positions when constructing the complete shape of the tea-bud-leaves point cloud.
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Figure 8. Comparison of local point cloud obtained from single-position sampling and multiple-
position sampling for tea bud leaves.

2.3.2. Point Cloud Pre-Processing

Dense point clouds provide a more accurate representation of the morphological
features of tea bud leaves. However, due to environmental factors such as camera lim-
itations, local point clouds of tea bud leaves may contain noise and outliers, which can
affect the accuracy and speed of pose estimation. Therefore, filtering and down-sampling
the acquired tea-bud-leaves point clouds are crucial steps in the pose estimation process.
Statistical Outlier Removal (SOR) filtering is an effective method for outlier removal. This
approach calculates the average distance between each point and its neighboring points, as
well as the global standard deviation of distances, to determine whether a point is an outlier.
Specifically, for the tea-bud-leaves point cloud set {T1,T2,. . .,Tn}, the average distance of a
target point cloud to its neighboring points and the global standard deviation of distances
are computed as follows:
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di =
1
k

k
∑

j=1

√
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2

ε =
1
n

n
∑

i=1
di

σ =

√
1
n

n
∑

i=1
(di − ε)2

(7)

where di represents the average distance between point cloud Ti(xi, yi, zi) and the k-nearest
points within the neighborhood, ε denotes the global average distance of the tea-bud-leaves
point-cloud set consisting of n points, and σ is the standard deviation of the global average
distance. For a spatial point cloud Ti(xi, yi, zi) with distance di falling within the standard
range [ε − λσ, ε + λσ], the point is retained; otherwise, it is considered an outlier, and
removed. In the process of SOR filtering for 3D point clouds, a larger k value helps
improve the smoothness of the filtering and effectively reduces the influence of noise on
the results. However, it also significantly increases the computational cost, resulting in
longer processing times. On the other hand, a smaller λ value leads to more points being
classified as outliers and subsequently filtered out, which aids in removing anomalies and
noise. However, if λ is too small, it may erroneously discard normal points, thus affecting
the quality of the point cloud. Based on multiple tests, in this study, k = 30 and λ = 2
were found to effectively balance noise suppression and computational efficiency. This
combination not only removes a large amount of noise, but also preserves the essential
morphological features of the tea bud leaves in the point cloud.

Due to the significantly larger surface area of the tea leaves compared to the tea bud
and stem, the point-cloud density on the leaves is considerably higher. This imbalance
may lead to the tea-bud-leaves point cloud becoming trapped in local optima during pose
estimation. To mitigate this issue, it is necessary to down-sample the tea-bud-leaves point
cloud. Voxel Grid Down-sampling (https://github.com/PointCloudLibrary/pcl, accessed
on 20 August 2023) is a widely used method for this purpose, which divides the 3D space
into voxels and replaces all points within each non-empty voxel with the voxel’s centroid.

2.3.3. Dynamic Weight-Based Adaptive Pose Estimation for Tea Bud Leaves

The use of the symmetry axis of fruits as an indirect representation of their pose has
been reported in numerous studies. However, high-quality tea with one-bud-one-leaf does
not exhibit symmetry. As shown in Figure 1, since the growth of tea bud leaves follows the
direction of the stem, this study adopts three vertices, A, B, and C, of the tea bud leaves to
define the primary growth plane. The center point of this growth plane is denoted as D.
The pose of the tea bud leaves is determined by the line connecting D and C.

To represent the fundamental morphological features of tea bud leaves, the point
cloud density on the leaves is typically higher than that of the bud and stem. In order
to accurately estimate the pose of the tea bud leaves, the point cloud can be segmented
into longitudinal layers, and the centroid of each layer’s point cloud is used to represent
the entire point-cloud set of the tea bud leaves. The weighted least squares method is
advantageous for linear fitting of low-noise data, as it assigns different weights to various
point-cloud data, fully considering the differences between data points and their influence
on the fitting results. Let P represent the point-cloud set of centroids for each layer, where
(xi, yi, zi) ∈ P, i = 1, 2, · · · , n. The objective function for the weighted least squares
method is expressed as follows:{

Dx = (X − AMx)
TW(X − AMx)

∂Dx
∂Mx

= −2AW(X − AMx)
(8)

https://github.com/PointCloudLibrary/pcl
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 Dy = (X − AMy)
TW(Y − AMy)

∂Dy
∂My

= −2AW(Y − AMy)
(9)

where Dx and Dy represent the objective functions for fitting the point-cloud set along the
X and Y axes, respectively. Mx = [ax, bx]

T and My = [ay, by]
T are the parameters of the

lines fitted along the X and Y axes. ∂Dx
∂Mx

and ∂Dy
∂My

denote the partial derivatives, and the
optimal values of Mx and My can be obtained by solving this equation when the partial
derivatives are set to zero. X = [x1, x2, · · · xn]

T and Y = [y1, y2, · · · yn]
T represent the X and

Y axis vectors of the point-cloud set P. W is the weight matrix, and A is the design matrix.
Their expressions are given by the following equation:

W =


ω1 0 · · · 0
0 ω2 · · · 0
...

...
. . .

...
0 0 · · · ωn

 (10)

A =


z1 1
z2 1
...

...
zn 1

 (11)

W is a diagonal matrix, where distinct weights are assigned to each data point. Specifi-
cally, ωi = eαzi , where α is the weight coefficient. This weight coefficient determines the
contribution of each feature point cloud in the pose estimation process. However, due to
the diverse morphological characteristics of tea leaves in natural tea garden environments,
a static weight design fails to accurately capture and estimate the morphological features of
tea bud leaves at different scales. To enhance the robustness of the pose estimation algo-
rithm, this study utilizes Particle Swarm Optimization (PSO) [37] to dynamically optimize
the weight coefficient α, effectively capturing and quantifying the morphological features
of tea bud leaves. PSO is a population-based heuristic algorithm in which particles share
information to evaluate the fitness of positions. The fitness function constructed in this
study is as follows:

f (k) = max
p∈boundary(pcd)

(

∥∥∥∥ →
LP ×

→
d
∥∥∥∥

∥
→
d ∥

) (12)

where boundaty(pcd) represents the boundary point set of the preprocessed tea-bud-leaves

point cloud, while P denotes the feature point cloud on this set. L and
→
d refer to any point

and direction vector along the principal axis of the tea-bud-leaves point cloud, respectively.
In the optimization iteration process of PSO, each particle continuously updates its

velocity and position based on fitness information, thereby guiding the swarm towards
the global optimal solution. The velocity and position updates of the particle in the search
space are given by the following equations:{

vt+1
i = βvt

i + c1r1(pbestt
i − st

i) + c2r2(gbestt − st
i)

st+1
i = st

i + vt+1
i

(13)

where vt
i and st

i represent the velocity and position of the particle at time step t, respectively.
pbestt

i denotes the personal best position of the i particle, while gbestt represents the global
best position at time step t. β is the inertia weight, c1 and c2 are the cognitive and social
learning factors, and r1 and r2 are random vectors.
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2.4. Evaluation Metrics
2.4.1. Instance-Segmentation Evaluation Metrics

The performance of the multi-morphological tea-bud-leaves segmentation model is
crucial for subsequent pose estimation. In this study, Average Precision (AP) and Mean
Average Precision (mAP) are used to evaluate the performance of the multi-morphological
tea-bud-leaves segmentation model. AP is a commonly used metric in instance segmenta-
tion, consisting of precision and recall, which reflects the overall recognition performance
for a specific class. mAP is the average of the AP values across different classes, providing
a comprehensive measure of the model’s recognition performance for all targets. Their
specific forms are given by the following equations:

AP =
∫ 1

0
P(R)dR × 100% (14)

mAP =

N
∑

n=1
APn

N
× 100% (15)

P =
TP

TP + FP
(16)

R =
TP

TP + FN
(17)

where TP, FP, and FN represent true positives, false positives, and false negatives,
respectively.

2.4.2. Pose-Estimation Evaluation Metrics

In this study, the angular error θ and distance error d between the estimated pose
and the ground-truth pose of tea bud leaves are used to evaluate the performance of the
dynamic weight-based adaptive-pose estimation method. The specific formulations are
provided below:

θ = arccos
→
u 1·

→
u 2∣∣∣→u 1

∣∣∣·∣∣∣→u 2

∣∣∣ (18)

d =
(
→
u 1 ×

→
u 2)·

→
MN∣∣∣→u 1 ×

→
u 2

∣∣∣ (19)

where
→
u 1 and

→
u 2 represent the direction vectors of the estimated and ground-truth poses,

respectively, while
→

MN represents the vector connecting any two corresponding points
between the two poses.

To further comprehensively assess the performance of the dynamic weight-based
adaptive-pose estimation method, several metrics are used to analyze pose estimation
errors: maximum error, mean error, median error, and median absolute deviation. These
are calculated as follows: 

θm = max(θn)

θ =
N
∑

n=1
θn

θMEDE = median(θn)

θMAE = median(|θn − θMEDE|)

(20)
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dm = max(dn)

d =
N
∑

n=1
dn

dMEDE = median(dn)

dMAE = median(|dn − dMEDE|)

(21)

where θm, dm, θ, d, θMEDE, dMEDE, θMAE, and dMAE represent the maximum error, mean
error, median error, and median absolute deviation of the angular and distance errors,
respectively.

3. Results and Discussion
3.1. Tea-Bud-Leaves Instance-Segmentation-Model Performance Evaluation
3.1.1. Ablation Experiments

Table 2 shows the impact of various improvements on the instance segmentation
model’s performance. The results indicate that using the E-GELAN module to construct
the backbone network improves the recognition performance for all three types of tea
bud leaves, demonstrating the model’s strong ability in feature extraction and contex-
tual information integration. With the improvements to the Neck using DCNv2 and the
adoption of the Dynamic Head, mAP@50 is further enhanced, highlighting its capacity to
express diverse features and mitigate information loss during the downsampling process.
Finally, by training the model with Wise-IoUv3, the mAP@50 for box and mask levels
reached 92.0% and 91.9%, respectively, representing improvements of 3.2% and 3.4% over
the original model.

Table 2. Experimental comparison results of different combinations.

YOLOv8s-
seg

E-
GELAN DCNv2 Dynamic

Head
Wise-
IoUv3

AP@50/Box
(%)

AP@50/Mask
(%) mAP@50/

Box(%)
mAP@50/
Mask(%)tea_Y tea_I tea_V tea_Y tea_I tea_V

√
92.7 88.3 85.4 92.7 88.4 84.4 88.8 88.5√ √
93.1 90.2 90.2 92.7 89.6 89.7 91.2 90.7√ √ √
93.4 91.8 88.6 93.2 91.8 88.3 91.3 91.1√ √ √ √
94.1 91.9 89.3 94.0 91.4 88.4 91.8 91.3√ √ √ √ √
94.4 91.3 90.4 94.3 91.0 90.2 92.0 91.9

3.1.2. Loss-Function Comparison Experiment

Table 3 presents the results of training the model with different loss functions. Model A
refers to the model obtained by improving the YOLOv8s-seg model with E-GELAN, DCNv2,
and Dynamic Head. The traditional IoU loss function lacks distance information when
there is no overlap between the predicted and ground-truth boxes, leading to optimization
issues during the training process. To address this, the GIoU loss function introduces
the concept of the minimum enclosing box, and measures the distance by calculating
the minimal enclosing rectangle between the predicted and ground-truth boxes, which
better guides the model’s training [38]. However, when the minimum enclosing boxes
are identical, the GIoU loss function fails to distinguish the relative positioning between
the predicted and ground-truth boxes. In response, the DIoU loss function incorporates
the distance between the center points of the predicted and ground-truth boxes, which
accelerates model convergence [39]. However, the DIoU loss function does not account for
the aspect ratio of the boxes. The EIoU loss function computes the length and width of
both the predicted and ground-truth boxes, providing a measure of directional loss [40].
However, these loss functions are susceptible to sample imbalance. The Wise-IoUv3 loss
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function addresses this issue with a dynamic non-monotonic focusing mechanism, offering
more robust guidance during model training. Experimental results demonstrate that the
Wise-IoUv3 loss function is more suitable for the tea-bud-leaves instance segmentation task
in unstructured tea garden environments.

Table 3. Experimental comparison results of different loss functions.

Model A Wise-IoUv3 GIoU DIoU EIoU

AP@50/Box
(%)

AP@50/Mask
(%) mAP@50/

Box(%)
mAP@50/
Mask(%)

tea_Y tea_I tea_V tea_Y tea_I tea_V
√ √

92.7 88.3 85.4 92.7 88.4 84.4 88.8 88.5√ √
93.7 92.4 89.2 93.7 92.0 89.0 91.8 91.6√ √
93.8 92.3 88.1 93.5 92.0 87.8 91.4 91.1√ √
92.6 89.5 87.8 92.6 89.6 87.8 90.0 90.0

3.1.3. Visualization of Instance-Segmentation Results

Figure 9 shows the segmentation results of the YOLOv8-seg model and the instance
segmentation model proposed in this study. The magnified regions on the right display
the segmentation errors. Based on the results, it can be observed that both models perform
well when the target in the image is relatively large. However, when the target is small,
the YOLOv8-seg model underperforms, as shown in Image 1, Image 2, and Image 4 in
Figure 9. Additionally, the varying shapes of tea bud leaves pose a significant challenge for
the model. For example, as shown in Image 3, when the stem is short, the YOLOv8-seg
model erroneously detects the tea bud and the second leaf as one object. These results
demonstrate the advanced performance of the proposed instance segmentation model in
handling tea bud leaves with different scales and morphological characteristics.
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3.1.4. Comparison with Advanced Segmentation Models

To more comprehensively evaluate the performance of the multi-morphology tea-
bud-leaves segmentation network model, a comparison was made between the proposed
instance segmentation model and other advanced segmentation models, including Mask
R-CNN [41], Cascade Mask R-CNN [42], YOLACT [43], and YOLACT++ [44]. The experi-
mental results are presented in Table 4.

Table 4. Experimental-comparison results of different models.

Model
mAP@50 (%) mAP@50-90 (%)

Box Mask Box Mask

This Paper 92.0 91.9 86.0 72.4
Mask R-CNN 75.7 73.9 57.4 49.7

Cascade Mask R-CNN 80.6 78.8 64.5 52.3
YOLACT 86.0 84.4 70.0 53.9

YOLACT++ 88.1 85.3 72.6 57.7

Mask R-CNN is developed based on Faster R-CNN, utilizing ResNet as the backbone
network for feature extraction and FPN for fusing features at different levels. It then
classifies each pixel using FCN on top of the original classification and regression tasks
to complete the segmentation. Cascade Mask R-CNN, like Mask R-CNN, is a two-stage
model. However, Cascade Mask R-CNN introduces a cascade structure that continuously
optimizes the predicted targets. This structure uses different IoU thresholds to train the
model, effectively addressing the issue of a lack of positive samples at high thresholds while
avoiding the problem of poor correction performance in high IoU regions at low thresholds.
The experimental results indicate that, in unstructured tea garden environments, Cascade
Mask R-CNN outperforms Mask R-CNN in tea-bud-leaves recognition, though there is still
potential for further improvement.

YOLACT and YOLACT++ are one-stage models that use feature pyramid networks,
which effectively enhance the correlation of contextual information. In terms of perfor-
mance, they are comparable to two-stage models. YOLACT and YOLACT++ construct
overall image prototype masks to distinguish the foreground and background using high-
resolution feature maps, and complete the instance segmentation task by applying mask
coefficients. This design provides greater flexibility when handling objects with varying
morphologies. Additionally, YOLACT++ introduces operations like variable convolutions
to further improve the model’s recognition ability. The experiments show that YOLACT
and YOLACT++ outperform Mask R-CNN and Cascade Mask R-CNN in tea-bud-leaves
instance segmentation tasks involving diverse morphological features.

In the unstructured tea garden environment, the proposed multi-morphology tea-bud-
leaves segmentation model demonstrates significant advantages over these mainstream
high-performance models. The mAP@50 for box and mask levels is 92% and 91.9%, respec-
tively, while the mAP@50-95 is 86% and 72.4%. These improvements can be attributed to
the series of optimizations specifically designed to address the morphological diversity
and other characteristics of tea bud leaves in this task.

3.2. Performance Evaluation of Tea-Bud-Leaves Pose Estimation
3.2.1. Angle-Error Evaluation

In this section, we conducted experiments using the proposed dynamic weight-based
adaptive estimation method and the least squares method to estimate the pose of tea
bud leaves. Figure 10 and Table 5 display the comparison of the angle errors between
the two methods. The dynamic weight-based adaptive estimation method proposed in
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this study resulted in a maximum error of 7.76◦ and an average error of 3.41◦, whereas
the least squares method produced a maximum error of 20.97◦ and an average error of
10.58◦. The maximum error was reduced by 67.77%, and the average error decreased by
81.53%. These reductions in both maximum and average errors effectively demonstrate
the significant advantage of the dynamic-weighted adaptive estimation method in overall
estimation accuracy. Moreover, this method shows better stability and reliability in the
complex, unstructured tea garden environment. To minimize the influence of outlier data,
median error and median absolute deviation were also used for evaluation. The dynamic
weight-based adaptive estimation method yielded a median error of 3.69◦ and a median
absolute deviation of 1.42◦, while the least squares method resulted in a median error of
10.06◦ and a median absolute deviation of 2.90◦. These results further highlight the high
efficiency of the proposed method in tea-bud-leaves pose estimation tasks.
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Table 5. Evaluation metrics for angle errors in tea-bud-leaves pose estimation.

Method Maximum
Error (◦)

Average
Error (◦)

Median
Error (◦)

Median Absolute
Deviation (◦)

Dynamic Weight-Based
Adaptive Estimation

Method
7.76 3.41 3.69 1.42

Least Squares Method 20.97 10.58 10.06 2.90

3.2.2. Distance-Error Evaluation

The pose of tea bud leaves is represented as a line in 3D space. A single angular error
does not fully reflect the deviation between the estimated and true poses; it is essential to
also consider their spatial distance. Figure 11 and Table 6 display the results for the dynamic
weight-based adaptive estimation method and the least squares method. The dynamic
weight-based adaptive estimation method resulted in a maximum error of 8.60 mm and
an average error of 2.83 mm, while the least squares method produced a maximum error
of 19.75 mm and an average error of 7.15 mm. The maximum error and average error
were reduced by 56.43% and 60.37%, respectively. Additionally, the dynamic weight-based
adaptive estimation method yielded a median error of 2.57 mm and a median absolute
deviation of 0.81 mm, compared to 6.69 mm and 1.99 mm for the least squares method.
These distance-error metrics further highlight the superiority of the dynamic weight-based
adaptive estimation method for tea-bud-leaves pose-estimation tasks involving multiple
morphological features.
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Table 6. Evaluation metrics for distance errors in tea-bud-leaves pose estimation.

Method
Maximum

Error
(mm)

Average
Error
(mm)

Median
Error
(mm)

Median Absolute
Deviation (mm)

Dynamic Weight-Based
Adaptive Estimation

Method
8.60 2.83 2.57 0.81

Least Squares Method 19.75 7.15 6.69 1.99

3.2.3. Comparison with Other Pose-Estimation Methods

Existing pose-estimation methods primarily focus on relatively regular-shaped fruit
objects, such as guava, grape, pitaya, and sweet pepper. Li et al. [23] estimated the pose
of sweet peppers using the symmetry axis, leveraging the fruit point-cloud normals and
a scoring strategy. The performance of this method depends on the quality of the point
cloud; it performs well when the target is unobstructed and the point-cloud quality is
high. However, its effectiveness in handling occlusions has not been fully validated. Lin
et al. [27] achieved pose estimation for guava by establishing positional constraints between
the fruit and branches. However, branches are smaller and share more similarities with
the environment than the fruit, making pose estimation more challenging. As a result, this
method introduces considerable errors in practical applications. Luo et al. [28] applied the
LOWESS algorithm to fit the point cloud of grape pedicels, followed by geometric analysis
for pose estimation. While this method shows some effectiveness in dealing with occluded
fruit, it demands high-quality point-cloud data, specifically the depth information of the
pedicels captured during the image acquisition process. Zhu et al. [29] combined the 3D
bounding box of the fruit with the geometric features between the fruit and branches for
pitaya-fruit pose estimation. However, in unstructured orchard environments, determining
the relationship between the fruit and branches remains challenging, due to the growth
characteristics of pitaya, which affects the accuracy of the pose estimation. These studies
provide different approaches for fruit-pose estimation.

In contrast to the aforementioned research, the shape of tea bud leaves is more complex,
and significantly influenced by environmental factors, making existing methods difficult
to apply effectively for pose estimation. Table 7 presents the results of these studies. It
is noteworthy that these studies only analyze the angular error in pose estimation. In
comparison, the method proposed in this study offers significant advantages, primarily
due to its dynamic weight-estimation strategy. This strategy allows for the precise capture
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and quantitative representation of the various morphological features exhibited by tea bud
leaves, thereby enhancing the robustness and generalization capability of the algorithm.

The datasets of tea bud leaves were collected in an unstructured tea garden environ-
ment. However, due to variations in outdoor lighting, mutual occlusion of the tea bud
leaves, and differences in imaging scale, depth images are often disturbed by noise and
contain missing depth information. These factors lead to sparsity and incompleteness of
the tea-bud-leaves point cloud, which in turn affects the accuracy of pose estimation. The
quality of the tea-bud-leaves point cloud is a critical factor influencing the precision of
pose estimation, with excessive noise and point-cloud loss being the primary sources of
estimation errors.

The pose estimation results for tea bud leaves with point clouds of varying quality are
shown in Figure 12, where the red line represents the true pose of the tea bud leaves, and the
blue line indicates the pose estimated using the dynamic weight-based estimation method.
When part of the point cloud of the tea bud or leaf is missing, although some detailed
information is lost in the missing areas, the remaining point cloud still retains the basic
morphological features of the tea bud leaves, leading to relatively small estimation errors.
This phenomenon is illustrated in Figure 12a,b, indicating that when the shape of the tea bud
leaves is relatively complete, the impact of point cloud loss on pose estimation is minimal.
However, the stem, as the supporting structure of the tea bud leaves, plays a crucial role in
maintaining the overall shape. Missing point clouds of the stem, or point-cloud loss at the
intersection of the stem and tea bud, significantly affects the morphological features of the
target, resulting in a larger impact on pose estimation, as shown in Figure 12c,d.
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Although the quality of the point-cloud data affects the accuracy of pose estimation,
the proposed adaptive estimation method based on dynamic weights adjusts the weights
of valid point clouds by capturing the morphological features of the tea bud leaves. This
reduces the interference of invalid data on pose estimation and keeps the error within a
reasonable range.
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Table 7. Comparison of pose-estimation results from different works.

Reference Research Object Maximum Error
(◦)

Average Error
(◦)

Median Error
(◦)

Median Absolute Deviation
(◦)

This Paper Tea Bud Leaves 7.76 3.41 3.69 1.42
[23] Sweet Pepper 9.34 7.37 - -
[27] Guava - - 23.43 14.18
[28] Grape - 22.22 - -
[29] Pitaya - 8.8 - -

3.2.4. Visualization of Pose-Estimation Results

The pose estimation of tea bud leaves is visualized in Figure 13, where the red line
represents the true pose of the tea bud leaves, and the blue line indicates the pose estimated
using the dynamic weight-based estimation method. The quality of pose estimation largely
depends on the target’s point-cloud data. When the target is larger within the camera’s
field of view, the RGB-D camera captures more complete depth information, reducing
the estimation error, as shown in Image 1 and Image 3 of Figure 13. For the autonomous
harvesting robot of tea bud leaves, pose information, within certain error limits, can still
facilitate non-destructive and precise harvesting. The pose estimation method proposed in
this study consistently yields results close to the true pose for tea bud leaves with varying
morphologies, fulfilling the requirements of the autonomous harvesting robot.
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While the dynamic weight-based estimation method for tea bud leaves demonstrates
exceptional performance in unstructured tea garden environments, some limitations per-
sist. Images 2 and 4 in Figure 13 illustrate instances where pose estimation fails, despite
the camera’s view. Two primary factors contribute to these failures: (i) in unstructured
and complex tea garden environments, factors such as lighting conditions can impact the
depth-data acquisition of tea bud leaves, especially for smaller buds, and (ii) when the
tea bud leaves are small within the camera’s field of view, the RGB-D camera struggles to
capture complete depth information, and the visual model may fail to detect the target,
resulting in a failed pose estimation. To address these challenges, future research could
focus on the following aspects: (i) developing efficient point-cloud-processing algorithms
that leverage tea-bud-leaves morphology prior to more effectively handling targets with
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significant noise and missing point-cloud data, thereby improving the success rate of ob-
taining complete point clouds of tea bud leaves, and (ii) investigating adaptive coordination
control algorithms where the autonomous tea-bud-leaves harvesting robot can dynamically
adjust its shooting angle based on the target’s scale and morphological characteristics, thus
enhancing the success rate of pose estimation.

3.3. Limitations and Future Work

This study has successfully achieved pose estimation for tea bud leaves in unstructured
environments. However, certain limitations remain that warrant further exploration and
refinement in future research.

(i) This study was validated using the Yinghong No. 9 tea variety, and lacks a com-
prehensive evaluation of its applicability to other tea varieties. The tea buds and stems
of Yinghong No. 9 are relatively robust, and its leaves are broader, with distinct geomet-
ric features, providing relatively clear targets for visual recognition and pose estimation.
However, the morphological characteristics of different tea varieties differ significantly,
such as narrower leaves and more delicate tea buds and stems. These differences may
affect the performance of the visual recognition model and the accuracy of pose estimation.
Therefore, future research should expand to include the recognition and pose estimation
of multiple tea varieties, particularly in addressing the morphological variations brought
about by different tea varieties, and focus on improving the adaptability of the algorithm
to these changes.

(ii) This study highlights the fact that environmental factors, such as lighting variations
and occlusions, are major sources of pose-estimation errors, due to their impact on the
quality of the collected data. Although the adaptive estimation method based on dynamic
weights proposed in this study can alleviate the effects of noise and point-cloud loss, to
some extent, it has not fully addressed the issue of pose-estimation errors caused by a
decline in point-cloud quality due to lighting changes or occlusions. Future research should
focus on analyzing performance under various lighting conditions and occlusion scenarios
to enhance the algorithm’s adaptability to complex environmental factors. In particular,
when the tea-bud-leaves point-cloud quality is compromised, it is crucial to investigate how
prior knowledge of tea-bud-leaves morphology can be leveraged to reconstruct missing
details, thereby improving the stability and accuracy of pose estimation. Furthermore,
future work will aim to optimize the computational efficiency of the algorithm, explore its
application in autonomous tea-bud-leaves harvesting robots, and assess its contribution to
the efficiency of the harvesting process.

4. Conclusions
The recognition and pose estimation of tea bud leaves is crucial for the autonomous

harvesting robot, as they enable the robot to perform precise and damage-free picking.
In this study, we propose a method for tea-bud-leaves instance segmentation and pose
estimation, using an RGB-D camera. Experimental results demonstrate the excellent
performance of the proposed method. The main conclusions are as follows:

(i) The tea-bud-leaves instance segmentation model is based on the YOLOv8s-seg
model. By optimizing the Backbone, Neck, Head, and loss functions, the mAP@50 for
box and mask were improved to 92.0% and 91.9%, respectively, showing improvements
of 3.2% and 3.4%, compared to the original model. This result demonstrates the robust-
ness of the proposed instance segmentation model for tea-bud-leaves segmentation in
unstructured environments.

(ii) This study propose a dynamic weight-based adaptive pose-estimation method for
tea bud leaves, which dynamically adjusts the weight coefficients, based on the morphology
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of the tea bud leaves using a PSO algorithm. This approach effectively addresses the
challenge posed by the diversity in tea-bud-leaves morphology. Experimental results show
that the maximum angle error, mean error, median error, and median absolute deviation are
7.76◦, 3.41◦, 3.69◦, and 1.42◦, respectively. The corresponding distance errors are 8.60 mm,
2.83 mm, 2.57 mm, and 0.81 mm.
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