A Landscape-Clustering Zoning Strategy to Map Multi-Crops in Fragmented Cropland Regions Using Sentinel-2 and Sentinel-1 Imagery with Feature Selection
<p>Illustration of crop heterogeneity. (<b>a</b>–<b>d</b>) represent landscapes, and different colors indicate different crop types within the landscape. (<b>a</b>) to (<b>b</b>) and (<b>c</b>) to (<b>d</b>) indicate increases in the fragmentation of cropland (configurational heterogeneity). (<b>c</b>) to (<b>a</b>) and (<b>d</b>) to (<b>b</b>) indicate increases in crop diversity (compositional heterogeneity).</p> "> Figure 2
<p>The geo-location of the study area with survey samples of different crops. The four panels (<b>a1</b>–<b>a4</b>) present representative examples, illustrating details of crop distribution. All images were acquired using Sentinel-2 satellites in August 2019 and are displayed as false color composites (Bands: B8, B4, and B3).</p> "> Figure 3
<p>Phenological features fitted by double logistic regression function. (a) SOS, (b) EOS, (c) LOS, (d) BL, (e) MOS, (f) value_MOS, (g) SA, (h) Integral, (i) Value_SOS, and (j) Value_EOS, with detailed descriptions in <a href="#agriculture-15-00186-t002" class="html-table">Table 2</a>.</p> "> Figure 4
<p>Statistical crop area in the study area for each county.</p> "> Figure 5
<p>Overall framework of the study.</p> "> Figure 6
<p>Decision tree for cropland information extraction.</p> "> Figure 7
<p>Variance analysis of PCA with varimax rotation. (<b>a</b>) displays eigenvalues for all components, emphasizing those over 1 with red squares. (<b>b</b>) depicts the variance and cumulative variance of components post-screening.</p> "> Figure 8
<p>Rotated principal component loadings extracted from landscape metrics. Landscape metrics with absolute loadings above 0.75, indicating significant contribution to their components, are marked with blue triangles.</p> "> Figure 9
<p>Generation of CHZs and their crop heterogeneity. (<b>a</b>) shows the average silhouette coefficient based on Equation (4), assessing the clustering effectiveness. (<b>b</b>) shows the mean values of comprehensive landscape metrics for each CHZ.</p> "> Figure 10
<p>The spatial distribution of CHZs. (<b>a</b>) shows the overall spatial distribution of CHZs. (<b>a1</b>–<b>a5</b>) are representative examples of each CHZ, showing the spatial details of arable patches. All images are derived from Sentinel 2 August mean composite images, and the cropland maps are from Section Cropland Extraction.</p> "> Figure 11
<p>The percentage of statistical crop areas in each CHZ.</p> "> Figure 12
<p>Optimal classification scheme selection for each CHZ. S1–S7 have the same meanings as in <a href="#agriculture-15-00186-t004" class="html-table">Table 4</a>.</p> "> Figure 13
<p>Crop map of the study area obtained from landscape-clustering zoning strategy.</p> "> Figure 14
<p>Spatial details of crop mapping results in five CHZs between the landscape-clustering zoning and non-zoning methods. All images were derived from Sentinel-2 satellites in August 2019.</p> "> Figure 15
<p>Comparison of the mapped area of all crop types with census data at the county level. The red slash indicates that the ratio of the mapped area to census area is 1:1.</p> "> Figure 16
<p>Accuracy evaluation accuracy based on different zoning methods.</p> "> Figure 17
<p>The spatial distribution of zoning results of different zoning strategies. (<b>a</b>) Landscape-clustering zoning strategy (<b>b</b>), topographic zoning strategy, and (<b>c</b>) county-level administrative zoning strategy.</p> "> Figure 18
<p>The OA of the entire study area and each CHZ.</p> ">
Abstract
:1. Introduction
2. Materials
2.1. Study Areas
2.2. Image Data
2.3. Classification Features
2.4. Auxiliary Data
2.4.1. Ground Truth Data
2.4.2. Agricultural Statistical Data
2.4.3. Land Use Data
3. Methods
3.1. The Landscape-Clustering Zoning Strategy
3.1.1. Obtaining Comprehensive Landscape Metrics
Cropland Extraction
Crop Heterogeneity Metrics Calculation
Principal Component Analysis
3.1.2. Generating CHZs
3.1.3. Designing and Selecting Classification Schemes
3.2. Accuracy Evaluation
4. Results and Analysis
4.1. Acquisition and Analysis of Comprehensive Landscape Metrics
4.2. CHZ Generation
4.3. Optimal Classification Schemes Selection
4.4. Crop Mapping Results
4.5. Assessment of Crop Mapping
4.5.1. Comparison with No-Zoning Methods
4.5.2. Comparison with Agricultural Statistical Data
5. Discussion
5.1. The Advantages of the Landscape-Clustering Zoning Strategy in Crop Mapping
5.2. The Effect of Classifiers on Crop Mapping in the Landscape-Clustering Zoning Strategy
5.3. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Wu, B.; Ponce-Campos, G.E.; Zhang, M.; Chang, S.; Tian, F. Mapping Up-to-Date Paddy Rice Extent at 10 M Resolution in China through the Integration of Optical and Synthetic Aperture Radar Images. Remote Sens. 2018, 10, 1200. [Google Scholar] [CrossRef]
- Kuenzer, C.; Knauer, K. Remote Sensing of Rice Crop Areas. Int. J. Remote Sens. 2013, 34, 2101–2139. [Google Scholar] [CrossRef]
- Bauer, M.E. The Role of Remote Sensing in Determining the Distribution and Yield of Crops. Adv. Agron. 1975, 27, 271–304. [Google Scholar]
- Taylor, J.C.; Wood, G.A.; Thomas, G. Mapping Yield Potential with Remote Sensing. In Proceedings of the Papers presented at the First European Conference on Precision Agriculture, Coventry, UK, 7–10 September 1997. [Google Scholar]
- Ma, Z.; Li, W.; Warner, T.A.; He, C.; Wang, X.; Zhang, Y.; Guo, C.; Cheng, T.; Zhu, Y.; Cao, W.; et al. A Framework Combined Stacking Ensemble Algorithm to Classify Crop in Complex Agricultural Landscape of High Altitude Regions with Gaofen-6 Imagery and Elevation Data. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103386. [Google Scholar] [CrossRef]
- Song, X.-P.; Potapov, P.V.; Krylov, A.; King, L.; Di Bella, C.M.; Hudson, A.; Khan, A.; Adusei, B.; Stehman, S.V.; Hansen, M.C. National-Scale Soybean Mapping and Area Estimation in the United States Using Medium Resolution Satellite Imagery and Field Survey. Remote Sens. Environ. 2017, 190, 383–395. [Google Scholar] [CrossRef]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US Agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Kang, X.; Huang, C.; Chen, J.M.; Lv, X.; Wang, J.; Zhong, T.; Wang, H.; Fan, X.; Ma, Y.; Yi, X.; et al. The 10-m Cotton Maps in Xinjiang, China during 2018–2021. Sci. Data 2023, 10, 688. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Jeganathan, C. Effect of Scale, Landscape Heterogeneity and Terrain Complexity on Agriculture Mapping Accuracy from Time-Series NDVI in the Western-Himalaya Region. Landsc. Ecol. 2022, 37, 2757–2781. [Google Scholar] [CrossRef]
- Mondal, S.; Jeganathan, C. Evaluating the Performance of Multi-Class and Single-Class Classification Approaches for Mountain Agriculture Extraction Using Time-Series NDVI. J. Indian Soc. Remote Sens. 2018, 46, 2045–2055. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Shang, J.; Liu, M.; Li, Q. Investigating the Impact of Classification Features and Classifiers on Crop Mapping Performance in Heterogeneous Agricultural Landscapes. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102388. [Google Scholar] [CrossRef]
- Chen, Y.; Song, X.; Wang, S.; Huang, J.; Mansaray, L.R. Impacts of Spatial Heterogeneity on Crop Area Mapping in Canada Using MODIS Data. ISPRS J. Photogramm. Remote Sens. 2016, 119, 451–461. [Google Scholar] [CrossRef]
- Han, J.; Zhang, Z.; Cao, J.; Luo, Y. Mapping Rapeseed Planting Areas Using an Automatic Phenology- and Pixel-Based Algorithm (APPA) in Google Earth Engine. Crop J. 2022, 10, 1483–1495. [Google Scholar] [CrossRef]
- Cano, E.; Denux, J.-P.; Bisquert, M.; Hubert-Moy, L.; Chéret, V. Improved Forest-Cover Mapping Based on MODIS Time Series and Landscape Stratification. Int. J. Remote Sens. 2017, 38, 1865–1888. [Google Scholar] [CrossRef]
- Mohammed, I. A Blended Census and Multiscale Remote Sensing Approach to Probabilistic Cropland Mapping in Complex Landscapes. ISPRS J. Photogramm. Remote Sens. 2020, 161, 233–245. [Google Scholar] [CrossRef]
- Vintrou, E.; Desbrosse, A.; Bégué, A.; Traoré, S.; Baron, C.; Lo Seen, D. Crop Area Mapping in West Africa Using Landscape Stratification of MODIS Time Series and Comparison with Existing Global Land Products. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 83–93. [Google Scholar] [CrossRef]
- Bamud, S. A Remotely Sensed Based Comparison of Three Area Stratification Methods to Improve Estimation of Crop Area Statistics, A Case Study in Fragmented Landscapes of Ethiopia. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2022. [Google Scholar]
- Dong, J.; Fu, Y.; Wang, J.; Tian, H.; Fu, S.; Niu, Z.; Han, W.; Zheng, Y.; Huang, J.; Yuan, W. Early-Season Mapping of Winter Wheat in China Based on Landsat and Sentinel Images. Earth Syst. Sci. Data 2020, 12, 3081–3095. [Google Scholar] [CrossRef]
- Phalke, A.R.; Özdoğan, M.; Thenkabail, P.S.; Erickson, T.; Gorelick, N.; Yadav, K.; Congalton, R.G. Mapping Croplands of Europe, Middle East, Russia, and Central Asia Using Landsat, Random Forest, and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 167, 104–122. [Google Scholar] [CrossRef]
- You, N.; Dong, J.; Huang, J.; Du, G.; Zhang, G.; He, Y.; Yang, T.; Di, Y.; Xiao, X. The 10-m Crop Type Maps in Northeast China during 2017–2019. Sci. Data 2021, 8, 41. [Google Scholar] [CrossRef]
- Cordero-Sancho, S.; Sader, S.A. Spectral Analysis and Classification Accuracy of Coffee Crops Using Landsat and a Topographic-environmental Model. Int. J. Remote Sens. 2007, 28, 1577–1593. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Q.; Zhou, Q.; Wang, C.; Bellingrath-Kimura, S.D.; Wu, W. Mapping the Complex Crop Rotation Systems in Southern China Considering Cropping Intensity, Crop Diversity, and Their Seasonal Dynamics. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9584–9598. [Google Scholar] [CrossRef]
- Ren, T.; Xu, H.; Cai, X.; Yu, S.; Qi, J. Smallholder Crop Type Mapping and Rotation Monitoring in Mountainous Areas with Sentinel-1/2 Imagery. Remote Sens. 2022, 14, 566. [Google Scholar] [CrossRef]
- Donmez, E.; Yilmaz, M.T.; Yucel, I. Added Utility of Temperature Zone Information in Remote Sensing-Based Large Scale Crop Mapping. Remote Sens. Appl. Soc. Environ. 2024, 35, 101264. [Google Scholar] [CrossRef]
- Sirami, C.; Gross, N.; Baillod, A.B.; Bertrand, C.; Carrié, R.; Hass, A.; Henckel, L.; Miguet, P.; Vuillot, C.; Alignier, A.; et al. Increasing Crop Heterogeneity Enhances Multitrophic Diversity across Agricultural Regions. Proc. Natl. Acad. Sci. USA 2019, 116, 16442–16447. [Google Scholar] [CrossRef] [PubMed]
- Alignier, A.; Solé-Senan, X.O.; Robleño, I.; Baraibar, B.; Fahrig, L.; Giralt, D.; Gross, N.; Martin, J.-L.; Recasens, J.; Sirami, C.; et al. Configurational Crop Heterogeneity Increases Within-Field Plant Diversity. J. Appl. Ecol. 2020, 57, 654–663. [Google Scholar] [CrossRef]
- Priyadarshana, T.S.; Lee, M.; Ascher, J.S.; Qiu, L.; Goodale, E. Crop Heterogeneity Is Positively Associated with Beneficial Insect Diversity in Subtropical Farmlands. J. Appl. Ecol. 2021, 58, 2747–2759. [Google Scholar] [CrossRef]
- Oliphant, A.J.; Thenkabail, P.S.; Teluguntla, P.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K. Mapping Cropland Extent of Southeast and Northeast Asia Using Multi-Year Time-Series Landsat 30-m Data Using a Random Forest Classifier on the Google Earth Engine Cloud. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 110–124. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Nagraj, G.M.; Karegowda, A.G. Crop Mapping Using SAR Imagery: An Review. Int. J. Adv. Res. Comput. Sci. 2016, 7, 47–52. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Hao, P.; Zhan, Y.; Wang, L.; Niu, Z.; Shakir, M. Feature Selection of Time Series MODIS Data for Early Crop Classification Using Random Forest: A Case Study in Kansas, USA. Remote Sens. 2015, 7, 5347–5369. [Google Scholar] [CrossRef]
- Khosravi, I.; Safari, A.; Homayouni, S. MSMD: Maximum Separability and Minimum Dependency Feature Selection for Cropland Classification from Optical and Radar Data. Int. J. Remote Sens. 2018, 39, 2159–2176. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini, A.; Vergnaud, S.; et al. ESA WorldCover 10 m 2020 V100 2021. Available online: https://esa-worldcover.org/en/data-access (accessed on 13 January 2025).
- Cumming, S.; Vernier, P. Statistical Models of Landscape Pattern Metrics, with Applications to Regional Scale Dynamic Forest Simulations. Landsc. Ecol. 2002, 17, 433–444. [Google Scholar] [CrossRef]
- MacQueen, J. Some Methods for Classification and Analysis of Multivariate Observations. Berkeley Symp. Math. Statist. Prob. 1967, 1, 281–297. [Google Scholar]
- Chen, C.; Dong, T.; Wang, Z.; Wang, C.; Song, W.; Zhang, H. Exploring Optimal Features and Image Analysis Methods for Crop Type Classification from the Perspective of Crop Landscape Heterogeneity. Remote Sens. Appl. Soc. Environ. 2024, 36, 101308. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Peng, P.; Chen, Y.; He, S.; Yang, K. Automatic Crop Classification Based on Optimized Spectral and Textural Indexes Considering Spatial Heterogeneity. Remote Sens. 2023, 15, 5550. [Google Scholar] [CrossRef]
- Ok, A.O.; Akar, O.; Gungor, O. Evaluation of Random Forest Method for Agricultural Crop Classification. Eur. J. Remote Sens. 2012, 45, 421–432. [Google Scholar] [CrossRef]
- Hripcsak, G. Agreement, the F-Measure, and Reliability in Information Retrieval. J. Am. Med. Inform. Assoc. 2005, 12, 296–298. [Google Scholar] [CrossRef]
- Ashourloo, D.; Shahrabi, H.S.; Azadbakht, M.; Rad, A.M.; Aghighi, H.; Radiom, S. A Novel Method for Automatic Potato Mapping Using Time Series of Sentinel-2 Images. Comput. Electron. Agric. 2020, 175, 105583. [Google Scholar] [CrossRef]
- Xun, L.; Zhang, J.; Cao, D.; Yang, S.; Yao, F. A Novel Cotton Mapping Index Combining Sentinel-1 SAR and Sentinel-2 Multispectral Imagery. ISPRS J. Photogramm. Remote Sens. 2021, 181, 148–166. [Google Scholar] [CrossRef]
- Peng, X.; Wang, J.; Raed, M.; Gari, J. Land Cover Mapping from RADARSAT Stereo Images in a Mountainous Area of Southern Argentina. Can. J. Remote Sens. 2003, 29, 75–87. [Google Scholar] [CrossRef]
- You, J.; Pei, Z.; Wang, D. Crop Mapping of Complex Agricultural Landscapes Based on Discriminant Space. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4356–4367. [Google Scholar] [CrossRef]
- Saini, R.; Ghosh, S.K. Crop Classification in a Heterogeneous Agricultural Environment Using Ensemble Classifiers and Single-Date Sentinel-2A Imagery. Geocarto Int. 2021, 36, 2141–2159. [Google Scholar] [CrossRef]
- Ozdogan, M.; Woodcock, C.E. Resolution Dependent Errors in Remote Sensing of Cultivated Areas. Remote Sens. Environ. 2006, 103, 203–217. [Google Scholar] [CrossRef]
Crop Types | Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E | M | L | E | M | L | E | M | L | E | M | L | E | M | L | E | M | L | E | M | L | |
Maize | |||||||||||||||||||||
Soybean | |||||||||||||||||||||
Peanut | |||||||||||||||||||||
Cotton | |||||||||||||||||||||
Rice | |||||||||||||||||||||
Potato |
Feature Types | Features | Description |
---|---|---|
Spectral features (1) Spectral bands | Sentinel-2 bands | |
Spectral features | Enhanced Vegetation Index (EVI) | |
(2) Spectral indices | MERIS Terrestrial Chlorophyll Index (MTCI) | |
Chlorophyll Absorption in Reflectance Index (CARI) | ||
Land Surface Water Index (LSWI) | ||
Wide Dynamic Range Vegetation Index (WDRVI) | ||
Green Normalized Difference Vegetation Index (GNDVI) | ||
Sentinel-2 Red Edge Position Index (S2REP) | ||
Renormalized Difference Vegetation Index (RDVI) | ||
Phenological features | SOS | The date in the green-up phase when the rate of increase in the first derivative of EVI reaches its peak. |
Integral | The cumulative EVI across the crop season. | |
EOS | The senescence phase date when the first derivative of EVI shows the steepest decline. | |
LOS | The time span between the season’s end (EOS) and start (SOS). | |
BL | The lowest EVI observed during the crop season. | |
MOS | The date of the maximum EVI value during the crop growing season. | |
value_SOS | The EVI value at the start of the season (SOS). | |
value_EOS | The EVI value at the end of the season (EOS). | |
value_MOS | The EVI value at the peak of the season (MOS). | |
SA | EVI values throughout the crop season. | |
Radar features | Backscattering coefficient and their combinations | VV, VH, VV − VH, VV + VH, (VH − VV)/(VV + VH), VV/VH |
Textural features | Contrast (CON), Variance (VAR), Homogeneity (IDM), Correlation (CORR), Entropy (ENT), and Angular Second Moment (ASM) | Calculated from the Red Edge (B5), NIR (B8), and SWIR (B11) based on GLCM with a 3 × 3 window. |
Type | Subtype | Detail Metrics | Description |
---|---|---|---|
Configurational heterogeneity | Aggregation metrics | Patch density | The aggregation of fine cropland |
(PD) | |||
Mean patch size | |||
(AREA_MN) | |||
Shape metrics | Area-weighted mean shape metric | The complexity of shape of arable land | |
(SHAPE_AM) | |||
Area-weighted mean fractal dimension metric | |||
(FRAC_AM) | |||
Compositional heterogeneity | Diversity metrics | Shannon’s Diversity index | Crop diversity and evenness |
(SHDI) | |||
Shannon’s Evenness index | |||
(SHEI) |
Classification Scheme | Feature Combinations |
---|---|
Scheme 1 (S1) | Spectral features + Phenological features |
Scheme 2 (S2) | Spectral features + Radar backscattering features |
Scheme 3 (S3) | Spectral features + Textural features |
Scheme 4 (S4) | Spectral features + Phenological features + Radar backscattering features |
Scheme 5 (S5) | Spectral features + Phenological features + Textural features |
Scheme 6 (S6) | Spectral features + Radar features + Textural features |
Scheme 7 (S7) | Spectral features + Phenological features + Radar features + Textural features |
Landscape-Clustering Zoning | Non-Zoning with S7 | Improvement | ||
---|---|---|---|---|
PA (%) | Maize | 95.80 | 94.59 | 1.21 |
Soybean | 93.43 | 92.65 | 0.78 | |
Peanut | 89.64 | 88.46 | 1.18 | |
Cotton | 91.60 | 82.23 | 1.72 | |
Rice | 92.72 | 91.62 | 0.10 | |
Potato | 89.23 | 86.65 | 2.58 | |
UA (%) | Maize | 94.57 | 94.41 | −0.02 |
Soybean | 92.61 | 91.35 | 0.66 | |
Peanut | 90.70 | 83.2 | 7.50 | |
Cotton | 92.46 | 89.88 | 9.15 | |
Rice | 91.45 | 89.77 | 3.68 | |
Potato | 88.25 | 87.64 | 0.61 | |
F1(%) | Maize | 94.16 | 94.04 | 0.12 |
Soybean | 92.71 | 92.00 | 0.72 | |
Peanut | 90.17 | 85.75 | 4.42 | |
Cotton | 92.03 | 86.47 | 5.56 | |
Rice | 95.08 | 93.17 | 1.91 | |
Potato | 88.74 | 87.14 | 1.60 | |
OA (%) | 93.52 | 90.62 | 2.9 | |
Kappa (%) | 92.67 | 88.85 | 3.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, G.; Wang, C.; Dong, T.; Wang, Z.; Cai, C.; Chen, J.; Liu, M.; Zhang, H. A Landscape-Clustering Zoning Strategy to Map Multi-Crops in Fragmented Cropland Regions Using Sentinel-2 and Sentinel-1 Imagery with Feature Selection. Agriculture 2025, 15, 186. https://doi.org/10.3390/agriculture15020186
Fang G, Wang C, Dong T, Wang Z, Cai C, Chen J, Liu M, Zhang H. A Landscape-Clustering Zoning Strategy to Map Multi-Crops in Fragmented Cropland Regions Using Sentinel-2 and Sentinel-1 Imagery with Feature Selection. Agriculture. 2025; 15(2):186. https://doi.org/10.3390/agriculture15020186
Chicago/Turabian StyleFang, Guanru, Chen Wang, Taifeng Dong, Ziming Wang, Cheng Cai, Jiaqi Chen, Mengyu Liu, and Huanxue Zhang. 2025. "A Landscape-Clustering Zoning Strategy to Map Multi-Crops in Fragmented Cropland Regions Using Sentinel-2 and Sentinel-1 Imagery with Feature Selection" Agriculture 15, no. 2: 186. https://doi.org/10.3390/agriculture15020186
APA StyleFang, G., Wang, C., Dong, T., Wang, Z., Cai, C., Chen, J., Liu, M., & Zhang, H. (2025). A Landscape-Clustering Zoning Strategy to Map Multi-Crops in Fragmented Cropland Regions Using Sentinel-2 and Sentinel-1 Imagery with Feature Selection. Agriculture, 15(2), 186. https://doi.org/10.3390/agriculture15020186