Cross-Modal Feature Fusion for Field Weed Mapping Using RGB and Near-Infrared Imagery
<p>Samples from Sugar Beets 2016 and Sunflower datasets. (<b>a</b>) from Sugar Beets 2016, and (<b>b</b>) from Sunflower dataset.</p> "> Figure 2
<p>Data augmentation using HSV and CLAHE.</p> "> Figure 3
<p>Structure diagram of CMFNet.</p> "> Figure 4
<p>Structure diagram of Segformer Encoder–Decoder.</p> "> Figure 5
<p>Cross-modal feature fusion module.</p> "> Figure 6
<p>Structure of fusion feature refinement module.</p> "> Figure 7
<p>IoU performance of the proposed CMFNet compared to other methods on both datasets.</p> "> Figure 8
<p>Acc performance of the proposed CMFNet compared to other methods on both two datasets.</p> "> Figure 9
<p>Visual comparison of the proposed CMFNet compared to other segmentation methods on two datasets. (<b>a</b>–<b>c</b>) represent the original RGB images, NIR images, and their corresponding ground-truth mask, respectively. (<b>d</b>–<b>k</b>) denote the predicted masks using Deeplab V3+, PSANet, GCNet, ISANet, OCRNet, Segformer-RGB, Segformer-NIR, and CMFNet.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset and Preprocessing
2.2. Data Augmentation
2.3. Methods
2.3.1. Segformer Network
2.3.2. Cross-Modal Feature Enhancement Module
2.3.3. Fusion Refinement Module
3. Experiments and Discussion
3.1. Experimental Setting
3.2. Evaluation Metric
3.3. Comparative Experiment
3.4. Ablation Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chauhan, B.S. Grand challenges in weed management. Front. Agron. 2020, 1, 3. [Google Scholar] [CrossRef]
- Manisankar, G.; Ghosh, P.; Malik, G.C.; Banerjee, M. Recent trends in chemical weed management: A review. J. Pharm. Innov. 2022, 11, 745–753. [Google Scholar]
- Monteiro, A.; Santos, S. Sustainable Approach to Weed Management: The Role of Precision Weed Management. Agronomy 2022, 12, 118. [Google Scholar] [CrossRef]
- Rajat, S.; Asma, F. Effect of different weed control treatments on growth and yield of wheat. Int. J. Botany Stud. 2021, 6, 538–542. [Google Scholar]
- Kidd, P.; Mench, M.; Álvarez-López, V.; Bert, V.; Dimitrou, I.; Friesl-Hanl, W.; Herzig, R.; Janssen, J.O.; Kolbas, A.; Müller, I.; et al. Agronomic practices for improving gentle remediation of trace element-contaminated soils. Int. J. Phytoremediat. 2015, 17, 1005–1037. [Google Scholar] [CrossRef] [PubMed]
- McCool, C.; Beattie, J.R.; Firn, J.; Lehnert, C.; Kulk, J.; Bawden, O.; Russell, R.; Perez, T. Efficacy of mechanical weeding tools: A study into alternative weed management strategies enabled by robotics. IEEE Robot. Autom. Lett. 2018, 3, 1184–1190. [Google Scholar] [CrossRef]
- Abbas, T.; Zahir, Z.A.; Naveed, M.; Kremer, R.J. Limitations of existing weed control practices necessitate development of alternative techniques based on biological approaches. Adv. Agron. 2018, 147, 239–280. [Google Scholar]
- Dong, S.; Chen, T.; Xi, R.; Gao, S.; Li, G.; Zhou, X.; Song, X.; Ma, Y.; Hu, C.; Yuan, X. Crop Safety and Weed Control of Foliar Application of Penoxsulam in Foxtail Millet. Plants 2024, 13, 2296. [Google Scholar] [CrossRef]
- Sui, R.; Thomasson, J.A.; Hanks, J.; Wooten, J. Ground-based sensing system for weed mapping in cotton. Comput. Electron. Agric. 2008, 60, 31–38. [Google Scholar] [CrossRef]
- Panduangnat, L.; Posom, J.; Saikaew, K.; Phuphaphud, A.; Wongpichet, S.; Chinapas, A.; Sukpancharoen, S.; Saengprachatanarug, K. Time-efficient low-resolution RGB aerial imaging for precision mapping of weed types in site-specific herbicide application. Crop Prot. 2024, 184, 106805. [Google Scholar] [CrossRef]
- Hlaing, S.H.; Khaing, A.S. Weed and crop segmentation and classification using area thresholding. Int. J. Eng. Res. 2014, 3, 375–380. [Google Scholar]
- Hiremath, S.; Tolpekin, V.A.; van der Heijden, G.; Stein, A. Segmentation of Rumex obtusifolius using Gaussian Markov random fields. Mach. Vis. Appl. 2013, 24, 845–854. [Google Scholar] [CrossRef]
- Guijarro, M.; Riomoros, I.; Pajares, G.; Zitinski, P. Discrete wavelets transform for improving greenness image segmentation in agricultural images. Comput. Electron. Agric. 2015, 118, 396–407. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, Y.; Chen, X.; Liu, Y. Bibliometric analysis of global NDVI research trends from 1985 to 2021. Remote Sens. 2022, 14, 3967. [Google Scholar] [CrossRef]
- Le, V.N.T.; Apopei, B.; Alameh, K. Effective plant discrimination based on the combination of local binary pattern operators and multiclass support vector machine methods. Inf. Process. Agric. 2019, 6, 116–131. [Google Scholar]
- Guerrero, J.M.; Pajares, G.; Montalvo, M.; Romeo, J.; Guijarro, M. Support vector machines for crop/weeds identification in maize fields. Expert Syst. Appl. 2012, 39, 11149–11155. [Google Scholar] [CrossRef]
- Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3523–3542. [Google Scholar] [CrossRef]
- Bo, W.; Liu, J.; Fan, X.; Tjahjadi, T.; Ye, Q.; Fu, L. BASNet: Burned area segmentation network for real-time detection of damage maps in remote sensing images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5627913. [Google Scholar] [CrossRef]
- Wu, X.; Fan, X.; Luo, P.; Choudhury, S.D.; Tjahjadi, T.; Hu, C. From laboratory to field: Unsupervised domain adaptation for plant disease recognition in the wild. Plant Phenomics 2023, 5, 0038. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Fan, X.; Zhuang, Z.; Tjahjadi, T.; Jin, S.; Huan, H.; Ye, Q. One to All: Toward a Unified Model for Counting Cereal Crop Heads Based on Few-Shot Learning. Plant Phenomics 2023, 6, 0271. [Google Scholar] [CrossRef]
- Fan, X.; Luo, P.; Mu, Y.; Zhou, R.; Tjahjadi, T.; Ren, Y. Leaf image based plant disease identification using transfer learning and feature fusion. Comput. Electron. Agric. 2022, 196, 106892. [Google Scholar] [CrossRef]
- Wang, P.; Tang, Y.; Luo, F.; Wang, L.; Li, C.; Niu, Q.; Li, H. Weed25: A deep learning dataset for weed identification. Front. Plant Sci. 2022, 13, 1053329. [Google Scholar] [CrossRef] [PubMed]
- Nong, C.; Fan, X.; Wang, J. Semi-supervised learning for weed and crop segmentation using UAV imagery. Front. Plant Sci. 2022, 13, 927368. [Google Scholar] [CrossRef]
- McCool, C.; Perez, T.; Upcroft, B. Mixtures of lightweight deep convolutional neural networks: Applied to agricultural robotics. IEEE Robot. Autom. Lett. 2017, 2, 1344–1351. [Google Scholar] [CrossRef]
- Champ, J.; Mora-Fallas, A.; Goëau, H.; Mata-Montero, E.; Bonnet, P.; Joly, A. Instance segmentation for the fine detection of crop and weed plants by precision agricultural robots. Appl. Plant Sci. 2020, 8, e11373. [Google Scholar] [CrossRef]
- Zou, K.; Chen, X.; Wang, Y.; Zhang, C.; Zhang, F. A modified U-Net with a specific data argumentation method for semantic segmentation of weed images in the field. Comput. Electron. Agric. 2021, 187, 106242. [Google Scholar] [CrossRef]
- Guo, M.H.; Xu, T.X.; Liu, J.J.; Liu, Z.N.; Jiang, P.T.; Mu, T.J.; Zhang, S.H.; Martin, R.R.; Cheng, M.M.; Hu, S.M. Attention mechanisms in computer vision: A survey. Comput. Vis. Media. 2022, 8, 331–368. [Google Scholar] [CrossRef]
- Wang, J.; Du, S.P. Study on the image segmentation of field crops based on the fusion of infrared and visible-light images. In 2010 Symposium on Photonics and Optoelectronics; IEEE: New York, NY, USA, 2010; pp. 1–4. [Google Scholar]
- Ma, J.; Plonka, G. The curvelet transform. IEEE Signal Process. Mag. 2010, 27, 118–133. [Google Scholar] [CrossRef]
- Fawakherji, M.; Potena, C.; Pretto, A.; Bloisi, D.D.; Nardi, D. Multi-spectral image synthesis for crop/weed segmentation in precision farming. Robot. Auton. Syst. 2021, 146, 103861. [Google Scholar] [CrossRef]
- Xu, B.; Meng, R.; Chen, G.; Liang, L.; Lv, Z.; Zhou, L.; Sun, R.; Zhao, F.; Yang, W. Improved weed mapping in corn fields by combining UAV-based spectral, textural, structural, and thermal measurements. Pest Manag. Sci. 2023, 79, 2591–2602. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Du, C.; Xue, Z.; Chen, X.; Zhao, H.; Huang, L. What makes multi-modal learning better than single (provably). Adv. Neural Inf. Process. Syst. 2021, 34, 10944–10956. [Google Scholar]
- Bosilj, P.; Duckett, T.; Cielniak, G. Analysis of morphology-based features for classification of crop and weeds in precision agriculture. IEEE Robot. Autom. Lett. 2018, 3, 2950–2956. [Google Scholar] [CrossRef]
- Sural, S.; Qian, G.; Pramanik, S. Segmentation and histogram generation using the HSV color space for image retrieval. In Proceedings International Conference on Image Processing, Rochester, New York, USA, 22–25 September 2002; IEEE: New York, NY, USA, 2002; Volume 2, p. 2. [Google Scholar]
- Setiawan, A.W.; Mengko, T.R.; Santoso, O.S.; Suksmono, A.B. Color retinal image enhancement using CLAHE. In International Conference on ICT for Smart Society; IEEE: New York, NY, USA, 2013; pp. 1–3. [Google Scholar]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation with transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
- Zhang, J.; Liu, H.; Yang, K.; Hu, X.; Liu, R.; Stiefelhagen, R. CMX: Cross-modal fusion for RGB-X semantic segmentation with transformers. IEEE Trans. Intel. Transp. Syst. 2023, 24, 12. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Zhao, H.; Zhang, Y.; Liu, S.; Shi, J.; Loy, C.C.; Lin, D.; Jia, J. Psanet: Point-wise spatial attention network for scene parsing. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 267–283. [Google Scholar]
- Cao, Y.; Xu, J.; Lin, S.; Wei, F.; Hu, H. Gcnet: Non-local networks meet squeeze-excitation networks and beyond. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27–28 October 2019. [Google Scholar]
- Huang, L.; Yuan, Y.; Guo, J.; Zhang, C.; Chen, X.; Wang, J. Interlaced sparse self-attention for semantic segmentation. arXiv 2019, arXiv:1907.12273. [Google Scholar]
- Yuan, Y.; Chen, X.; Chen, X.; Wang, J. Segmentation transformer: Object-contextual representations for semantic segmentation. arXiv 2019, arXiv:1909.11065. [Google Scholar]
- Meher, B.; Agrawal, S.; Panda, R.; Dora, L.; Abraham, A. Visible and infrared image fusion using an efficient adaptive transition region extraction technique. Eng. Sci. Technol. Int. J. 2022, 29, 101037. [Google Scholar] [CrossRef]
Hyper-Parameter | Value |
---|---|
Optimizer | AdamW |
Epoch | 200 |
Batch size | 2 |
Learning rate | 0.00006 |
Momentum | 0.9 |
Weight decay | 0.01 |
Models | Sugar Beets 2016 | Sunflower | Weights /MB | ||
---|---|---|---|---|---|
mIoU/% | mAcc/% | mIoU/% | mAcc/% | ||
DeepLab V3+ | 85.37 | 89.98 | 85.87 | 90.41 | 501 |
PSANet | 81.07 | 85.6 | 84.04 | 88.52 | 626 |
GCNet | 82.21 | 87.29 | 84.51 | 89.55 | 550 |
ISANet | 80.53 | 85.89 | 84.62 | 90.22 | 454 |
OCRNet | 85.17 | 91.24 | 85.94 | 89.67 | 490 |
Segformer-RGB | 87.22 | 92.1 | 86.69 | 90.95 | 45 |
Segformer-NIR | 82.81 | 88.05 | 84.87 | 89.27 | 45 |
Segformer-ADF | 87.1 | 92.08 | 87.21 | 91.84 | 45 |
CMFNet | 90.86 | 93.8 | 90.77 | 94.35 | 106 |
Fusion Method | Sugar Beets 2016 | Sunflower | Weight /MB | FLOPs /M | ||
---|---|---|---|---|---|---|
mIoU/% | mAcc/% | mIoU/% | mAcc/% | |||
Conv Concat | 87.5 | 91.11 | 85.54 | 89.72 | 91 | 8.2 |
CMFEM | 89.2 | 93.41 | 89.96 | 92.9 | 100 | 9.8 |
FRM | 89.96 | 92.9 | 88.65 | 91.53 | 95 | 9.2 |
CMFEM + FRM (CMFNet) | 90.86 | 93.8 | 90.77 | 94.35 | 106 | 10.8 |
Sugar Beets 2016 | Sunflower | ||||
---|---|---|---|---|---|
mIoU/% | mAcc/% | mIoU/% | mAcc/% | ||
1 | 89.88 | 93.17 | 89.94 | 93.95 | 0 |
2 | 90.33 | 93.4 | 90.59 | 94.01 | 0.1 |
3 | 90.86 | 93.8 | 90.77 | 94.35 | 0.2 |
4 | 90.27 | 93.11 | 90.68 | 93.55 | 0.5 |
5 | 88.85 | 92.76 | 89.03 | 93.71 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Ge, C.; Yang, X.; Wang, W. Cross-Modal Feature Fusion for Field Weed Mapping Using RGB and Near-Infrared Imagery. Agriculture 2024, 14, 2331. https://doi.org/10.3390/agriculture14122331
Fan X, Ge C, Yang X, Wang W. Cross-Modal Feature Fusion for Field Weed Mapping Using RGB and Near-Infrared Imagery. Agriculture. 2024; 14(12):2331. https://doi.org/10.3390/agriculture14122331
Chicago/Turabian StyleFan, Xijian, Chunlei Ge, Xubing Yang, and Weice Wang. 2024. "Cross-Modal Feature Fusion for Field Weed Mapping Using RGB and Near-Infrared Imagery" Agriculture 14, no. 12: 2331. https://doi.org/10.3390/agriculture14122331
APA StyleFan, X., Ge, C., Yang, X., & Wang, W. (2024). Cross-Modal Feature Fusion for Field Weed Mapping Using RGB and Near-Infrared Imagery. Agriculture, 14(12), 2331. https://doi.org/10.3390/agriculture14122331