Three-Dimensional Modelling of Indexed Papillary Muscle Displacement in Patients Requiring Mitral Valve Surgery Using Four-Dimensional Echocardiography Variables
<p>Alignment of “points” and “lines” to mitral valve—view of the mitral valve in the QLAB 13R software. The line in green marks the position of the left atrium and the left ventricle. The points demarcate the position of the mitral annulus, aortic annulus, anterior point, and coaptation/valve closure. There is a total of 7 points and 2 lines under “View Adjustment”, which need to be adjusted according to the reference provided at the left side. During the adjustment, it is allowed to pause at a single frame, which is helpful for placing the points and lines in their respective positions more accurately. After finishing the “View Adjustment”, it proceeds to “Static Model Review”. <span class="html-italic">A</span> = <span class="html-italic">anterior point</span>, <span class="html-italic">AA</span> = <span class="html-italic">aortic annulus</span>, <span class="html-italic">CL</span> = <span class="html-italic">coaptation/valve closure</span>, <span class="html-italic">MA</span> = <span class="html-italic">mitral annulus</span>, <span class="html-italic">LA</span> = <span class="html-italic">left atrium</span>, <span class="html-italic">LV</span> = <span class="html-italic">left ventricle</span>, <span class="html-italic">LAX</span> = <span class="html-italic">long axis</span>, <span class="html-italic">SAX</span> = <span class="html-italic">short axis</span>.</p> "> Figure 2
<p>“Static Model Review” shows a static model of the mitral valve generated using QLAB 13R software showing the anterior and posterior leaflets. The lines are adjusted according to the reference found at the left under the “Static Model Review”. There are two views provided, which are annulus and coaptation views. For the two views, it is important to ensure that the line is aligned with the mitral valve. <span class="html-italic">A1</span>, <span class="html-italic">A2</span>, <span class="html-italic">A3</span> = <span class="html-italic">anterior leaflet</span>, <span class="html-italic">P1</span>, <span class="html-italic">P2</span>, <span class="html-italic">P3</span> = <span class="html-italic">posterior leaflet, SAX</span> = <span class="html-italic">short axis</span>.</p> "> Figure 3
<p>“Dynamic Model Review” shows alignment in the generated dynamic model review—this provides the visualization of both annulus and coaptation once the “Static Model Review” is completed. Both the “Static Model Review” and “Dynamic Model Review” play an important role in the visualization of the valvular complex and its geometric properties. <span class="html-italic">A1</span>, <span class="html-italic">A2</span>, <span class="html-italic">A3</span> = <span class="html-italic">anterior leaflet</span>, <span class="html-italic">P1</span>, <span class="html-italic">P2</span>, <span class="html-italic">P3</span> = <span class="html-italic">posterior leaflet</span>, <span class="html-italic">SAX</span> = <span class="html-italic">short axis</span>.</p> "> Figure 4
<p>Analysis of the final outcome of the generated measurements of the mitral valve—at the end of each analysis, complete measurements are automatically calculated. These are height of the leaflets and coaptation length, anteroposterior diameter, anterolateral–posteromedial diameter, sphericity index, non-planar angle, annulus circumference, annulus area (2D), annulus area (3D), and annulus height of the mitral valve estimated using the QLAB 13R software. The measurements can be exported in 2 types of files: DICOM SR and .txt format. <span class="html-italic">AL-PM</span> = <span class="html-italic">anterolateral-posteromedial</span>, <span class="html-italic">AP</span> = <span class="html-italic">anteroposterior</span>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. QLAB 13 Software Analysis
2.3. 3D Modelling
2.4. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Surrounding Structures and Mitral Leaflet Measurements
3.3. Mitral Annulus Measurements
3.4. Chordae Tendineae Measurements
3.5. Papillary Muscle Measurements
3.6. Left Ventricular Dimensions
3.7. Baseline Hemodynamic Profile of the Study Population
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashley, E.A.; Niebauer, J. Cardiology Explained; Remedica: London, UK, 2004. [Google Scholar] [PubMed]
- Houck, R.C.; Cooke, J.E.; Gill, E.A. Live 3D echocardiography: A replacement for traditional 2D echocardiography? AJR Am. J. Roentgenol. 2006, 187, 1092–1106. [Google Scholar] [CrossRef] [PubMed]
- Nanda, N.; Hsiung, M.C.; Miller, A.P.; Hage, F.G. Live/Real Time 3D Echocardiography; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Monaghan, M.J. Role of real time 3D echocardiography in evaluating the left ventricle. Heart 2006, 92, 131–136. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qin, J.X.; Jones, M.; Shiota, T.; Greenberg, N.L.; Tsujino, H.; Firstenberg, M.S.; Gupta, P.C.; Zetts, A.D.; Xu, Y.; Ping Sun, J.; et al. Validation of real-time three-dimensional echocardiography for quantifying left ventricular volumes in the presence of a left ventricular aneurysm: In vitro and in vivo studies. J. Am. Coll. Cardiol. 2000, 36, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Arai, K.; Hozumi, T.; Matsumura, Y.; Sugioka, K.; Takemoto, Y.; Yamagishi, H.; Yoshiyama, M.; Kasanuki, H.; Yoshikawa, J. Accuracy of measurement of left ventricular volume and ejection fraction by new real-time three-dimensional echocardiography in patients with wall motion abnormalities secondary to myocardial infarction. Am. J. Cardiol. 2004, 94, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, C.; Bricknell, K.; Hanekom, L.; Marwick, T.H. Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. J. Am. Coll. Cardiol. 2004, 44, 878–886. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, N.P.; Constantin, C.; Loh, P.H.; Ghosh, J.; Lukaschuk, E.I.; Bennett, A.; Hurren, S.; Alamgir, F.; Clark, A.L.; Cleland, J.G. New generation 3-dimensional echocardiography for left ventricular volumetric and functional measurements: Comparison with cardiac magnetic resonance. Eur. J. Echocardiogr. 2006, 7, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Tighe, D.A.; Rosetti, M.; Vinch, C.S.; Chandok, D.; Muldoon, D.; Wiggin, B.; Dahlberg, S.T.; Aurigemma, G.P. Influence of image quality on the accuracy of real time three-dimensional echocardiography to measure left ventricular volumes in unselected patients: A comparison with gated-SPECT imaging. Echocardiography 2007, 24, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, L.D.; Salgo, I.S.; Goonewardena, S.; Weinert, L.; Coon, P.; Bardo, D.; Gerard, O.; Allain, P.; Zamorano, J.L.; de Isla, L.P.; et al. Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiographic data. Eur. Heart J. 2006, 27, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Pouleur, A.C.; le Polain de Waroux, J.B.; Pasquet, A.; Gerber, B.L.; Gérard, O.; Allain, P.; Vanoverschelde, J.L. Assessment of left ventricular mass and volumes by three-dimensional echocardiography in patients with or without wall motion abnormalities: Comparison against cine magnetic resonance imaging. Heart 2008, 94, 1050–1057. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Varma, P.K.; Krishna, N.; Jose, R.L.; Madkaiker, A.N. Ischemic mitral regurgitation. Ann. Card. Anaesth. 2017, 20, 432–439. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hung, J.; Solis, J.; Handschumacher, M.D.; Guerrero, J.L.; Levine, R.A. Persistence of mitral regurgitation following ring annuloplasty: Is the papillary muscle outside or inside the ring? J. Heart Valve Dis. 2012, 21, 218–224. [Google Scholar] [PubMed] [PubMed Central]
- Watanabe, N.; Ogasawara, Y.; Yamaura, Y.; Kawamoto, T.; Toyota, E.; Akasaka, T.; Yoshida, K. Quantitation of mitral valve tenting in ischemic mitral regurgitation by transthoracic real-time three-dimensional echocardiography. J. Am. Coll. Cardiol. 2005, 45, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Tibayan, F.A.; Rodriguez, F.; Langer, F.; Zasio, M.K.; Bailey, L.; Liang, D.; Daughters, G.T.; Ingels, N.B., Jr.; Miller, D.C. Annular remodeling in chronic ischemic mitral regurgitation: Ring selection implications. Ann. Thorac. Surg. 2003, 76, 1549–1554; discussion 1554–1555. [Google Scholar] [CrossRef] [PubMed]
- Ton Roosendaal. Blender 2.79b. 1998. Available online: https://www.blender.org/about/ (accessed on 18 October 2024).
- RStudio Team. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2015; Available online: http://www.rstudio.com/ (accessed on 18 October 2024).
- Godley, R.W.; Wann, L.S.; Rogers, E.W.; Feigenbaum, H.; Weyman, A.E. Incomplete mitral leaflet closure in patients with papillary muscle dysfunction. Circulation 1981, 63, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.K.; Langston, M., Jr.; Cohn, K.E.; Selzer, A.; Kerth, W.J. Combined papillary muscle and left ventricular wall dysfunction as a cause of mitral regurgitation. An experimental study. Circulation 1971, 44, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Madu, E.C.; D’Cruz, I.A. The vital role of papillary muscles in mitral and ventricular function: Echocardiographic insights. Clin. Cardiol. 1997, 20, 93–98. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yosefy, C.; Beeri, R.; Guerrero, J.L.; Vaturi, M.; Scherrer-Crosbie, M.; Handschumacher, M.D.; Levine, R.A. Mitral regurgitation after anteroapical myocardial infarction: New mechanistic insights. Circulation 2011, 123, 1529–1536. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Parameter | IMR (n = 12) Mean ± SD | DMR (n = 22) Mean ± SD | p-Value |
---|---|---|---|
Age | 65.0 ± 7.3 | 57.6 ± 11.7 | 0.058 |
Male, % | 26.5 | 8.8 | 0.369 |
Weight | 61.7 ± 8.2 | 67.8 ± 14.8 | 0.196 |
Height | 1.6 ± 0.1 | 1.6 ± 0.1 | 0.986 |
BMI | 23.3 ± 3.4 | 25.4 ± 4.0 | 0.136 |
BSA | 1.7 ± 0.1 | 1.7 ± 0.2 | 0.301 |
Parameter | IMR (n = 12) Mean ± SD | DMR (n = 22) Mean ± SD | p-Value |
---|---|---|---|
CC | 37.9 ± 6.8 | 38.0 ± 8.9 | 0.978 |
TT | 24.2 ± 3.4 | 22.6 ± 6.5 | 0.438 |
A2P2 | 9.0 ± 2.3 | 8.0 ± 2.7 | 0.293 |
Angle of tile of saddle | 125.1 ± 10.3 | 121.7 ± 18.4 | 0.556 |
Area | 12.4 ± 4.5 | 13.2 ± 5.9 | 0.664 |
Perimeter | 13.0 ± 2.1 | 13.1 ± 3.0 | 0.890 |
AL | 29.3 ± 7.3 | 30.3 ± 8.0 | 0.717 |
PL | 15.7 ± 3.9 | 20.2 ± 5.6 | 0.018 |
Anterior coaptation | 4.1 ± 1.0 | 4.0 ± 1.1 | 0.811 |
Posterior coaptation | 4.1 ± 0.9 | 4.0 ± 1.1 | 0.837 |
Ch-A (s) | 31.0 ± 5.4 | 32.2 ± 6.9 | 0.597 |
Ch-P (s) | 25.3 ± 4.6 | 26.7 ± 6.9 | 0.549 |
Ch-A (d) | 27.5 ± 7.8 | 27.8 ± 7.1 | 0.918 |
Ch-P (d) | 25.0 ± 7.34 | 25.6 ± 6.01 | 0.802 |
Inter-papillary distance/mm | 38.0 ± 6.7 | 31.8 ± 6.1 | 0.009 |
Indexed PM displacement | 22.8 ± 3.7 | 18.4 ± 3.5 | 0.002 |
Anterolateral | 1.0 ± 0.0 | 1.0 ± 0.0 | 0.000 |
Posteromedial | 1.0 ± 0.0 | 1.0 ± 0.0 | 0.000 |
LVIDd/cm | 5.3 ± 0.7 | 5.0 ± 0.7 | 0.186 |
LVIDs/cm | 3.8 ± 0.9 | 3.5 ± 0.7 | 0.242 |
EF/% | 47.9 ± 12.3 | 54.0 ± 9.2 | 0.113 |
Pmax | 18.1 ± 26.9 | 16.8 ± 28.3 | 0.900 |
Pmean | 10.4 ± 18.2 | 9.7 ± 18.1 | 0.911 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ong, Z.X.; Ler, A.A.L.; Shen, L.; Kofidis, T.; Ti, L.-K.; Sazzad, F. Three-Dimensional Modelling of Indexed Papillary Muscle Displacement in Patients Requiring Mitral Valve Surgery Using Four-Dimensional Echocardiography Variables. J. Clin. Med. 2024, 13, 7503. https://doi.org/10.3390/jcm13247503
Ong ZX, Ler AAL, Shen L, Kofidis T, Ti L-K, Sazzad F. Three-Dimensional Modelling of Indexed Papillary Muscle Displacement in Patients Requiring Mitral Valve Surgery Using Four-Dimensional Echocardiography Variables. Journal of Clinical Medicine. 2024; 13(24):7503. https://doi.org/10.3390/jcm13247503
Chicago/Turabian StyleOng, Zhi Xian, Ashlynn Ai Li Ler, Liang Shen, Theo Kofidis, Lian-Kah Ti, and Faizus Sazzad. 2024. "Three-Dimensional Modelling of Indexed Papillary Muscle Displacement in Patients Requiring Mitral Valve Surgery Using Four-Dimensional Echocardiography Variables" Journal of Clinical Medicine 13, no. 24: 7503. https://doi.org/10.3390/jcm13247503
APA StyleOng, Z. X., Ler, A. A. L., Shen, L., Kofidis, T., Ti, L. -K., & Sazzad, F. (2024). Three-Dimensional Modelling of Indexed Papillary Muscle Displacement in Patients Requiring Mitral Valve Surgery Using Four-Dimensional Echocardiography Variables. Journal of Clinical Medicine, 13(24), 7503. https://doi.org/10.3390/jcm13247503