Exergames and Immersive Virtual Reality as a Novel Therapy Approach in Multiple Sclerosis: Randomised Feasibility Study
<p>Information session for people with Multiple Sclerosis.</p> "> Figure 2
<p>Study design: CONSORT 2010 Flow Diagram.</p> "> Figure 3
<p>Screenshots of the exergame with examples of direct hit, crochet and dodge platforms in yellow.</p> "> Figure 4
<p>Example of a participant carrying out a session of the ExeRVIEM programme.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. IVR Device and Software
2.4. Intervention Program
2.5. Evaluation Tools
- -
- Tinetti Test to assess gait and balance, as well as to determine the level of early-stage fall risk [28];
- -
- Five Times Sit-to-Stand Test (FTSST) to assess the functional mobility and strength of the lower extremities [29];
- -
- -
- Fatigue Severity Scale (FSS) to assess the participants´ level of fatigue [32];
- -
- -
- Reaction Time was measured using Rezzil software (1.9.0 version), which is accurate to a thousandth of a second when assessing the time it takes for a subject to react to the appearance of stimuli [35].
- -
- Simulator Sickness Questionnaire (SSQ). This assesses the safety of the experience. It consists of 16 items grouped into 3 subscales and further divided by symptomatology: 1. Oculomotor symptoms; 2. Disorientation. 3. Nausea. Each item is evaluated on a four-point scale (0 = do not feel anything, 1 = a little, 2 = medium and 3 = a lot), and the total score is the sum of the scores of the three subscales [36,37,38];
- -
- System Usability Scale (SUS). This scale quickly and easily assesses the usability of the device/protocol. It consists of ten questions on a Likert-type scale. Each question is scored from 1 to 5 according to the level of agreement or disagreement with each statement, with 5 meaning completely agree and 1: completely disagree. The algorithm which results from these answers creates a score out of a maximum of 100 points [39,40];
- -
- The post-game module of the Game Experience Questionnaire (GEQ-post game). This questionnaire assesses each participant’s personal, subjective experience. It consists of three modules (main module, social module and post-game module). Here the post-game module was used, which assesses how players feel after they stop playing the game. This module is also a Likert-type scale consisting of 17 items where responses are graded according to the intensity of the feelings experienced (0: not at all, and 4: extremely). These items are, in turn, divided into 4 components (positive experiences, negative experiences, tiredness and return to reality), which are scored individually and whose average could result in a maximum score of 4 points [41]. In the absence of a validated version of the questionnaire in Spanish, and so the current study group would have no problems with this questionnaire, a version was used which had already been translated by the authors and been used in previous research [42,43];
- -
2.6. Data Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van der Mei, I.; et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult. Scler. 2020, 26, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Dobson, R.; Giovannoni, G. Multiple sclerosis—A review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, N.; Razavi, S.; Nikzad, E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. Cell J. 2017, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple Sclerosis. N. Engl. J. Med. 2018, 378, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Global 2016 Multiple Sclerosis Collaborators. Global, regional, and national burden of multiple sclerosis 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 269–285. [Google Scholar] [CrossRef]
- Amatya, B.; Khan, F.; Galea, M. Rehabilitation for people with multiple sclerosis: An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2019, 1, CD012732. [Google Scholar] [CrossRef]
- Learmonth, Y.C.; Motl, R.W. Exercise Training for Multiple Sclerosis: A Narrative Review of History, Benefits, Safety, Guidelines, and Promotion. Int. J. Environ. Res. Public Health 2021, 18, 13245. [Google Scholar] [CrossRef]
- Hao, Z.; Zhang, X.; Chen, P. Effects of Different Exercise Therapies on Balance Function and Functional Walking Ability in Multiple Sclerosis Disease Patients—A Network Meta-Analysis of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2022, 19, 7175. [Google Scholar] [CrossRef] [PubMed]
- Corrini, C.; Gervasoni, E.; Perini, G.; Cosentino, C.; Putzolu, M.; Montesano, A.; Pelosin, E.; Prosperini, L.; Cattaneo, D. Mobility and balance rehabilitation in multiple sclerosis: A systematic review and dose-response meta-analysis. Mult. Scler. Relat. Disord. 2023, 69, 104424. [Google Scholar] [CrossRef] [PubMed]
- Malone, L.A.; Mendonca, C.J.; Kim, Y. Active Videogaming Interventions in Adults with Neuromuscular Conditions: A Scoping Review. Games Health J. 2022, 11, 141–156. [Google Scholar] [CrossRef]
- Torres-Costoso, A.; Martínez-Vizcaíno, V.; Reina-Gutiérrez, S.; Álvarez-Bueno, C.; Guzmán-Pavón, M.J.; Pozuelo-Carrascosa, D.P.; Fernández-Rodríguez, R.; Sanchez-López, M.; Cavero-Redondo, I. Effect of Exercise on Fatigue in Multiple Sclerosis: A Network Meta-analysis Comparing Different Types of Exercise. Arch. Phys. Med. Rehabil. 2022, 103, 970–987.e18. [Google Scholar] [CrossRef] [PubMed]
- Shobeiri, P.; Karimi, A.; Momtazmanesh, S.; Teixeira, A.L.; Teunissen, C.E.; van Wegen, E.E.H.; Hirsch, M.A.; Yekaninejad, M.S.; Rezaei, N. Exercise-induced increase in blood-based brain-derived neurotrophic factor (BDNF) in people with multiple sclerosis: A systematic review and meta-analysis of exercise intervention trials. PLoS ONE 2022, 17, e0264557. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; You, Q.; Hou, X.; Zhang, S.; Du, L.; Lv, Y.; Yu, L. The effect of exercise on cognitive function in people with multiple sclerosis: A systematic review and meta-analysis of randomized controlled trials. J. Neurol. 2023, 270, 2908–2923. [Google Scholar] [CrossRef]
- Kajbafvala, M.; Ashnagar, Z.; Lucio, A.; Firoozeh, F.; Salehi, R.; Pashazadeh, F.; Dadgoo, M.; Jafari, H. Pelvic floor muscle training in multiple sclerosis patients with lower urinary tract dysfunction: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2022, 59, 103559. [Google Scholar] [CrossRef]
- Kyriakatis, G.M.; Besios, T.; Lykou, P.M. The effect of therapeutic exercise on depressive symptoms in people with multiple sclerosis—A systematic review. Mult. Scler. Relat. Disord. 2022, 68, 104407. [Google Scholar] [CrossRef]
- Latimer-Cheung, A.E.; Pilutti, L.A.; Hicks, A.L.; Martin Ginis, K.A.; Fenuta, A.M.; MacKibbon, K.A.; Motl, R.W. Effects of exercise training on fitness, mobility, fatigue, and health-related quality of life among adults with multiple sclerosis: A systematic review to inform guideline development. Arch. Phys. Med. Rehabil. 2013, 94, 1800–1828.e3. [Google Scholar] [CrossRef] [PubMed]
- Brincks, J.; Dalgas, U.; Franzén, E.; Callesen, J.; Wallin, A.; Johansson, S. Unwrapping the “black box” of balance training in people with multiple sclerosis—A descriptive systematic review of intervention components, progression, and intensity. Mult. Scler. Relat. Disord. 2022, 69, 104412. [Google Scholar] [CrossRef] [PubMed]
- McAuley, E.; Motl, R.W.; Morris, K.S.; HU, L.; Doerksen, S.E.; Elavsky, S.; Konopack, J.F. Enhancing physical activity adherence and well-being in multiple sclerosis: A randomised controlled trial. Mult. Scler. J. 2007, 13, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Dalgas, U.; Hvid, L.G.; Kwakkel, G.; Motl, R.W.; de Groot, V.; Feys, P.; Op’t Eijnde, B.; Coote, S.; Beckerman, H.; Pfeifer, K.; et al. Moving exercise research in multiple sclerosis forward (the MoXFo initiative): Developing consensus statements for research. Mult. Scler. J. 2020, 26, 1303–1308. [Google Scholar] [CrossRef] [PubMed]
- Campo-Prieto, P.; Cancela-Carral, J.M.; Rodríguez-Fuentes, G. Wearable Immersive Virtual Reality Device for Promoting Physical Activity in Parkinson’s Disease Patients. Sensors 2022, 22, 3302. [Google Scholar] [CrossRef]
- Demeco, A.; Zola, L.; Frizziero, A.; Martini, C.; Palumbo, A.; Foresti, R.; Buccino, G.; Costantino, C. Immersive Virtual Reality in Post-Stroke Rehabilitation: A Systematic Review. Sensors 2023, 23, 1712. [Google Scholar] [CrossRef] [PubMed]
- Castellano-Aguilera, A.; Biviá-Roig, G.; Cuenca-Martínez, F.; Suso-Martí, L.; Calatayud, J.; Blanco-Díaz, M.; Casaña, J. Effectiveness of Virtual Reality on Balance and Risk of Falls in People with Multiple Sclerosis: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 14192. [Google Scholar] [CrossRef] [PubMed]
- Ozkul, C.; Guclu-Gunduz, A.; Yazici, G.; Atalay Guzel, N.; Irkec, C. Effect of immersive virtual reality on balance, mobility, and fatigue in patients with multiple sclerosis: A single-blinded randomized controlled trial. Eur. J. Integr. Med. 2020, 35, 101092. [Google Scholar] [CrossRef]
- Benham, S.; Kang, M.; Grampurohit, N. Immersive Virtual Reality for the Management of Pain in Community-Dwelling Older Adults. OTJR Occup. Particip. Health 2019, 39, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Campo-Prieto, P.; Cancela-Carral, J.M.; Rodríguez-Fuentes, G. Immersive Virtual Reality to Improve Functional Capacities in People with Multiple Sclerosis: Study Protocol. Sclerosis 2023, 1, 68–75. [Google Scholar] [CrossRef]
- Moher, D.; Hopewell, S.; Schulz, K.F.; Montori, V.; Gøtzsche, P.C.; Devereaux, P.J.; Elbourne, D.; Egger, M.; Altman, D.G. CONSORT 2010 explanation and elaboration: Updated guidelines for reporting parallel group randomised trials. BMJ 2010, 340, c869. [Google Scholar] [CrossRef]
- World Medical Association, ‘Declaration of Helsinki’. Available online: https://www.wma.net/es/policies-post/declaracion-de-helsinki-de-la-amm-principios-eticos-para-las-investigaciones-medicas-en-seres-humanos/ (accessed on 27 September 2023).
- Tinetti, M.E.; Franklin Williams, T.; Mayewski, R. Fall risk index for elderly patients based on number of chronic disabilities. Am. J. Med. 1986, 80, 429–434. [Google Scholar] [CrossRef]
- Goldberg, A.; Chavis, M.; Watkins, J.; Wilson, T. The five-times-sit-to-stand test: Validity, reliability and detectable change in older females. Aging Clin. Exp. Res. 2012, 24, 339–344. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Valet, M.; Lejeune, T.; Devis, M.; Van Pesch, V.; El Sankari, S.; Stoquart, G. Timed Up-and-Go and 2-Minute Walk Test in patients with multiple sclerosis with mild disability: Reliability, responsiveness and link with perceived fatigue. Eur. J. Phys. Rehabil. Med. 2019, 55, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Krupp, L.B.; La Rocca, N.G.; Muir-Nash, J.; Steinberg, A.D. The Fatigue Severity Scale: Application to Patients With Multiple Sclerosis and Systemic Lupus Erythematosus. Arch. Neurol. 1989, 46, 1121–1123. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Chen, L.Y. Grip Strength in Older Adults: Test-Retest Reliability and Cutoff for Subjective Weakness of Using the Hands in Heavy Tasks. Arch. Phys. Med. Rehabil. 2010, 91, 1747–1751. [Google Scholar] [CrossRef]
- Uygur, M.; Barone, D.A.; Dankel, S.J.; DeStefano, N. Isometric tests to evaluate upper and lower extremity functioning in people with multiple sclerosis: Reliability and validity. Mult. Scler. Relat. Disord. 2022, 63, 103817. [Google Scholar] [CrossRef] [PubMed]
- Campo-Prieto, P.; Cancela-Carral, J.M.; Rodríguez-Fuentes, G. Immersive Virtual Reality Reaction Time Test and Relationship with the Risk of Falling in Parkinson’s Disease. Sensors 2023, 23, 4529. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, R.S.; Lane, N.E.; Berbaum, K.S.; Lilienthal, M.G. Simulator Sickness Questionnaire: An Enhanced Method for Quantify- ing Simulator Sickness. Int. J. Aviat. Psychol. 1993, 3, 203–220. [Google Scholar] [CrossRef]
- Kennedy, R.S.; Drexler, J.; Kennedy, R.C. Research in visually induced motion sickness. Appl. Ergon. 2010, 41, 494–503. [Google Scholar] [CrossRef]
- Campo-Prieto, P.; Rodríguez-Fuentes, G.; Cancela Carral, J.M. Traducción y adaptación transcultural al español del Simulator Sickness Questionnaire (Translation and cross-cultural adaptation to Spanish of the Simulator Sickness Questionnaire). Retos 2021, 43, 503–509. [Google Scholar] [CrossRef]
- Brooke, J. SUS-A quick and dirty usability scale. Usability Eval. Ind. 1996, 189, 4–7. [Google Scholar]
- Hedlefs Aguilar, M.I.; Garza Villegas, A.A. Análisis comparativo de la Escala de Usabilidad del Sistema (EUS) en dos versiones. RECI 2016, 5, 44–58. [Google Scholar] [CrossRef]
- IJsselsteijn, W.A.; de Kort, Y.A.W. The Game Experience Questionnaire; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2013. [Google Scholar]
- Campo-Prieto, P.; Cancela-Carral, J.M.; Rodríguez-Fuentes, G. Feasibility and Effects of an Immersive Virtual Reality Exergame Program on Physical Functions in Institutionalized Older Adults: A Randomized Clinical Trial. Sensors 2022, 22, 6742. [Google Scholar] [CrossRef] [PubMed]
- Campo-Prieto, P.; Rodríguez-Fuentes, G.; Cancela-Carral, J.M. Immersive Virtual Reality Exergame Promotes the Practice of Physical Activity in Older People: An Opportunity during COVID-19. Multimodal Technol. Interact. 2021, 5, 52. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sport. Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Winter, C.; Kern, F.; Gall, D.; Latoschik, M.E.; Pauli, P.; Käthner, I. Immersive virtual reality during gait rehabilitation increases walking speed and motivation: A usability evaluation with healthy participants and patients with multiple sclerosis and stroke. J. Neuroeng. Rehabil. 2021, 18, 68. [Google Scholar] [CrossRef] [PubMed]
- Pau, M.; Arippa, F.; Leban, B.; Porta, M.; Casu, G.; Frau, J.; Lorefice, L.; Coghe, G.; Cocco, E. Cybersickness in People with Multiple Sclerosis Exposed to Immersive Virtual Reality. Bioengineering 2024, 11, 115. [Google Scholar] [CrossRef]
- Campo-Prieto, P.; Cancela-Carral, J.M.; Alsina-Rey, B.; Rodríguez-Fuentes, G. Immersive Virtual Reality as a Novel Physical Therapy Approach for Nonagenarians: Usability and Effects on Balance Outcomes of a Game-Based Exercise Program. J. Clin. Med. 2022, 11, 3911. [Google Scholar] [CrossRef]
- Elhusein, A.M.; Fadlalmola, H.A.; Awadalkareem, E.M.; Alhusain, E.Y.M.; Alnassry, S.M.; Alshammari, M.; Abdulrahman, E.E.; Fadila, D.E.S.; Ibrahim, F.M.; Saeed, A.A.M.; et al. Exercise-based gaming in patients with multiple sclerosis: A systematic review and meta-analysis. Belitung Nurs. J. 2024, 10, 1–14. [Google Scholar] [CrossRef]
- Souza, A.; Kelleher, A.; Cooper, R.; Cooper, R.A.; Iezzoni, L.I.; Collins, D.M. Multiple sclerosis and mobility-related assistive technology: Systematic review of literature. J. Rehabil. Res. Dev. 2010, 47, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Kamm, C.P.; Blättler, R.; Kueng, R.; Vanbellingen, T. Feasibility and usability of a new home-based immersive virtual reality headset-based dexterity training in multiple sclerosis. Mult. Scler. Relat. Disord. 2023, 71, 104525. [Google Scholar] [CrossRef] [PubMed]
- Calderón, S.J.; Tumino, M.C.; Bournissen, J.M. Realidad virtual: Impacto en el aprendizaje percibido de estudiantes de Ciencias de la Salud. TCE 2020, 16, 65–82. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, M.; Polonio-López, B.; Corregidor-Sánchez, A.I.; Martín-Conty, J.L.; Mohedano-Moriano, A.; Criado-Álvarez, J.J. Effects of Specific Virtual Reality-Based Therapy for the Rehabilitation of the Upper Limb Motor Function Post-Ictus: Randomized Controlled Trial. Brain Sci. 2021, 11, 555. [Google Scholar] [CrossRef]
- Fimland, M.S.; Helgerud, J.; Gruber, M.; Leivseth, G.; Hoff, J. Enhanced neural drive after maximal strength training in multiple sclerosis patients. Eur. J. Appl. Physiol. 2010, 110, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Hoang, P.; Schoene, D.; Gandevia, S.; Smith, S.; Lord, S.R. Effects of a home-based step training programme on balance, stepping, cognition and functional performance in people with multiple sclerosis—A randomized controlled trial. Mult. Scler. 2016, 22, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Cameron, M.H.; Thielman, E.; Mazumder, R.; Bourdette, D. Predicting Falls in People with Multiple Sclerosis: Fall History Is as Accurate as More Complex Measures. Mult. Scler. Int. 2013, 2013, 496325. [Google Scholar] [CrossRef] [PubMed]
- Kalron, A.; Dvir, Z.; Achiron, A. Walking while talking—Difficulties incurred during the initial stages of multiple sclerosis disease process. Gait Posture 2010, 32, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Castellanos Fajardo, R.; Pulido Rull, M.A. Validez y confiabilidad de la escala de esfuerzo percibido de Borg. Enseñ. Investig. Psicol. 2009, 14, 169–177. [Google Scholar]
- Stewart, T.H.; Villaneuva, K.; Hahn, A.; Ortiz-Delatorre, J.; Wolf, C.; Nguyen, R.; Bolter, N.D.; Kern, M.; Bagley, J.R. Actual vs. perceived exertion during active virtual reality game exercise. Front. Rehabil. Sci. 2022, 3, 887740. [Google Scholar] [CrossRef]
- Runswick, O.R.; Siegel, L.; Rafferty, G.F.; Knudsen, H.S.; Sefton, L.; Taylor, S.; Reilly, C.C.; Finnegan, S.; Sargeant, M.; Pattinson, K.; et al. The Effects of Congruent and Incongruent Immersive Virtual Reality Modulated Exercise Environments in Healthy Individuals: A Pilot Study. Int. J. Hum. Comput. Interact. 2023, 1–11. [Google Scholar] [CrossRef]
EG (n = 8) | CG (n = 10) | Independent t-Test | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean/% | SD | Min. | Max. | Mean/% | SD | Min. | Max. | |||
Age (years) | 41.13 | 4.88 | 33 | 48 | 48.20 | 5.40 | 36 | 51 | F = 9.339; Sig = 0.008 | |
Sex (Female) | 75 | - | - | - | 70 | - | - | - | - | |
Diagnostic time (years) | 8.75 | 7.42 | 22 | 11 | 14.80 | 8.83 | 28.00 | F = 0.614; Sig = 0.071 | ||
Tinetti (points) | Balance | 15.13 | 1.25 | 13.00 | 16.00 | 14.40 | 1.96 | 11.00 | 16.00 | F = 3.557; Sig = 0.149 |
Gait | 11.00 | 1.41 | 9.00 | 12.00 | 10.80 | 1.14 | 9.00 | 12.00 | F = 1.434; Sig = 0.249 | |
Total | 26.13 | 2.10 | 23.00 | 28.00 | 25.20 | 2.94 | 21.00 | 28.00 | F = 2.932; Sig = 0.106 | |
FTSST (s) | 14.42 | 4.51 | 10.38 | 23.68 | 12.84 | 3.79 | 7.54 | 19.32 | F = 0.162; Sig = 0.693 | |
TUG (s) | Simple | 10.69 | 5.64 | 5.58 | 19.28 | 8.01 | 1.93 | 5.47 | 10.81 | F = 10.969; Sig = 0.004 |
Cognitive | 12.00 | 5.79 | 5.84 | 21.37 | 9.30 | 2.63 | 5.71 | 13.09 | F = 3.366; Sig = 0.085 | |
FSS (points) | 38.50 | 13.43 | 18.00 | 57.00 | 41.20 | 12.57 | 21.00 | 57.00 | F = 0.038; Sig = 0.848 | |
Handgrip (kg) | 42.07 | 9.06 | 32.70 | 61.90 | 43.07 | 4.29 | 34.80 | 50.30 | F = 1.292; Sig = 0.272 | |
Reaction time (ms) | 565.88 | 78.35 | 470.00 | 718.00 | 576.40 | 149.36 | 386.00 | 880.00 | F = 2.811; Sig = 0.113 |
Experimental Group | |||
---|---|---|---|
Mean | Minimum | Maximum | |
SUS | 90.31/100 | 72.5 | 100 |
SSQ | 1.37/48 | 0 | 6 |
GEQ (positive experiences) | 3.10/4 | 2 | 4 |
GEQ (negative experiences) | 0/4 | 0 | 0 |
GEQ (fatigue) | 0.43/4 | 0 | 1.5 |
GEQ (return to reality) | 0.16/4 | 0 | 1 |
Grupo Experimental | ||
---|---|---|
Session 1 | Session 16 | |
Score (mean) | 103,385.37 | 148,548.12 |
% correct score (mean) | 40.72 | 58.48 |
Borg (mean) | 3.62 | 2.37 |
Cybersickness (mean) | 0.25 | 0 |
EG (n = 8) | CG (n = 10) | ||||
---|---|---|---|---|---|
Pre Mean ± SD | Post Mean ± SD | Pre Mean ± SD | Post Mean ± SD | ||
Tinetti (points) | Balance | 15.13 ± 1.25 | 15.25 ± 0.89 | 14.40 ± 1.96 | 14.40 ± 1.26 |
Gait | 11.00 ± 1.41 | 11.38 ± 0.92 | 10.80 ± 1.14 | 11.00 ± 1.15 | |
Total | 26.13 ± 2.10 | 26.63 ± 1.51 | 25.20 ± 2.94 | 25.40 ± 2.27 | |
FTSST (s) | 14.42 ± 4.51 | 12.74 ± 4.67 | 12.84 ± 3.79 | 12.07 ± 2.79 | |
TUG (s) | Simple | 10.69 ± 5.64 | 9.24 ± 4.69 | 8.01 ± 1.93 | 8.66 ± 2.26 |
Cognitive | 12.00 ± 5.79 | 9.69 ± 5.07 | 9.30 ± 2.63 | 10.23 ± 3.17 | |
FSS (points) | 38.50 ± 13.43 | 36.00 ± 14.99 | 41.20 ± 12.57 | 39.70 ± 10.88 | |
Handgrip (kg) | 42.07 ± 9.06 | 48.51 ± 17.20 | 43.07 ± 4.29 | 51.25 ± 5.83 | |
Reaction time (ms) | 565.88 ± 78.35 | 472.38 ± 134.32 | 576.40 ± 149.36 | 527.90 ± 127.23 | |
Borg (points) | 2.75 ± 2.25 | 2.88 ± 0.99 | - | - |
Intragroup (Pre-Post) | Intergroup ANOVA 2 × 2 (Moment × Group) | |||||
---|---|---|---|---|---|---|
EG (n = 8) Sig. | CG (n = 10) Sig. | Group Sig. | Measurements Sig. | Interaction Sig. | ||
Tinetti (points) | Balance | 0.685 | 1.000 | 0.467 | 0.467 | 0.824 |
Gait | 0.800 | 0.443 | 0.110 | 0.897 | 0.897 | |
Total | 0.170 | 0.662 | 0.175 | 0.655 | 0.848 | |
FTSST (s) | 0.042 * | 0.355 | 0.040 * | 0.361 | 0.731 | |
TUG (s) | Simple | 0.009 * | 0.072 | 0.018 * | 0.518 | 0.455 |
Cognitive | 0.003 * | 0.181 | 0.036 * | 0.370 | 0.284 | |
FSS (points) | 0.192 | 0.618 | 0.465 | 0.647 | 0.909 | |
Handgrip (kg) | 0.108 | 0.001 * | 0.577 | 0.035 * | 0.794 | |
Reaction time (ms) | 0.092 | 0.225 | 0.444 | 0.105 | 0.601 | |
Borg (points) | 0.885 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Fuentes, G.; Ferreiro-Gómez, E.; Campo-Prieto, P.; Cancela-Carral, J.M. Exergames and Immersive Virtual Reality as a Novel Therapy Approach in Multiple Sclerosis: Randomised Feasibility Study. J. Clin. Med. 2024, 13, 5845. https://doi.org/10.3390/jcm13195845
Rodríguez-Fuentes G, Ferreiro-Gómez E, Campo-Prieto P, Cancela-Carral JM. Exergames and Immersive Virtual Reality as a Novel Therapy Approach in Multiple Sclerosis: Randomised Feasibility Study. Journal of Clinical Medicine. 2024; 13(19):5845. https://doi.org/10.3390/jcm13195845
Chicago/Turabian StyleRodríguez-Fuentes, Gustavo, Elena Ferreiro-Gómez, Pablo Campo-Prieto, and José Mª Cancela-Carral. 2024. "Exergames and Immersive Virtual Reality as a Novel Therapy Approach in Multiple Sclerosis: Randomised Feasibility Study" Journal of Clinical Medicine 13, no. 19: 5845. https://doi.org/10.3390/jcm13195845
APA StyleRodríguez-Fuentes, G., Ferreiro-Gómez, E., Campo-Prieto, P., & Cancela-Carral, J. M. (2024). Exergames and Immersive Virtual Reality as a Novel Therapy Approach in Multiple Sclerosis: Randomised Feasibility Study. Journal of Clinical Medicine, 13(19), 5845. https://doi.org/10.3390/jcm13195845