Early Point-of-Care Thromboelastometry Reduces Mortality in Patients with Severe Trauma and Risk of Transfusion: An Analysis Based on the TraumaRegister DGU®
<p>Cohort identification. Legend: TASH: Trauma-Associated Severe Hemorrhage; D: Germany, A: Austria, CH: Switzerland.</p> "> Figure 2
<p>Comparison of the predicted massive transfusion rate based on modified TASH score with the actual documented massive transfusion rate for each TASH score. Legend: TASH: Trauma-Associated Severe Hemorrhage.</p> "> Figure 3
<p>The different probabilities for massive transfusion as predicted via TASH score and the respective proportion of patients receiving ROTEM<sup>®</sup> analysis as well as the predicted and actual number of patients with massive transfusions.</p> "> Figure 4
<p>Comparison of the usage of indicated coagulation management agents in the ROTEM<sup>®</sup> and non-ROTEM<sup>®</sup> subgroups. PCC: Prothrombin complex concentrate. Data are illustrated after matched pair analysis with the TASH-based risk for massive transfusion as a matching criterion. ***: <span class="html-italic">p</span> < 0.001 (in comparison to the non-ROTEM<sup>®</sup> counterpart). N = 1722 for each subgroup. Legend: ROTEM<sup>®</sup>: rotational thromboelastometry; PCC: Prothrombin complex concentrate.</p> "> Figure 5
<p>Comparison of the observed mortality and the predicted mortality as conducted via RISC-II-score. Legend: ROTEM<sup>®</sup>: rotational thromboelastometry; RISCII: Revised Injury Severity Classification, version II.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Statistics
3. Results
3.1. TASH Validation and General Data
3.2. ROTEM® Subpopulation
3.3. Patterns of Injury
3.4. Coagulation Management and Outcome
4. Discussion
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kauvar, D.S.; Wade, C.E. The epidemiology and modern management of traumatic hemorrhage: US and international perspectives. Crit. Care 2005, 9 (Suppl. S5), S1–S9. [Google Scholar] [CrossRef] [PubMed]
- Spahn, D.R.; Bouillon, B.; Cerny, V.; Duranteau, J.; Filipescu, D.; Hunt, B.J.; Komadina, R.; Maegele, M.; Nardi, G.; Riddez, L.; et al. The European guideline on management of major bleeding and coagulopathy following trauma: Fifth edition. Crit. Care 2019, 23, 98. [Google Scholar] [PubMed]
- Spasiano, A.; Barbarino, C.; Marangone, A.; Orso, D.; Trillò, G.; Giacomello, R.; Bove, T.; Della Rocca, G. Early thromboelastography in acute traumatic coagulopathy: An observational study focusing on pre-hospital trauma care. Eur. J. Trauma Emerg. Surg. 2022, 48, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Maegele, M.; Lefering, R.; Wafaisade, A.; Theodorou, P.; Wutzler, S.; Fischer, P.; Bouillon, B.; Paffrath, T. Revalidation and update of the TASH-Score: A scoring system to predict the probability for massive transfusion as a surrogate for life-threatening haemorrhage after severe injury. Vox Sang. 2011, 100, 231–238. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, D.F.; Niles, S.E.; Salinas, J.; Perkins, J.G.; Cox, E.D.; Wade, C.E.; Holcomb, J.B. A predictive model for massive transfusion in combat casualty patients. J. Trauma 2008, 64 (Suppl. 2), S57–S63. [Google Scholar] [CrossRef]
- Nunez, T.C.; Voskresensky, I.V.; Dossett, L.A.; Shinall, R.; Dutton, W.D.; Cotton, B.A. Early prediction of massive transfusion in trauma: Simple as ABC (assessment of blood consumption)? J. Trauma 2009, 66, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Yucel, N.; Lefering, R.; Maegele, M.; Vorweg, M.; Tjardes, T.; Ruchholtz, S.; Neugebauer, E.A.; Wappler, F.; Bouillon, B.; Rixen, D. Trauma Associated Severe Hemorrhage (TASH)-Score: Probability of mass transfusion as surrogate for life threatening hemorrhage after multiple trauma. J. Trauma 2006, 60, 1228–1236, discussion 36–37. [Google Scholar] [CrossRef]
- Hartert, H. Blood clotting studies with Thrombus stressography; a new Investigation procedure. Klin. Wochenschr. 1948, 26, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Lefering, R.; Huber-Wagner, S.; Nienaber, U.; Maegele, M.; Bouillon, B. Update of the trauma risk adjustment model of the TraumaRegister DGU®: The Revised Injury Severity Classification, version II. Crit. Care 2014, 18, 476. [Google Scholar] [CrossRef] [PubMed]
- Brohi, K.; Singh, J.; Heron, M.; Coats, T. Acute traumatic coagulopathy. J. Trauma 2003, 54, 1127–1130. [Google Scholar] [CrossRef]
- Jambor, C.; Heindl, B.; Spannagl, M.; Rolfes, C.; Dinges, G.K.; Frietsch, T. Hemostasis management in multiple trauma patients—Value of near-patient diagnostic methods. Anasthesiol. Intensivmed. Notfallmed. Schmerzther. 2009, 44, 200–209. [Google Scholar] [PubMed]
- Schochl, H.; Frietsch, T.; Pavelka, M.; Jambor, C. Hyperfibrinolysis after major trauma: Differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J. Trauma 2009, 67, 125–131. [Google Scholar] [CrossRef]
- Anderson, L.; Quasim, I.; Soutar, R.; Steven, M.; Macfie, A.; Korte, W. An audit of red cell and blood product use after the institution of thromboelastometry in a cardiac intensive care unit. Transfus. Med. 2006, 16, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Jonas, J.; Tomas, V.; Broz, T.; Durila, M. Utility of rotational thromboelastometry in total hip replacement revision surgery (case-control study). Medicine 2020, 99, e23553. [Google Scholar] [CrossRef] [PubMed]
- Shore-Lesserson, L.; Manspeizer, H.E.; DePerio, M.; Francis, S.; Vela-Cantos, F.; Ergin, M.A. Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery. Anesth. Analg. 1999, 88, 312–319. [Google Scholar] [CrossRef]
- Spalding, G.J.; Hartrumpf, M.; Sierig, T.; Oesberg, N.; Kirschke, C.G.; Albes, J.M. Cost reduction of perioperative coagulation management in cardiac surgery: Value of “bedside” thrombelastography (ROTEM). Eur. J. Cardiothorac. Surg. 2007, 31, 1052–1057. [Google Scholar] [CrossRef] [PubMed]
- Wake, E.; Walters, K.; Winearls, J.; Marshall, A.P. Implementing and sustaining Point of Care ROTEM(R) into a trauma activation protocol for the management of patients with traumatic injury: A mixed-methods study. Aust. Crit. Care 2022, 36, 336–344. [Google Scholar] [CrossRef]
- Schöchl, H.; Nienaber, U.; Hofer, G.; Voelckel, W.; Jambor, C.; Scharbert, G.; Kozek-Langenecker, S.; Solomon, C. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit. Care 2010, 14, R55. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, E.; Moore, E.E.; Moore, H.B.; Chapman, M.P.; Chin, T.L.; Ghasabyan, A.; Wohlauer, M.V.; Barnett, C.C.; Bensard, D.D.; Biffl, W.L.; et al. Goal-directed Hemostatic Resuscitation of Trauma-induced Coagulopathy: A Pragmatic Randomized Clinical Trial Comparing a Viscoelastic Assay to Conventional Coagulation Assays. Ann. Surg. 2016, 263, 1051–1059. [Google Scholar] [CrossRef]
- Campbell, D.; Wake, E.; Walters, K.; Ho, D.; Keijzers, G.; Wullschleger, M.; Winearls, J. Implementation of point-of-care ROTEM(R) into a trauma major haemorrhage protocol: A before and after study. Emerg. Med. Australas. 2020, 33, 457–464. [Google Scholar] [CrossRef]
- Cohen, J.; Scorer, T.; Wright, Z.; Stewart, I.J.; Sosnov, J.; Pidcoke, H.; Fedyk, C.; Kwan, H.; Chung, K.K.; Heegard, K.; et al. A prospective evaluation of thromboelastometry (ROTEM) to identify acute traumatic coagulopathy and predict massive transfusion in military trauma patients in Afghanistan. Transfusion 2019, 59, 1601–1607. [Google Scholar] [CrossRef] [PubMed]
- Hagemo, J.S.; Christiaans, S.C.; Stanworth, S.J.; Brohi, K.; Johansson, P.I.; Goslings, J.C.; Naess, P.A.; Gaarder, C. Detection of acute traumatic coagulopathy and massive transfusion requirements by means of rotational thromboelastometry: An international prospective validation study. Crit. Care 2015, 19, 97. [Google Scholar] [CrossRef] [PubMed]
- Schochl, H.; Cotton, B.; Inaba, K.; Nienaber, U.; Fischer, H.; Voelckel, W.; Solomon, C. FIBTEM provides early prediction of massive transfusion in trauma. Crit. Care 2011, 15, R265. [Google Scholar] [CrossRef] [PubMed]
- Veigas, P.V.; Callum, J.; Rizoli, S.; Nascimento, B.; da Luz, L.T. A systematic review on the rotational thrombelastometry (ROTEM(R)) values for the diagnosis of coagulopathy, prediction and guidance of blood transfusion and prediction of mortality in trauma patients. Scand. J. Trauma Resusc. Emerg. Med. 2016, 24, 114. [Google Scholar] [CrossRef]
- David, J.S.; Friggeri, A.; Vacheron, C.H.; Bouzat, P.; Fraticelli, L.; Claustre, C.; Maegele, M.; Inaba, K. Is it possible to improve prediction of outcome and blood requirements in the severely injured patients by defining categories of coagulopathy? Eur. J. Trauma Emerg. Surg. 2022, 48, 2751–2761. [Google Scholar] [CrossRef]
TASH Component | Value | TASH Points | Prevalence | Patients with MT (Percentage of Prevalence) |
---|---|---|---|---|
Hemoglobin (g/dL) | <7 | 8 | 1535 (1.8%) | 366 (23.8%) |
<9 | 6 | 3430 (4.1%) | 370 (10.8%) | |
<10 | 4 | 3431 (4.1%) | 188 (5.5%) | |
<11 | 3 | 5662 (6.8%) | 169 (3.0%) | |
<12 | 2 | 9068 (10.8%) | 154 (1.7%) | |
12+ | 0 | 60,671 (72.4%) | 214 (0.4%) | |
Base excess (mmol/L) | <−10 | 4 | 4125 (4.9%) | 588 (14.3%) |
<−6 | 3 | 6086 (7.3%) | 328 (5.4%) | |
<−2 | 1 | 21,818 (26.0%) | 346 (1.6%) | |
−2+ | 0 | 51,769 (61.8%) | 199 (0.4%) | |
Systolic blood pressure (mmHg) | <90 | * | 6106 (7.3%) | 716 (11.7%) |
<100 | 4 | 3758 (4.5%) | 161 (4.3%) | |
<120 | 1 | 14,116 (16.8%) | 266 (1.9%) | |
120+ | 0 | 59,818 (71.4%) | 318 (0.5%) | |
Heart rate (b/min) | >120 | 2 | 5029 (6.0%) | 396 (7.9%) |
≤120 | 0 | 78,769 (94.0%) | 1065 (1.4%) | |
FAST positive (AIS 3+ organ injury) | yes | 3 | 8385 (10.0%) | 789 (9.4%) |
no | 0 | 75,413 (90.0%) | 672 (0.9%) | |
Femur fracture | yes | 3 | 13,260 (15.8%) | 601 (4.5%) |
no | 0 | 70,583 (84.2%) | 860 (1.2%) | |
Unstable pelvic fracture | yes | 6 | 1567 (1.9%) | 323 (20.6%) |
no | 0 | 82,231 (98.1%) | 1138 (1.4%) | |
Gender | M | 1 | 59,890 (71.5%) | 1031 (1.7%) |
F | 0 | 23,908 (28.5%) | 430 (1.8%) |
Non-ROTEM® n = 76,058 | ROTEM® n = 7740 | p-Value | |
---|---|---|---|
Age | 51.9 (21.0) | 50.2 (20.5) | <0.001 |
Male patients | 54,202 (71.3%) | 5688 (73.5%) | <0.001 |
Mechanism: traffic | 39,572 (52.6%) | 4024 (52.5%) | <0.001 |
high fall | 28,436 (37.8%) | 2727 (35.6%) | |
low fall | 7168 (9.5%) | 919 (12.0%) | |
Injury Severity Score | 19.7 (12.3) | 24.3 (14.1) | <0.001 |
Penetrating trauma | 3172 (4.4%) | 425 (5.7%) | <0.001 |
Head injury (AIS 3+) | 29,040 (38.2%) | 3381 (43.7%) | <0.001 |
Thoracic trauma (AIS 3+) | 31,273 (41.1%) | 3633 (46.9%) | <0.001 |
Abdominal trauma (AIS 3+) | 7860 (10.3%) | 1280 (16.5%) | <0.001 |
Injury of the extremities (AIS 3+) | 19,190 (25.2%) | 2649 (34.2%) | <0.001 |
Quick’s value (%) | 86 (22) | 79 (23) | <0.001 |
INR | 1.19 (0.55) | 1.26 (0.61) | <0.001 |
Base excess (mmol/L) | −1.7 (4.5) | −3.0 (5.1) | <0.001 |
Hemoglobin (g/dL) | 13.0 (2.2) | 12.4 (2.5) | <0.001 |
Blood transfusion | 7452 (9.8%) | 1768 (22.2) | <0.001 |
Massive transfusion (10+ pRBC) | 1168 (1.5%) | 293 (3.8%) | <0.001 |
Length of stay on ICU (days) | 3 (1–8) | 5 (2–14) | <0.001 |
Length of stay in hospital (days) | 12 (6–14) | 16 (8–28) | <0.001 |
Time from accident to hospital admission (min) | 69 (33) | 73 (32) | <0.001 |
Admitted to level 1 hospital | 63,315 (83.2) | 7076 (91.4) | <0.001 |
Pre-hospital volume > 1000 mL | 10,906 (15.4) | 1508 (20.5) | <0.001 |
Died in hospital | 9025 (11.9%) | 1220 (15.8%) | <0.001 |
Expected mortality based on RISC II | 11.3% | 16.0% | <0.001 |
Standardized Mortality Ratio (SMR) | 1.05 (1.03–1.07) | 0.98 (0.93–1.04) | 0.053 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beyersdorf, C.; Bieler, D.; Lefering, R.; Imach, S.; Hackenberg, L.; Schiffner, E.; Thelen, S.; Lakomek, F.; Windolf, J.; Jaekel, C.; et al. Early Point-of-Care Thromboelastometry Reduces Mortality in Patients with Severe Trauma and Risk of Transfusion: An Analysis Based on the TraumaRegister DGU®. J. Clin. Med. 2024, 13, 4059. https://doi.org/10.3390/jcm13144059
Beyersdorf C, Bieler D, Lefering R, Imach S, Hackenberg L, Schiffner E, Thelen S, Lakomek F, Windolf J, Jaekel C, et al. Early Point-of-Care Thromboelastometry Reduces Mortality in Patients with Severe Trauma and Risk of Transfusion: An Analysis Based on the TraumaRegister DGU®. Journal of Clinical Medicine. 2024; 13(14):4059. https://doi.org/10.3390/jcm13144059
Chicago/Turabian StyleBeyersdorf, Christoph, Dan Bieler, Rolf Lefering, Sebastian Imach, Lisa Hackenberg, Erik Schiffner, Simon Thelen, Felix Lakomek, Joachim Windolf, Carina Jaekel, and et al. 2024. "Early Point-of-Care Thromboelastometry Reduces Mortality in Patients with Severe Trauma and Risk of Transfusion: An Analysis Based on the TraumaRegister DGU®" Journal of Clinical Medicine 13, no. 14: 4059. https://doi.org/10.3390/jcm13144059
APA StyleBeyersdorf, C., Bieler, D., Lefering, R., Imach, S., Hackenberg, L., Schiffner, E., Thelen, S., Lakomek, F., Windolf, J., Jaekel, C., & TraumaRegister DGU®. (2024). Early Point-of-Care Thromboelastometry Reduces Mortality in Patients with Severe Trauma and Risk of Transfusion: An Analysis Based on the TraumaRegister DGU®. Journal of Clinical Medicine, 13(14), 4059. https://doi.org/10.3390/jcm13144059