The Effect of Intermittent versus Continuous Non-Invasive Blood Pressure Monitoring on the Detection of Intraoperative Hypotension, a Sub-Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Measurements
2.2. Data Collection
2.3. Sample Size
2.4. Data Analysis
3. Results
3.1. Study Population
3.2. Primary Endpoint
3.3. Secondary Endpoint
3.4. Exploratory Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hallqvist, L.; Granath, F.; Huldt, E.; Bell, M. Intraoperative hypotension is associated with acute kidney injury in noncardiac surgery: An observational study. Eur. J. Anaesthesiol. 2018, 35, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Salmasi, V.; Maheshwari, K.; Yang, D.; Mascha, E.J.; Singh, A.; Sessler, D.I.; Kurz, A. Relationship between Intraoperative Hypotension, Defined by Either Reduction from Baseline or Absolute Thresholds, and Acute Kidney and Myocardial Injury after Noncardiac Surgery. Anesthesiology 2017, 126, 47–65. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yu, C.; Jiang, J.; Zheng, H.; Yao, S.; Pei, L.; Sun, L.; Xue, F.; Huang, Y. Major adverse cardiac events in elderly patients with coronary artery disease undergoing noncardiac surgery: A multicenter prospective study in China. Arch. Gerontol. Geriatr. 2015, 61, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Monk, T.G.; Bronsert, M.R.; Henderson, W.G.; Mangione, M.P.; Sum-Ping, S.T.; Bentt, D.R.; Nguyen, J.D.; Richman, J.S.; Meguid, R.A.; Hammermeister, K.E. Association between Intraoperative Hypotension and Hypertension and 30-day Postoperative Mortality in Noncardiac Surgery. Anesthesiology 2015, 123, 307–319. [Google Scholar] [CrossRef]
- Futier, E.; Lefrant, J.Y.; Guinot, P.G.; Godet, T.; Lorne, E.; Cuvillon, P.; Bertran, S.; Leone, M.; Pastene, B.; Piriou, V.; et al. Effect of Individualized vs Standard Blood Pressure Management Strategies on Postoperative Organ Dysfunction Among High-Risk Patients Undergoing Major Surgery: A Randomized Clinical Trial. JAMA 2017, 318, 1346–1357. [Google Scholar] [CrossRef]
- Wu, X.; Jiang, Z.; Ying, J.; Han, Y.; Chen, Z. Optimal blood pressure decreases acute kidney injury after gastrointestinal surgery in elderly hypertensive patients: A randomized study: Optimal blood pressure reduces acute kidney injury. J. Clin. Anesth. 2017, 43, 77–83. [Google Scholar] [CrossRef]
- Sessler, D.I.; Bloomstone, J.A.; Aronson, S.; Berry, C.; Gan, T.J.; Kellum, J.A.; Plumb, J.; Mythen, M.G.; Grocott, M.P.W.; Edwards, M.R.; et al. Perioperative Quality Initiative consensus statement on intraoperative blood pressure, risk and outcomes for elective surgery. Br. J. Anaesth. 2019, 122, 563–574. [Google Scholar] [CrossRef] [Green Version]
- Nuttall, G.; Burckhardt, J.; Hadley, A.; Kane, S.; Kor, D.; Marienau, M.S.; Schroeder, D.R.; Handlogten, K.; Wilson, G.; Oliver, W.C. Surgical and Patient Risk Factors for Severe Arterial Line Complications in Adults. Anesthesiology 2016, 124, 590–597. [Google Scholar] [CrossRef]
- Scheer, B.; Perel, A.; Pfeiffer, U.J. Clinical review: Complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit. Care 2002, 6, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Cousins, T.R.; O’Donnell, J.M. Arterial cannulation: A critical review. AANA J. 2004, 72, 267–271. [Google Scholar]
- Bogert, L.W.; van Lieshout, J.J. Non-invasive pulsatile arterial pressure and stroke volume changes from the human finger. Exp. Physiol. 2005, 90, 437–446. [Google Scholar] [CrossRef] [Green Version]
- Martina, J.R.; Westerhof, B.E.; van Goudoever, J.; de Beaumont, E.M.; Truijen, J.; Kim, Y.S.; Immink, R.V.; Jobsis, D.A.; Hollmann, M.W.; Lahpor, J.R.; et al. Noninvasive continuous arterial blood pressure monitoring with Nexfin(R). Anesthesiology 2012, 116, 1092–1103. [Google Scholar] [CrossRef] [Green Version]
- Vos, J.J.; Poterman, M.; Mooyaart, E.A.; Weening, M.; Struys, M.M.; Scheeren, T.W.; Kalmar, A.F. Comparison of continuous non-invasive finger arterial pressure monitoring with conventional intermittent automated arm arterial pressure measurement in patients under general anaesthesia. Br. J. Anaesth. 2014, 113, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Heusdens, J.F.; Lof, S.; Pennekamp, C.W.; Specken-Welleweerd, J.C.; de Borst, G.J.; van Klei, W.A.; van Wolfswinkel, L.; Immink, R.V. Validation of non-invasive arterial pressure monitoring during carotid endarterectomy. Br. J. Anaesth. 2016, 117, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Wijnberge, M.; van der Ster, B.J.P.; Geerts, B.F.; de Beer, F.; Beurskens, C.; Emal, D.; Hollmann, M.W.; Vlaar, A.P.J.; Veelo, D.P. Clinical performance of a machine-learning algorithm to predict intra-operative hypotension with noninvasive arterial pressure waveforms: A cohort study. Eur. J. Anaesthesiol. 2021, 38, 609–615. [Google Scholar] [CrossRef]
- Stapelfeldt, W.H.; Yuan, H.; Dryden, J.K.; Strehl, K.E.; Cywinski, J.B.; Ehrenfeld, J.M.; Bromley, P. The SLUScore: A Novel Method for Detecting Hazardous Hypotension in Adult Patients Undergoing Noncardiac Surgical Procedures. Anesth. Analg. 2017, 124, 1135–1152. [Google Scholar] [CrossRef] [Green Version]
- Davies, S.J.; Vistisen, S.T.; Jian, Z.; Hatib, F.; Scheeren, T.W.L. Ability of an Arterial Waveform Analysis-Derived Hypotension Prediction Index to Predict Future Hypotensive Events in Surgical Patients. Anesth. Analg. 2019, 130, 352–359. [Google Scholar] [CrossRef]
- Maheshwari, K.; Khanna, S.; Bajracharya, G.R.; Makarova, N.; Riter, Q.; Raza, S.; Cywinski, J.B.; Argalious, M.; Kurz, A.; Sessler, D.I. A Randomized Trial of Continuous Noninvasive Blood Pressure Monitoring During Noncardiac Surgery. Anesth. Analg. 2018, 127, 424–431. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13, S31–S34. [Google Scholar] [CrossRef]
- Saugel, B.; Kouz, K.; Scheeren, T.W.L.; Greiwe, G.; Hoppe, P.; Romagnoli, S.; de Backer, D. Cardiac output estimation using pulse wave analysis-physiology, algorithms, and technologies: A narrative review. Br. J. Anaesth. 2021, 126, 67–76. [Google Scholar] [CrossRef]
- Gizdulich, P.; Prentza, A.; Wesseling, K.H. Models of brachial to finger pulse wave distortion and pressure decrement. Cardiovasc. Res. 1997, 33, 698–705. [Google Scholar] [CrossRef]
- Guelen, I.; Westerhof, B.E.; van der Sar, G.L.; van Montfrans, G.A.; Kiemeneij, F.; Wesseling, K.H.; Bos, W.J. Validation of brachial artery pressure reconstruction from finger arterial pressure. J. Hypertens. 2008, 26, 1321–1327. [Google Scholar] [CrossRef]
- Wijnberge, M.; Geerts, B.F.; Hol, L.; Lemmers, N.; Mulder, M.P.; Berge, P.; Schenk, J.; Terwindt, L.E.; Hollmann, M.W.; Vlaar, A.P.; et al. Effect of a Machine Learning-Derived Early Warning System for Intraoperative Hypotension vs Standard Care on Depth and Duration of Intraoperative Hypotension During Elective Noncardiac Surgery: The HYPE Randomized Clinical Trial. JAMA 2020, 323, 1052–1060. [Google Scholar] [CrossRef]
- Wijnberge, M.; Schenk, J.; Terwindt, L.E.; Mulder, M.P.; Hollmann, M.W.; Vlaar, A.P.; Veelo, D.P.; Geerts, B.F. The use of a machine-learning algorithm that predicts hypotension during surgery in combination with personalized treatment guidance: Study protocol for a randomized clinical trial. Trials 2019, 20, 582. [Google Scholar] [CrossRef] [Green Version]
- Meidert, A.S.; Nold, J.S.; Hornung, R.; Paulus, A.C.; Zwissler, B.; Czerner, S. The impact of continuous non-invasive arterial blood pressure monitoring on blood pressure stability during general anaesthesia in orthopaedic patients: A randomised trial. Eur. J. Anaesthesiol. 2017, 34, 716–722. [Google Scholar] [CrossRef]
- Benes, J.; Simanova, A.; Tovarnicka, T.; Sevcikova, S.; Kletecka, J.; Zatloukal, J.; Pradl, R.; Chytra, I.; Kasal, E. Continuous non-invasive monitoring improves blood pressure stability in upright position: Randomized controlled trial. J. Clin. Monit. Comput. 2015, 29, 11–17. [Google Scholar] [CrossRef]
- Gellert, G.; Bramlage, P. Use of the ClearSight(R) System for Continuous Noninvasive Hemodynamic Monitoring during Heart Valve Interventions: Review of the Literature and Single-Site Experience. Heart Surg. Forum 2018, 21, E476–E483. [Google Scholar] [CrossRef]
- Keuffel, E.L.; Rizzo, J.; Stevens, M.; Gunnarsson, C.; Maheshwari, K. Hospital costs associated with intraoperative hypotension among non-cardiac surgical patients in the US: A simulation model. J. Med. Econ. 2019, 22, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Booth, J. A short history of blood pressure measurement. Proc. R. Soc. Med. 1977, 70, 793–799. [Google Scholar] [CrossRef] [Green Version]
- ISO 81060-2; American National Standard for Non-Invasive Sphygmomanometers—Part 2: Clinical Validation of Automated Measurement Type. Association for the Advancement of Medical Instrumentation: Arlington, VA, USA.
- Van der Ven, W.H.; Kleinsteuber, S.P.C.; Terwindt, L.E.; Schenk, J.; van der Ster, B.J.P.; Vlaar, A.P.J.; Hollmann, M.W.; Veelo, D.P.; Immink, R.V. Ipsilateral and contralateral validation of continuous noninvasive finger blood pressure: Does side matter? Br. J. Anaesth. 2021, 127, e149–e151. [Google Scholar] [CrossRef] [PubMed]
- Wijnberge, M.; Schenk, J.; Bulle, E.; Vlaar, A.P.; Maheshwari, K.; Hollmann, M.W.; Binnekade, J.M.; Geerts, B.F.; Veelo, D.P. Association of intraoperative hypotension with postoperative morbidity and mortality: Systematic review and meta-analysis. BJS Open 2021, 5, 33609377. [Google Scholar] [CrossRef] [PubMed]
Characteristics | n = 268 Patients |
---|---|
Age | 56.0 (43.3–66.0) |
Male | 123 (46%) |
Female | 145 (54%) |
Height (in cm) | 173.0 (166.3–181.0) |
Weight (in kg) | 75.0 (65.0–88.8) |
BMI | 24.8 (22.6–27.8) |
ASA | |
I | 105 (39.2%) |
II | 126 (47.0%) |
III | 37 (13.8%) |
IV | 0 (0%) |
Length of data-collection (in hours) | 2.2 (1.4–3.2) |
Type of surgery: | |
Gynecological | 46 (17.2%) |
Abdominal | 50 (18.7%) |
Urological | 34 (12.7%) |
Vascular | 12 (4.5%) |
Pulmonary | 2 (0.7%) |
Trauma and orthopedic | 18 (6.8%) |
Ophthalmic | 44 (16.4%) |
Ear, nose, and throat | 37 (13.8%) |
Oral and maxillofacial | 10 (3.7%) |
Plastic | 9 (3.4%) |
Neuro | 6 (2.2%) |
NIBP-arm interval (in minutes) | |
1 | 1 (0.4%) |
2 | 75 (28.0%) |
3 | 114 (42.5%) |
4 | 18 (6.7%) |
5 | 54 (20.1%) |
>5 min | 6 (2.3%) |
n = 268 Patients | |
---|---|
Total hypotensive events a | 1006 |
Number of hypotensive events per patient a | 3 (IQR 2–5) |
Time in hypotension a (minutes) | 13.5 (4.8–31.25) |
% time during surgery in hypotension a | 11.6 (4.1–27.4) |
AUC hypotension a | 81.9 (28.2–205.6) |
TWA hypotension a | 0.6 (0.2–1.6) |
Total number of missed hypotensive events, NIBP-arm versus cNIBP-finger b | 80 (8%) |
Average BP for missed events c (mmHg) | 61.9 (60.2–63.0) |
Lowest missed BP c (mmHg) | 59.7 (57.0–61.4) |
Delay in detection time (minutes), NIBP-arm versus cNIBP-finger d | 1.2 (0.6–2.2) |
Median Delay Time (In Minutes) | Number of Patients | Total Number of Missed Events | % Missed | |
---|---|---|---|---|
1 min | - * | 1 | 0 | 0% |
2 min | 1.0 (0.5–2.3) | 75 | 13 | 17% |
3 min | 1.3 (0.8–2.0) | 114 | 42 | 36% |
4 min | 1.4 (0.9–2.3) | 18 | 7 | 39% |
5 min | 1.4 (0.9–2.5) | 54 | 17 | 32% |
>5 min | - * | 6 | 1 | 17% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijnberge, M.; van der Ster, B.; Vlaar, A.P.J.; Hollmann, M.W.; Geerts, B.F.; Veelo, D.P. The Effect of Intermittent versus Continuous Non-Invasive Blood Pressure Monitoring on the Detection of Intraoperative Hypotension, a Sub-Study. J. Clin. Med. 2022, 11, 4083. https://doi.org/10.3390/jcm11144083
Wijnberge M, van der Ster B, Vlaar APJ, Hollmann MW, Geerts BF, Veelo DP. The Effect of Intermittent versus Continuous Non-Invasive Blood Pressure Monitoring on the Detection of Intraoperative Hypotension, a Sub-Study. Journal of Clinical Medicine. 2022; 11(14):4083. https://doi.org/10.3390/jcm11144083
Chicago/Turabian StyleWijnberge, Marije, Björn van der Ster, Alexander P. J. Vlaar, Markus W. Hollmann, Bart F. Geerts, and Denise P. Veelo. 2022. "The Effect of Intermittent versus Continuous Non-Invasive Blood Pressure Monitoring on the Detection of Intraoperative Hypotension, a Sub-Study" Journal of Clinical Medicine 11, no. 14: 4083. https://doi.org/10.3390/jcm11144083
APA StyleWijnberge, M., van der Ster, B., Vlaar, A. P. J., Hollmann, M. W., Geerts, B. F., & Veelo, D. P. (2022). The Effect of Intermittent versus Continuous Non-Invasive Blood Pressure Monitoring on the Detection of Intraoperative Hypotension, a Sub-Study. Journal of Clinical Medicine, 11(14), 4083. https://doi.org/10.3390/jcm11144083