Optimal Allocation of the Limited COVID-19 Vaccine Supply in South Korea
<p>Movement of individuals between disease and vaccination status.</p> "> Figure 2
<p>Number of vaccines optimally distributed to each age group from the 51 million available vaccine doses (i.e., doses to vaccinate 50% of the South Korean population) for each outcome measure.</p> "> Figure 3
<p>Comparison of outcome measures resulting from the allocation of 51 million vaccine doses for three different optimal vaccination strategies: to minimize the incidence, the number of deaths, and years of life lost (YLL).</p> "> Figure 4
<p>Proportion of individuals vaccinated from each age group (<span class="html-italic">x</span>-axis) to minimize the total number of infections under various vaccine coverage levels (<span class="html-italic">y</span>-axis) and vaccine efficacies (50%, 70%, 90%, and 95%).</p> "> Figure 5
<p>Proportion of individuals vaccinated from each age group (<span class="html-italic">x</span>-axis) to minimize the total number of deaths associated with COVID-19 under various vaccine coverage levels (<span class="html-italic">y</span>-axis) and vaccine efficacies (50%, 70%, 90%, and 95%).</p> "> Figure 6
<p>Proportion of individuals vaccinated from each age group (<span class="html-italic">x</span>-axis) to minimize the years of life lost under various vaccine coverage levels (<span class="html-italic">y</span>-axis) and vaccine efficacies (50%, 70%, 90%, and 95%).</p> "> Figure 7
<p>Impact of lower basic reproduction number on the proportion of individuals vaccinated from each age group (<span class="html-italic">x</span>-axis) to minimize three healthcare measures (i.e., total number of infections, total number of deaths, and the years of life lost) under various vaccine coverage levels (<span class="html-italic">y</span>-axis). Vaccine efficacy of 90% and a basic reproduction number (<span class="html-italic">R</span><sub>0</sub>) of 1.5 are assumed.</p> ">
Abstract
:1. Introduction
2. Experimental Section
2.1. Data
2.1.1. Study Area and Population
2.1.2. COVID-19 Case Data
2.2. Mathematical Modeling
2.2.1. Age-Structured Model of COVID-19 Transmission and Vaccination
2.2.2. Force of Infection
2.2.3. Basic Reproductive Number
2.2.4. Vaccination and Initial Conditions
2.2.5. Calculation of Optimal Vaccination Strategies
3. Results
4. Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Coronavirus Disease (COVID-2019) Situation Reports. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (accessed on 1 February 2021).
- Jeyanathan, M.; Afkhami, S.; Smaill, F.; Miller, M.S.; Lichty, B.D.; Xing, Z. Immunological considerations for COVID-19 vaccine strategies. Nat. Rev. Immunol. 2020, 20, 615–632. [Google Scholar] [CrossRef]
- COVID-19 Vaccine Tracker; Craven, J. (Ed.) Regulatory Affairs Professionals Society: Rockville, MD, USA, 2021. [Google Scholar]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Perez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Oxford-AstraZeneca Covid Vaccine Shows an Average 70% Effectiveness in Preventing the Virus. Available online: https://www.cnbc.com/2020/11/23/oxford-astrazeneca-covid-vaccine-is-70percent-effective-trial-shows-.html (accessed on 1 February 2021).
- Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020, 396, 467–478. [Google Scholar] [CrossRef]
- Coronavirus (COVID-19) Vaccinations. Available online: https://ourworldindata.org/covid-vaccinations (accessed on 1 February 2021).
- KCDC. The Updates of COVID-19 in Republic of Korea; Centers for Disease Control and Prevention Korea: Chungcheongbuk-do, Korea, 2021.
- Vogel, L. Is Canada ready for the second wave of COVID-19? CMAJ 2020, 192, E664–E665. [Google Scholar] [CrossRef]
- Yonhap. Korea Signs Deal with Moderna to Buy COVID-19 Vaccines for 20 Mln. Yonhap News, 31 December 2020. [Google Scholar]
- Medlock, J.; Galvani, A.P. Optimizing influenza vaccine distribution. Science 2009, 325, 1705–1708. [Google Scholar] [CrossRef] [PubMed]
- Medlock, J.; Meyers, L.A.; Galvani, A. Optimizing allocation for a delayed influenza vaccination campaign. PLoS Curr. 2009, 1, RRN1134. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Morales, R.; Castillo-Chavez, C. A note on the use of influenza vaccination strategies when supply is limited. Math. Biosci. Eng. 2011, 8, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Shim, E.; Meyers, L.A.; Galvani, A.P. Optimal H1N1 vaccination strategies based on self-interest versus group interest. BMC Public Health 2011, 11 (Suppl. 1), S4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, E. Prioritization of delayed vaccination for pandemic influenza. Math. Biosci. Eng. 2011, 8, 95–112. [Google Scholar] [CrossRef]
- Meehan, M.T.; Cocks, D.G.; Caldwell, J.M.; Trauer, J.M.; Adekunle, A.I.; Ragonnet, R.R.; McBryde, E.S. Age-targeted dose allocation can halve COVID-19 vaccine requirements. medRxiv 2020. [Google Scholar] [CrossRef]
- Bubar, K.M.; Kissler, S.M.; Lipsitch, M.; Cobey, S.; Grad, Y.; Larremore, D.B. Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. medRxiv 2020. [Google Scholar] [CrossRef]
- Matrajt, L.; Eaton, J.; Leung, T.; Brown, E.R. Vaccine optimization for COVID-19, who to vaccinate first? medRxiv 2020. [Google Scholar] [CrossRef]
- Prem, K.; Cook, A.R.; Jit, M. Projecting social contact matrices in 152 countries using contact surveys and demographic data. PLoS Comput. Biol. 2017, 13, e1005697. [Google Scholar] [CrossRef] [PubMed]
- Mossong, J.; Hens, N.; Jit, M.; Beutels, P.; Auranen, K.; Mikolajczyk, R.; Massari, M.; Salmaso, S.; Tomba, G.S.; Wallinga, J.; et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008, 5, e74. [Google Scholar] [CrossRef]
- Van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef]
- Bi, Q.; Wu, Y.; Mei, S.; Ye, C.; Zou, X.; Zhang, Z.; Liu, X.; Wei, L.; Truelove, S.A.; Zhang, T.; et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: A retrospective cohort study. Lancet Infect. Dis. 2020, 20, 911–919. [Google Scholar] [CrossRef]
- Du, Z.; Xu, X.; Wu, Y.; Wang, L.; Cowling, B.J.; Meyers, L.A. Serial Interval of COVID-19 among Publicly Reported Confirmed Cases. Emerg. Infect. Dis. 2020, 26, 1341–1343. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Hong, C.M.; Kim, D.H.; Lee, T.H.; Lee, J. Clinical Course of Asymptomatic and Mildly Symptomatic Patients with Coronavirus Disease Admitted to Community Treatment Centers, South Korea. Emerg. Infect. Dis. 2020, 26, 2346–2352. [Google Scholar] [CrossRef] [PubMed]
- Mizumoto, K.; Kagaya, K.; Zarebski, A.; Chowell, G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. Bull. Eur. sur les Mal. Transm. Eur. Commun. Dis. Bull. 2020, 25. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, C.I.; Van Zandvoort, K.; Gimma, A.; Prem, K.; Klepac, P.; Rubin, G.J.; Edmunds, W.J. Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Med. 2020, 18, 124. [Google Scholar] [CrossRef] [PubMed]
- Shim, E.; Tariq, A.; Choi, W.; Lee, Y.; Chowell, G. Transmission potential and severity of COVID-19 in South Korea. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2020, 93, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Peiris, M.; Leung, G.M. What can we expect from first-generation COVID-19 vaccines? Lancet 2020, 396, 1467–1469. [Google Scholar] [CrossRef]
- Noh, J.Y.; Seo, Y.B.; Yoon, J.G.; Seong, H.; Hyun, H.; Lee, J.; Lee, N.; Jung, S.; Park, M.J.; Song, W.; et al. Seroprevalence of Anti-SARS-CoV-2 Antibodies among Outpatients in Southwestern Seoul, Korea. J. Korean Med. Sci. 2020, 35, e311. [Google Scholar] [CrossRef] [PubMed]
- Steven, P.J.; Quentin, G.R.; Tom, K. Robust estimates of the true (population) infection rate for COVID-19: A backcasting approach. R. Soc. Open Sci. 2020, 7, 200909. [Google Scholar]
- Pfizer and BioNTech Announce Vaccine Candidate Against COVID-19 Achieved Success in First Interim Analysis from Phase 3 Study. Available online: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-announce-vaccine-candidate-against (accessed on 1 February 2021).
- COVID-19 vaccines: No time for complacency. Lancet 2020, 396, 1607. [CrossRef]
- Smetana, J.; Chlibek, R.; Shaw, J.; Splino, M.; Prymula, R. Influenza vaccination in the elderly. Hum. Vaccin. Immunother. 2018, 14, 540–549. [Google Scholar] [CrossRef]
- Liu, Y.; Mao, B.; Liang, S.; Yang, J.W.; Lu, H.W.; Chai, Y.H.; Wang, L.; Zhang, L.; Li, Q.H.; Zhao, L.; et al. Association between age and clinical characteristics and outcomes of COVID-19. Eur. Respir. J. 2020, 55. [Google Scholar] [CrossRef] [Green Version]
- Foy, B.H.; Wahl, B.; Mehta, K.; Shet, A.; Menon, G.I.; Britto, C. Comparing COVID-19 vaccine allocation strategies in India: A mathematical modelling study. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Lambe, T.; Spencer, A.; Belij-Rammerstorfer, S.; Purushotham, J.N.; Port, J.R.; Avanzato, V.A.; Bushmaker, T.; Flaxman, A.; Ulaszewska, M.; et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature 2020, 586, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Corbett, K.S.; Flynn, B.; Foulds, K.E.; Francica, J.R.; Boyoglu-Barnum, S.; Werner, A.P.; Flach, B.; O’Connell, S.; Bock, K.W.; Minai, M.; et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N. Engl. J. Med. 2020, 383, 1544–1555. [Google Scholar] [CrossRef]
- Choe, P.G.; Kang, C.K.; Suh, H.J.; Jung, J.; Song, K.H.; Bang, J.H.; Kim, E.S.; Kim, H.B.; Park, S.W.; Kim, N.J.; et al. Waning Antibody Responses in Asymptomatic and Symptomatic SARS-CoV-2 Infection. Emerg. Infect. Dis. 2021, 27. [Google Scholar] [CrossRef]
- Sharpe, H.R.; Gilbride, C.; Allen, E.; Belij-Rammerstorfer, S.; Bissett, C.; Ewer, K.; Lambe, T. The early landscape of coronavirus disease 2019 vaccine development in the UK and rest of the world. Immunology 2020, 160, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Dooling, K.; McClung, N.; Chamberland, M.; Marin, M.; Wallace, M.; Bell, B.P.; Lee, G.M.; Talbot, H.K.; Romero, J.R.; Oliver, S.E. The Advisory Committee on Immunization Practices’ Interim Recommendation for Allocating Initial Supplies of COVID-19 Vaccine—United States, 2020. MMWR. Morb. Mortal. Wkly. Rep. 2020, 69, 1857–1859. [Google Scholar] [CrossRef] [PubMed]
- Guidance on the Prioritization of Initial Doses of COVID-19 Vaccine(s). Available online: https://www.canada.ca/en/public-health/services/immunization/national-advisory-committee-on-immunization-naci/guidance-prioritization-initial-doses-covid-19-vaccines.html (accessed on 8 January 2021).
- Devleesschauwer, B.; McDonald, S.A.; Speybroeck, N.; Wyper, G.M.A. Valuing the years of life lost due to COVID-19: The differences and pitfalls. Int. J. Public Health 2020, 65, 719–720. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, J.V.; Ratzan, S.C.; Palayew, A.; Gostin, L.O.; Larson, H.J.; Rabin, K.; Kimball, S.; El-Mohandes, A. A global survey of potential acceptance of a COVID-19 vaccine. Nat. Med. 2020. [Google Scholar] [CrossRef]
- Life Tables by Country; WHO Global Health Observatory: Geneva, Switzerland, 2020.
Confirmed Cases, n (%) | Deaths, n (%) | Fatality Rate (%) | ||
---|---|---|---|---|
Total | 32,318 (100.00) | 515 (100.00) | 1.59 | |
Age Group | ≥80 | 1353 (4.19) | 256 (49.71) | 18.92 |
70–79 | 2515 (7.78) | 167 (32.43) | 6.64 | |
60–69 | 4987 (15.43) | 62 (12.04) | 1.24 | |
50–59 | 5865 (18.15) | 24 (4.66) | 0.41 | |
40–49 | 4499 (13.92) | 4 (0.78) | 0.09 | |
30–39 | 4217 (12.77) | 2 (0.39) | 0.05 | |
20–29 | 6165 (19.08) | 0 (0.00) | - | |
10–19 | 1882 (5.82) | 0 (0.00) | - | |
0–9 | 925 (2.86) | 0 (0.00) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, E. Optimal Allocation of the Limited COVID-19 Vaccine Supply in South Korea. J. Clin. Med. 2021, 10, 591. https://doi.org/10.3390/jcm10040591
Shim E. Optimal Allocation of the Limited COVID-19 Vaccine Supply in South Korea. Journal of Clinical Medicine. 2021; 10(4):591. https://doi.org/10.3390/jcm10040591
Chicago/Turabian StyleShim, Eunha. 2021. "Optimal Allocation of the Limited COVID-19 Vaccine Supply in South Korea" Journal of Clinical Medicine 10, no. 4: 591. https://doi.org/10.3390/jcm10040591
APA StyleShim, E. (2021). Optimal Allocation of the Limited COVID-19 Vaccine Supply in South Korea. Journal of Clinical Medicine, 10(4), 591. https://doi.org/10.3390/jcm10040591