From Cell Interactions to Bedside Practice: Complete Blood Count-Derived Biomarkers with Diagnostic and Prognostic Potential in Venous Thromboembolism
Abstract
:1. Introduction
2. From Cell Interactions in the Vascular Environment to Clinical Practice
2.1. Neutrophils and Platelets at the Crossroads Between Immunity and Inflammation Versus Hemostasis and Thrombosis
2.2. Quest for Accessible and Reliable Biomarkers—Reshaping the Importance of Routine Complete Blood Counts
2.2.1. Biomarkers with Proposed Predictive Value for Venous Thromboembolism
2.2.2. Biomarkers with Proposed Predictive Value for Morbidity and Mortality (Short-Term and Long-Term) in Venous Thromboembolism
3. Discussion
4. Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kakkos, S.K.; Gohel, M.; Baekgaard, N.; Bauersachs, R.; Bellmunt-Montoya, S.; Black, S.A.; ten Cate-Hoek, A.J.; Elalamy, I.; Enzmann, F.K.; Geroulakos, G.; et al. Editor’s Choice—European Society for Vascular Surgery (ESVS) 2021 Clinical Practice Guidelines on the Management of Venous Thrombosis. Eur. J. Vasc. Endovasc. Surg. 2021, 61, 9–82. [Google Scholar] [CrossRef] [PubMed]
- Konstantinides, S.V.; Meyer, G.; Bueno, H.; Galié, N.; Gibbs, J.S.R.; Ageno, W.; Agewall, S.; Almeida, A.G.; Andreotti, F.; Barbato, E.; et al. 2019 ESC Guidelines for the Diagnosis and Management of Acute Pulmonary Embolism Developed in Collaboration with the European Respiratory Society (ERS). Eur. Heart J. 2020, 41, 543–603. [Google Scholar] [CrossRef]
- Schrottmaier, W.C.; Assinger, A. The Concept of Thromboinflammation. Hamostaseologie 2024, 44, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Engelmann, B.; Massberg, S. Thrombosis as an Intravascular Effector of Innate Immunity. Nat. Rev. Immunol. 2013, 13, 34–45. [Google Scholar] [CrossRef]
- Vazquez-Garza, E.; Jerjes-Sanchez, C.; Navarrete, A.; Joya-Harrison, J.; Rodriguez, D. Venous Thromboembolism: Thrombosis, Inflammation, and Immunothrombosis for Clinicians. J. Thromb. Thrombolysis 2017, 44, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.P.; Darbousset, R.; Schoenwaelder, S.M. Thromboinflammation: Challenges of Therapeutically Targeting Coagulation and Other Host Defense Mechanisms. Blood 2019, 133, 906–918. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Xu, E.; Shao, K.; Shen, W.; Gu, Y.; Li, M.; Shen, W. Circulating Platelet-Neutrophil Aggregates as Risk Factor for Deep Venous Thrombosis. Clin. Chem. Lab. Med. 2019, 57, 707–715. [Google Scholar] [CrossRef]
- Rizo-Téllez, S.A.; Filep, J.G. Beyond Host Defense and Tissue Injury: The Emerging Role of Neutrophils in Tissue Repair. Am. J. Physiol.-Cell Physiol. 2024, 326, C661–C683. [Google Scholar] [CrossRef] [PubMed]
- Heestermans, M.; Poenou, G.; Duchez, A.C.; Hamzeh-Cognasse, H.; Bertoletti, L.; Cognasse, F. Immunothrombosis and the Role of Platelets in Venous Thromboembolic Diseases. Int. J. Mol. Sci. 2022, 23, 13176. [Google Scholar] [CrossRef]
- Thijssen, D.H.J.; Bruno, R.M.; Van Mil, A.C.C.M.; Holder, S.M.; Faita, F.; Greyling, A.; Zock, P.L.; Taddei, S.; Deanfield, J.E.; Luscher, T.; et al. Expert Consensus and Evidence-Based Recommendations for the Assessment of Flow-Mediated Dilation in Humans. Eur. Heart J. 2019, 40, 2534–2547. [Google Scholar] [CrossRef]
- Kurtipek, E.; Büyükterzi, Z.; Büyükterzi, M.; Alpaydın, M.S.; Erdem, S.S. Endothelial Dysfunction in Patients with Pulmonary Thromboembolism: Neutrophil to Lymphocyte Ratio and Platelet to Lymphocyte Ratio. Clin. Respir. J. 2017, 11, 78–82. [Google Scholar] [CrossRef]
- Jiang, C.; Lin, J.; Xie, B.; Peng, M.; Dai, Z.; Mai, S.; Chen, Q. Causal Association between Circulating Blood Cell Traits and Pulmonary Embolism: A Mendelian Randomization Study. Thromb. J. 2024, 22, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Califf, R.M. Biomarker Definitions and Their Applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef]
- Zahorec, R. Neutrophil-to-Lymphocyte Ratio, Past, Present and Future Perspectives. Bratisl. Lek. Listy. 2021, 122, 474–488. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kim, N.Y.; Na, S.H.; Youn, Y.H.; Shin, C.S. Reference values of neutrophil-lymphocyte ratio, lymphocyte-monocyte ratio, platelet-lymphocyte ratio, and mean platelet volume in healthy adults in South Korea. Medicine 2018, 97, e11138. [Google Scholar] [CrossRef] [PubMed]
- Fest, J.; Ruiter, R.; Ikram, M.A.; Voortman, T.; van Eijck, C.H.J.; Stricker, B.H. Reference values for white blood-cell-based inflammatory markers in the Rotterdam Study: A population-based prospective cohort study. Sci. Rep. 2018, 8, 10566. [Google Scholar] [CrossRef]
- Meng, X.; Chang, Q.; Liu, Y.; Chen, L.; Wei, G.; Yang, J.; Zheng, P.; He, F.; Wang, W.; Ming, L. Determinant roles of gender and age on SII, PLR, NLR, LMR and MLR and their reference intervals defining in Henan, China: A posteriori and big-data-based. J. Clin. Lab. Anal. 2018, 32, e22228. [Google Scholar] [CrossRef] [PubMed]
- Walzik, D.; Joisten, N.; Zacher, J.; Zimmer, P. Transferring clinically established immune inflammation markers into exercise physiology: Focus on neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio and systemic immune-inflammation index. Eur. J. Appl. Physiol. 2021, 121, 1803–1814. [Google Scholar] [CrossRef]
- Nicholson, M.; Chan, N.; Bhagirath, V.; Ginsberg, J. Prevention of Venous Thromboembolism in 2020 and beyond. J. Clin. Med. 2020, 9, 2467. [Google Scholar] [CrossRef]
- Mehta, Y.; Bhave, A. A review of venous thromboembolism risk assessment models for different patient populations: What we know and don’t! Medicine 2023, 102, e32398. [Google Scholar] [CrossRef]
- Barbar, S.; Noventa, F.; Rossetto, V.; Ferrari, A.; Brandolin, B.; Perlati, M.; De Bon, E.; Tormene, D.; Pagnan, A.; Prandoni, P. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: The Padua Prediction Score. J. Thromb. Haemost. 2010, 8, 2450–2457. [Google Scholar] [CrossRef]
- Spyropoulos, A.C.; Anderson, F.A., Jr.; FitzGerald, G.; Decousus, H.; Pini, M.; Chong, B.H.; Zotz, R.B.; Bergmann, J.F.; Tapson, V.; Froehlich, J.B.; et al. Predictive and associative models to identify hospitalized medical patients at risk for VTE. Chest 2011, 140, 706–714. [Google Scholar] [CrossRef]
- Gibson, C.M.; Spyropoulos, A.C.; Cohen, A.T.; Hull, R.D.; Goldhaber, S.Z.; Yusen, R.D.; Hernandez, A.F.; Korjian, S.; Daaboul, Y.; Gold, A.; et al. The IMPROVEDD VTE Risk Score: Incorporation of D-Dimer into the IMPROVE Score to Improve Venous Thromboembolism Risk Stratification. TH Open 2017, 1, e56–e65. [Google Scholar] [CrossRef]
- Obi, A.T.; Pannucci, C.J.; Nackashi, A.; Abdullah, N.; Alvarez, R.; Bahl, V.; Wakefield, T.W.; Henke, P.K. Validation of the Caprini Venous Thromboembolism Risk Assessment Model in Critically Ill Surgical Patients. JAMA Surg. 2015, 150, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Kuderer, N.M.; Culakova, E.; Lyman, G.H.; Francis, C.W. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008, 111, 4902–4907. [Google Scholar] [CrossRef]
- Pabinger, I.; van Es, N.; Heinze, G.; Posch, F.; Riedl, J.; Reitter, E.M.; Di Nisio, M.; Cesarman-Maus, G.; Kraaijpoel, N.; Zielinski, C.C.; et al. A clinical prediction model for cancer-associated venous thromboembolism: A development and validation study in two independent prospective cohorts. Lancet Haematol. 2018, 5, e289–e298. [Google Scholar] [CrossRef]
- Gerotziafas, G.T.; Taher, A.; Abdel-Razeq, H.; AboElnazar, E.; Spyropoulos, A.C.; El Shemmari, S.; Larsen, A.K.; Elalamy, I. A Predictive Score for Thrombosis Associated with Breast, Colorectal, Lung, or Ovarian Cancer: The Prospective COMPASS-Cancer-Associated Thrombosis Study. Oncologist 2017, 22, 1222–1231. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Ay, C.; Di Nisio, M.; Gerotziafas, G.; Jara-Palomares, L.; Langer, F.; Lecumberri, R.; Mandala, M.; Maraveyas, A.; Pabinger, I.; et al. Venous Thromboembolism in Cancer Patients: ESMO Clinical Practice Guideline. Ann. Oncol. 2023, 34, 452–467. [Google Scholar] [CrossRef] [PubMed]
- Howard, R.; Kanetsky, P.A.; Egan, K.M. Exploring the Prognostic Value of the Neutrophil-to-Lymphocyte Ratio in Cancer. Sci. Rep. 2019, 9, 19673. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.C.; Wang, T.F.; Lun, R.; Zahrai, A.; Mallick, R.; Burger, D.; Zitikyte, G.; Hawken, S.; Wells, P. Circulating Blood Biomarkers and Risk of Venous Thromboembolism in Cancer Patients: A Systematic Review and Meta-Analysis. Thromb. Haemost. 2024, 124, 1117–1133. [Google Scholar] [CrossRef] [PubMed]
- Lekovic, D.; Ivanovic, J.; Arsenovic, I.; Smiljanic, M.; Cokic, V.; Bogdanovic, A. Age-Adjusted Charlson Comorbidity Index Is a Significant Factor for Predicting Thrombosis Development and Survival in Polycythemia Vera. Blood 2023, 142, 1841. [Google Scholar] [CrossRef]
- Otasevic, V.; Mihaljevic, B.; Milic, N.; Stanisavljevic, D.; Vukovic, V.; Tomic, K.; Fareed, J.; Antic, D. Immune Activation and Inflammatory Biomarkers as Predictors of Venous Thromboembolism in Lymphoma Patients. Thromb. J. 2022, 20, 1–10. [Google Scholar] [CrossRef]
- Grilz, E.; Posch, F.; Königsbrügge, O.; Schwarzinger, I.; Lang, I.M.; Marosi, C.; Pabinger, I.; Ay, C. Association of Platelet-to-Lymphocyte Ratio and Neutrophil-to-Lymphocyte Ratio with the Risk of Thromboembolism and Mortality in Patients with Cancer. Thromb. Haemost. 2018, 118, 1875–1884. [Google Scholar] [CrossRef] [PubMed]
- Ferroni, P.; Riondino, S.; Formica, V.; Cereda, V.; Tosetto, L.; La Farina, F.; Valente, M.G.; Vergati, M.; Guadagni, F.; Roselli, M. Venous Thromboembolism Risk Prediction in Ambulatory Cancer Patients: Clinical Significance of Neutrophil/Lymphocyte Ratio and Platelet/Lymphocyte Ratio. Int. J. Cancer 2015, 136, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Vu, M.P.; Nguyen, T.T.M.; Nguyen, T.T.; Kieu, T.V.O.; Duong, H.Y.; Pham, P.T.; Hoang, T.H. Association of the Neutrophil-to-Lymphocyte Ratio with the Occurrence of Venous Thromboembolism and Arterial Thrombosis. J. Int. Med. Res. 2024, 52, 03000605241240999. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zhao, B.; Ye, Q.; Zou, J.; Li, X.; Wu, H. The Diagnostic Value of the Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio for Deep Venous Thrombosis: A Systematic Review and Meta-Analysis. Clin. Appl. Thromb. Hemost. 2023, 29, 10760296231187392. [Google Scholar] [CrossRef] [PubMed]
- Tort, M.; Sevil, F.C.; Sevil, H.; Becit, N. Evaluation of Systemic Immune-Inflammation Index in Acute Deep Vein Thrombosis: A Propensity-Matched. J. Vasc. Surg. Venous Lymphat. Disord. 2023, 11, 972–977.e1. [Google Scholar] [CrossRef]
- Gok, M.; Kurtul, A. A Novel Marker for Predicting Severity of Acute Pulmonary Embolism: Systemic Immune-Inflammation Index. Scand. Cardiovasc. J. 2021, 55, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Kuplay, H.; Erdoğan, S.B.; Bastopcu, M.; Arslanhan, G.; Baykan, D.B.; Orhan, G.J. The Neutrophil-Lymphocyte Ratio and the Platelet-Lymphocyte Ratio Correlate with Thrombus Burden in Deep Venous Thrombosis. J. Vasc. Surgery. Venous Lymphat. Disord. 2020, 8, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Farah, R.; Nseir, W.; Kagansky, D.; Khamisy-Farah, R. The Role of Neutrophil-Lymphocyte Ratio, and Mean Platelet Volume in Detecting Patients with Acute Venous Thromboembolism. J. Clin. Lab. Anal. 2020, 34, e23010. [Google Scholar] [CrossRef] [PubMed]
- DeMartino, A.G.; Shah, N.; Chatterjee, D.; De Ravin, L.; Babick, O.; Shiva, A.; Nagarsheth, K. The Neutrophil-to-Lymphocyte Ratio Is an Independent Predictor of Post-Thrombotic Syndrome in Iliofemoral Deep Vein Thrombosis. J. Vasc. Surg. 2024, 79, e218–e219. [Google Scholar] [CrossRef]
- Siddiqui, F.; Tafur, A.; Hussain, M.; García-Ortega, A.; Darki, A.; Fareed, J.; Jiménez, D.; Bikdeli, B.; Galeano-Valle, F.; Fernández-Reyes, J.L.; et al. The Prognostic Value of Blood Cellular Indices in Pulmonary Embolism. Am. J. Hematol. 2024, 99, 1704–1711. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, F.; García-Ortega, A.; Kantarcioglu, B.; Sinacore, J.; Tafur, A.; Demelo-Rodríguez, P.; Antonio Nieto, J.; Usandizaga, E.; Fareed, J.; Monreal, M.; et al. Cellular Indices and Outcome in Patients with Acute Venous Thromboembolism. Clin. Appl. Thromb. 2022, 28, 10760296221113346. [Google Scholar] [CrossRef]
- Duman, D.; Sonkaya, E.; Yıldırım, E.; Gıdık, E.; Tanülkü, U.; Saltürk, C.; Karakurt, Z. Association of Inflammatory Markers with Mortality in Patients Hospitalized with Non-Massive Pulmonary Embolism. Turkish Thorac. J. 2021, 22, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Efros, O.; Beit Halevi, T.; Meisel, E.; Soffer, S.; Barda, N.; Cohen, O.; Kenet, G.; Lubetsky, A. The Prognostic Role of Neutrophil-to-Lymphocyte Ratio in Patients Hospitalized with Acute Pulmonary Embolism. J. Clin. Med. 2021, 10, 4058. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.; Brailovsky, Y.; Fareed, J.; Hoppensteadt, D.; Iqbal, O.; Darki, A. Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios Predict All-Cause Mortality in Acute Pulmonary Embolism. Clin. Appl. Thromb. Hemost. 2020, 26, 1076029619900549. [Google Scholar] [CrossRef] [PubMed]
- Telo, S.; Kuluöztürk, M.; Deveci, F.; Kirkil, G. The Relationship between Platelet-to-Lymphocyte Ratio and Pulmonary Embolism Severity in Acute Pulmonary Embolism. Int. Angiol. 2019, 38, 4–9. [Google Scholar] [CrossRef]
- Kasapoğlu, U.S.; Olgun Yıldızeli, Ş.; Arıkan, H.; Erer, A.; Kabadayı, F.; Yalçınkaya, E.; Aslan, M.; Cimşit, N.Ç.; Eryüksel, E.; Karakurt, S. Comparison of neutrophil to lymphocyte ratio with other prognostic markers affecting 30 day mortality in acute pulmonary embolism. Tuberk. Toraks 2019, 67, 179–189. [Google Scholar] [CrossRef]
- Ozcan Cetin, E.H.; Cetin, M.S.; Canpolat, U.; Akdi, A.; Aras, D.; Temizhan, A.; Aydogdu, S. Platelet-to-lymphocyte ratio as a novel marker of in-hospital and long-term adverse outcomes among patients with acute pulmonary embolism: A single center large-scale study. Thromb. Res. 2017, 150, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Mao, Y.; He, X.; Sun, Y.; Huang, S.; Qiu, J. The Values of Neutrophil to Lymphocyte Ratio and Platelet to Lymphocyte Ratio in Predicting 30 Day Mortality in Patients with Acute Pulmonary Embolism. BMC Cardiovasc. Disord. 2016, 16, 1–6. [Google Scholar] [CrossRef]
- Karataş, M.B.; İpek, G.; Onuk, T.; Güngör, B.; Durmuş, G.; Çanga, Y.; Çakıllı, Y.; Bolca, O. Assessment of Prognostic Value of Neutrophil to Lymphocyte Ratio and Platelet to Lymphocyte Ratio in Patients with Pulmonary Embolism. Acta Cardiol. Sin. 2016, 32, 313–320. [Google Scholar] [CrossRef]
- Marginean, A.; Arora, P.; Walsh, K.; Bruno, E.; Sawalski, C.; Gupta, R.; Greathouse, F.; Clarke, J.; Mallery, Q.; Choi, M.H.; et al. Utilization of a Novel Scoring System in Predicting 30-Day Mortality in Acute Pulmonary Embolism, the CLOT-5 Pilot Study. Clin. Appl. Thromb. Hemost. 2024, 30, 10760296241278353. [Google Scholar] [CrossRef] [PubMed]
- Pay, L.; Çetin, T.; Keskin, K.; Dereli, Ş.; Tezen, O.; Yumurtaş, A.Ç.; Kolak, Z.; Eren, S.; Şaylık, F.; Çınar, T.; et al. Evaluation of Naples Prognostic Score to Predict Long-Term Mortality in Patients with Pulmonary Embolism. Biomark. Med. 2024, 18, 253–263. [Google Scholar] [CrossRef]
- Zhu, N.; Lin, S.; Cao, C. A Novel Prognostic Prediction Indicator in Patients with Acute Pulmonary Embolism: Naples Prognostic Score. Thromb. J. 2023, 21, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Hu, T.; Wang, J.; Xiao, R.; Liao, X.; Liu, M.; Sun, Z. Systemic immune-inflammation index as a potential biomarker of cardiovascular diseases: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2022, 9, 933913. [Google Scholar] [CrossRef]
- Henke, P.K.; Kahn, S.R.; Pannucci, C.J.; Secemksy, E.A.; Evans, N.S.; Khorana, A.A.; Creager, M.A.; Pradhan, A.D. Call to Action to Prevent Venous Thromboembolism in Hospitalized Patients: A Policy Statement from the American Heart Association. Circulation 2020, 141, e914–e931. [Google Scholar] [CrossRef] [PubMed]
- Nilius, H.; Nagler, M. Machine-Learning Applications in Thrombosis and Hemostasis. Hamostaseologie 2024, 44, 459–465. [Google Scholar] [CrossRef]
- Teodoru, M.; Negrea, M.O.; Cozgarea, A.; Cozma, D.; Boicean, A. Enhancing Pulmonary Embolism Mortality Risk Stratification Using Machine Learning: The Role of the Neutrophil-to-Lymphocyte Ratio. J. Clin. Med. 2024, 13, 1191. [Google Scholar] [CrossRef] [PubMed]
Authors, Publication Year, Reference | Study Design | NLR Mean/Median Values | PLR Mean/Median Values | SII Mean/Median Values |
---|---|---|---|---|
Lee et al., 2018 [15] | n = 12,160 individuals without any medical history | 1.65 (95%CI = 0.11–3.19) | 132.40 (95%CI = 46.8–218) | Not determined |
Fest et al., 2018 [16] | n = 8711 individuals aged 45 years and over | 1.76 (95%CI = 0.83–3.92) | 120 (95%CI = 61–239) | 459 (95%CI = 189–1168) |
Meng et al., 2017 [17] | n = 24,029 individuals aged 18–65 years | 1.72 (IQR = 1.37–2.18) | 108 (IQR = 89–132) | 366 (IQR = 278–481) |
Risk Assessment Models | Patient Population | Complete Blood Count Parameters Incorporated in Score Calculation |
---|---|---|
The Khorana risk score (KRS) [25] |
| Hemoglobin level < 100 g/L Pre-chemotherapy leucocyte count > 11 × 109/L Pre-chemotherapy platelet count ≥ 350 × 109/L |
Vienna Cancer and Thrombosis Study (Vienna-CATS) nomogram score [26] |
| |
The Prospective Comparison of Methods for thromboembolic risk assessment with clinical Perceptions and AwareneSS in real-life patients with Cancer-Associated Thrombosis (COMPASS-CAT) score [27] |
| Platelet count ≥ 350 × 109/L |
Authors, Publication Year, Reference | Study Design | Investigated Biomarkers | Proposed Cutoffs | Other Results |
---|---|---|---|---|
Roy et al., 2024 [30] |
| CBC parameters, factor VIII, time to peak thrombin, D-dimer, fibrinogen, NLR |
| |
Lekovic et al., 2023 [31] |
| NLR, PLR | Upon univariate analysis, shorter overall survival for: Leukocyte count ≥ 15 × 109/L (p < 0.001), Absolute neutrophil count ≥ 10 × 109/L (p < 0.001), Platelet count ≥ 1000 × 109/L (p = 0.027). Upon multivariate Cox regression model, survival predictor: Absolute neutrophil count ≥ 10 × 109/L (HR = 1.6; p = 0.001). |
|
Otasevic et al., 2022 [32] |
| NLR, PLR, CRP, ESR, LDH, total protein, albumin |
|
|
Grilz et al., 2018 [33] |
| NLR, PLR |
| |
Ferroni et al., 2015 [34] |
| NLR, PLR |
|
|
Authors, Publication Year, Reference | Study Design | Investigated Biomarkers | Proposed Cutoffs | Other Results |
---|---|---|---|---|
Nguyen et al., 2024 [35] |
| CBC parameters, fibrinogen, D-dimer |
| |
Hu et al., 2023 [36] |
| NLR, PLR |
|
|
Tort et al., 2023 [37] |
| CBC parameters, NLR, PLR, SII |
|
|
Gok et al., 2021 [38] |
| SII, cardiac troponin, CRP, D-dimer, NT-proBNP |
|
|
Kuplay et al., 2020 [39] |
| NLR, PLR |
|
|
Farah et al., 2019 [40] |
| NLR, PLR, MPV |
|
|
Authors, Publication Year, Reference | Study Design | Investigated Biomarkers | Proposed Cutoffs | Other Results |
---|---|---|---|---|
DeMartino et al., 2024 [41] |
| NLR | NLR > 7.71 at the time of iliofemoral DVT: predictive value for evolution towards post-thrombotic syndrome (AUC = 0.63) |
|
Siddiqui et al., 2024 [42] |
| NLR, PLR, SII | NLR > 7 (aOR = 3.46; 95%CI = 2.60–4.60) PLR > 220 (aOR = 2.36; 95%CI = 1.77–3.13) SII > 1600 (aOR = 2.52; 95%CI = 1.90–3.33) |
|
Siddiqui et al., 2022 [43] |
| NLR, PLR, SII | Upon univariate analysis: NLR > 4.41: risk of major bleeding NLR > 4.96: risk of death PLR > 166.47: risk of major bleeding PLR > 167.96: risk of death SII > 1154.81: risk of major bleeding SII > 1134.50: risk of death Upon multivariate analysis: NLR > 4.41: risk for major bleeding (aOR = 1.73; 95%CI = 1.05–2.86) NLR > 4.96: risk of death (aOR = 2.50, 95%CI = 1.83–3.42) SII > 1134.5: risk of death (aOR: 1.52, 95%CI = 1.08–2.14) | Upon univariate analysis:
PLR: 0.62 (95%CI = 0.58–0.67); SII: 0.66 (95%CI = 0.61–0.71).
PLR: 0.63 (95%CI = 0.60–0.66); SII: 0.7 (95%CI = 0.67–0.77). Upon multivariate analysis: PLR > 167.96 or PLR > 166.47: no increased risk for major bleeding and mortality. SII >1134.5: no increased risk for major bleeding. |
Duman et al., 2021 [44] |
| NLR, PLR, PLT/MPV, CRP | NLR > 6.1 (75% sensitivity, 75.6% specificity, AUC = 0.75, p = 0.017) for short-term mortality NLR > 3.1 (68.6% sensitivity, 59.8% specificity, AUC = 0.67, p < 0.001) for predicting 1-year mortality PLR > 152.3 (64% sensitivity, 52% specificity, AUC = 0.64, p < 0.001) for predicting 1-year mortality |
|
Efros et al., 2021 [45] |
| NLR | Higher 30-day mortality risk for NLR > 5.12 (aOR = 2.82; 95%CI = 2.14–3.70, p < 0.001) Higher 1-year mortality for NLR > 5.12 (aOR = 2.51, 95%CI = 2.04–3.08, p < 0.001). |
|
Phan et al., 2020 [46] |
| NLR, PLR, BNP, lactate, troponin | NLR > 5.46 (75% sensitivity, 66.9% specificity, AUC = 0.69, 95%CI = 0.57–0.82, p <0.01) PLR > 256.6 (53.6% sensitivity, 82.2% specificity, AUC = 0.69, 95%CI = 0.58–0.81, p < 0.01) |
|
Telo et al., 2019 [47] |
| D-dimer, troponin I, BNP, NLR, PLR | NLR ≥ 3.56 for predicting high sPESI (66% sensitivity, 53% specificity, AUC = 0.68, 95%CI = 0.56–0.79, p < 0.05) PLR ≥ 156 for predicting high sPESI (74% sensitivity, 64% specificity, AUC = 0.70, 95%CI = 0.59–0.82, p < 0.01) NLR ≥ 4.82 for predicting total mortality (AUC = 0.718, 95%CI = 0.51–0.93, p < 0.05) PLR ≥ 229.66 for predicting total mortality (AUC = 0.72, 95%CI = 0.54–0.9, p < 0.05) |
|
Kasapoğlu et al., 2019 [48] |
| NLR, PLR, D-dimer, NT-proBNP | NLR > 7.3 (69.7% sensitivity, 47.5% specificity, AUC = 0.604, 95%CI = 0.53–0.68, p = 0.003) PLR > 170 (63% sensitivity, 53% specificity, AUC = 0.582, 95%CI = 0.5–0.66, p = 0.022) D-dimer > 1.6 μg/mL (66% sensitivity, 58% specificity, AUC = 0.627, 95%CI = 0.51–0.74, p = 0.036) NT-proBNP > 1300 pg/mL (71% sensitivity, 54% specificity, AUC = 0.710, 95%CI = 0.63–0.79, p < 0.001) sPESI > 2 (84% sensitivity, 89% specificity, AUC = 0.895, 95%CI = 0.86–0.93, p < 0.001) |
|
Cetin et al., 2017 [49] | n = 459 patients with acute PE, assessed for in-hospital and long-term adverse outcomes, and followed up for all-cause mortality for a median of 28 months. | PLR, cTnI |
| |
Ma et al., 2016 [50] | n = 248 patients with acute PE, assessed for 30-day mortality. | NLR, PLR | NLR > 5.99 (80% sensitivity, 66.7% specificity, AUC = 0.79, 95%CI = 0.70–0.88, p < 0.001) PLR > 325 (65% sensitivity, 80.7% specificity, AUC = 0.79, 95%CI = 0.7–0.88, p < 0.001) | NLR has independent predictive value for mortality, with a 13% increase in 30-day mortality for every 1 unit of increase in NLR (OR = 1.13, 95%CI = 1.04–1.23). |
Karatas et al., 2016 [51] |
| NLR, PLR | Predictors of total mortality: NLR > 5.93 (87.8% sensitivity, 74.5% specificity, AUC = 0.84, p = 0.01); PLR > 191 (60.6% sensitivity, 83.2% specificity, AUC = 0.73, p = 0.01). |
|
CLOT-5 Prediction Score for 30-Day Mortality in Acute PE | Naples Prognostic Score (NPS) for 30-Day All-Cause Mortality in Acute PE |
---|---|
Cancer | Albumin < 4 g/dL (1 point) |
Lactic acidosis (lactic acid > 2 mm/L) | Total cholesterol ≤ 180 mg/dL (1 point) |
Oxygen saturation < 90% | NLR > 2.96 (1 point) |
Tachycardia > 120 bpm | LMR ≤ 4.44 (1 point) |
+ five other variables: | |
| NPS maximum score: 4 points |
Authors, Publication Year | Study Design | Investigated Biomarkers | Proposed Cutoffs | Other Results |
---|---|---|---|---|
Marginean et al., 2024 [52] |
| Lactic acid, NLR, RDW | NLR > 5.46 RDW > 15% |
|
Pay et al., 2024 [53] |
| Albumin, total cholesterol, LMR, NLR | NLR > 2.96 LMR ≤ 4.44 |
|
Zhu et al., 2023 [54] |
n = 153 with NPS = 1–2, n = 41 with NPS = 3–4) and based on short-term mortality (n = 294 survivors, n = 31 non-survivors). | CBC, total cholesterol, albumin, D-dimer, troponin, NT-proBNP, arterial blood gas analysis markers (pH, lactate, partial pressure of oxygen [PaO2], and bicarbonate) | NLR > 2.96 LMR ≤ 4.44 |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murariu-Gligor, E.E.; Mureșan, S.; Cotoi, O.S. From Cell Interactions to Bedside Practice: Complete Blood Count-Derived Biomarkers with Diagnostic and Prognostic Potential in Venous Thromboembolism. J. Clin. Med. 2025, 14, 205. https://doi.org/10.3390/jcm14010205
Murariu-Gligor EE, Mureșan S, Cotoi OS. From Cell Interactions to Bedside Practice: Complete Blood Count-Derived Biomarkers with Diagnostic and Prognostic Potential in Venous Thromboembolism. Journal of Clinical Medicine. 2025; 14(1):205. https://doi.org/10.3390/jcm14010205
Chicago/Turabian StyleMurariu-Gligor, Emma Eugenia, Simona Mureșan, and Ovidiu Simion Cotoi. 2025. "From Cell Interactions to Bedside Practice: Complete Blood Count-Derived Biomarkers with Diagnostic and Prognostic Potential in Venous Thromboembolism" Journal of Clinical Medicine 14, no. 1: 205. https://doi.org/10.3390/jcm14010205
APA StyleMurariu-Gligor, E. E., Mureșan, S., & Cotoi, O. S. (2025). From Cell Interactions to Bedside Practice: Complete Blood Count-Derived Biomarkers with Diagnostic and Prognostic Potential in Venous Thromboembolism. Journal of Clinical Medicine, 14(1), 205. https://doi.org/10.3390/jcm14010205