Enhanced Fermentative Hydrogen and Methane Production from an Inhibitory Fruit-Flavored Medium with Membrane-Encapsulated Cells
"> Figure 1
<p>Batch fermentation process for accumulated methane production from substrate with fruit flavors in comparison with the control experiment (<a href="#membranes-05-00616-s001" class="html-supplementary-material">Table S1</a>).</p> "> Figure 2
<p>Semi-continuous fermentation process for daily hydrogen yield from substrate with fruit flavors in comparison with the control experiment (<a href="#membranes-05-00616-s001" class="html-supplementary-material">Table S2</a>).</p> "> Figure 3
<p>Semi-continuous fermentation process for cumulative hydrogen volume from substrate with flavors in comparison with the control experiment (<a href="#membranes-05-00616-s001" class="html-supplementary-material">Table S3</a>).</p> "> Figure 4
<p>Daily digestate pH values during the semi-continuous fermentation process (<a href="#membranes-05-00616-s001" class="html-supplementary-material">Table S4</a>).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Fruit Flavors on Methane Production during the Batch Fermentation Process
2.2. Effects of Fruit Flavors on Hydrogen Production during the Semi-Continuous Fermentation Process
Fermentation Media | Average Hydrogen Yield (mL/g COD) | ||||
0.05 g/L Flavor Concentration | 0.5 g/L Flavor Concentration | 5 g/L Flavor Concentration | No Feeding and Withdrawal | ||
(A) | Free cells | - | - | - | - |
Hexanal | 179.6 | 42.3 | 7.55 | 27.23 | |
Myrcene | 183.9 | 101.2 | 138.7 | 91.53 | |
Octanol | 126.2 | 81.5 | 100.9 | 14.4 | |
(B) | Membrane | - | - | - | - |
Hexanal | 176.5 | 193.2 | 196.4 | 192.7 | |
Myrcene | 197.9 | 152.5 | 187.9 | 175.6 | |
Octanol | 183.8 | 202.7 | 200.9 | 210.8 |
Fermentation Media | Change in Average Hydrogen Yield (%) | |||
Increase of Flavor Concentration from 0.05 to 0.5 g/L | Increase of Flavor Concentration from 0.5 to 5 g/L | Reduction of Flavor Concentration from 5 to 0 g/L (no Feeding and Withdrawal) | ||
(A) | Free cells | - | - | - |
Hexanal | (−) 77 | (−) 82 | (+) 72 | |
Myrcene | (−) 45 | (+) 27 | (−) 34 | |
Octanol | (−) 35 | (+) 19 | (−) 85 | |
(B) | Membrane | - | - | - |
Hexanal | (+) 9 | (+) 2 | (−) 2 | |
Myrcene | (−) 23 | (+) 19 | (−) 7 | |
Octanol | (+) 9 | (−) 1 | (+) 5 |
2.3. Digestate pH Values during the Semi-Continuous Fermentation Process
2.4. Implication of Membrane Applications for Cell Encapsulation
3. Experimental Section
3.1. Materials
3.1.1. Anaerobic Sludge
3.1.2. Membrane Encapsulation Procedure
3.1.3. Nutrient Medium and Flavor Compounds
3.2. Experimental Setup and Procedures
3.2.1. Batch Fermentation Process for Methane Production
3.2.2. Semi-Continuous Fermentation Process for Hydrogen Production
3.3. Analytical Method
3.4. Membrane Performance Measurement
3.5. Estimation of Chemical Oxygen Demand of the Substrate
4. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mormirlan, M.; Veziroglu, T.N. Current status of hydrogen energy. Renew. Sustain. Energy Rev. 2002, 6, 141–179. [Google Scholar] [CrossRef]
- Ike, A.; Toda, N.; Tsuji, N.; Hirata, K.; Miyamoto, K. Hydrogen photoproduction from CO2-fixing microalgal biomass: Application of halotolerant photosynthetic bacteria. J. Ferment. Bioeng. 1997, 84, 606–609. [Google Scholar] [CrossRef]
- Melis, A.; Happe, T. Hydrogen production. Green algae as a source of energy. Plant Physiol. 2001, 127, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Joyner, A.E.; Winter, W.T.; Godbout, D.M. Studies on some characteristics of hydrogen production by cell-free extracts of rumen anaerobic bacteria. Can. J. Microbiol. 1977, 23, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Nandi, R.; Sengupta, S. Microbial production of hydrogen: An overview. Crit. Rev. Microbiol. 1998, 24, 61–84. [Google Scholar] [CrossRef] [PubMed]
- Hallenbeck, P.C. Fermentative hydrogen production: Principles, progress, and prognosis. Int. J. Hydrog. Energy 2009, 34, 7379–7389. [Google Scholar] [CrossRef]
- Ouattara, B.; Simard, R.E.; Holley, R.A.; Piette, G.J.; Begin, A. Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. Int. J. Food Microbiol. 1997, 37, 155–162. [Google Scholar] [CrossRef]
- Upadhyay, R.K. Essential oils: Anti-microbial, antihelminthic, antiviral, anticancer and anti-insect properties. J. Appl. Biosci. 2010, 36, 1–22. [Google Scholar]
- Karaman, S.; Digrak, M.; Ravid, U.; Ilcim, A. Antibacterial and antifungal activity of the essential oils of Thymus revolutus Celak from Turkey. J. Ethnopharmacol. 2001, 76, 183–186. [Google Scholar] [CrossRef]
- Friedman, M.; Henika, P.R.; Levin, C.E.; Mandrell, R.E. Antibacteria activities of plant essential oils and their components against Escherichia coli O157 H7 and Salmonella enterica in apple juice. J. Agric. Food Chem. 2004, 52, 6042–6048. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Tripathi, A.K.; Bindra, R.L.; Kumar, S. Essential oil and isolates for controlling household insects, housefly, cockroach and mosquito. J. Med. Aromat. Plant Sci. 2000, 22, 25–26. [Google Scholar]
- Vimal, M.; Vijaya, P.P.; Mumtaj, P.; Seema-Farhath, M.S. Antibacterial activity of selected compounds of essential oils from indigenous plants. J. Chem. Pharm. Res. 2013, 5, 248–253. [Google Scholar]
- Smith-Palmer, A.; Stewart, J.; Fyfe, L. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett. Appl. Microbiol. 1998, 26, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Dubey, N.K. Evaluation of essential oils for their toxicity against fungi causing deterioration of stored food commodities. Appl. Environ. Microbiol. 1994, 60, 1101–1105. [Google Scholar] [PubMed]
- Faid, M.; Bakhy, K.; Anchad, M.; Tantaoui-Elaraki, A. Physicochemical and microbiological characterizations and preservation with sorbic acid and cinnamon. J. Food Prod. 1995, 58, 547–550. [Google Scholar]
- Reynolds, J.E.F. Martindale-the Extra Pharmacopoeia, 31st ed.; Pharmaceutical Society of Great Britain: London, UK, 1996. [Google Scholar]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Susceptibility of transient and commensal skin flora to the essential oil of Melaleuca alternifolia (Tea Tree oil). Am. J. Infect. Control 1996, 24, 186–189. [Google Scholar] [CrossRef]
- Shubina, L.P.; Siurin, S.A.; Savchenko, M. Inhalations of essential oils in the combined treatment of patients with chronic bronchitis. Vrach. Delo. 1990, 5, 66–67. [Google Scholar] [PubMed]
- Moris, J.A.; Khettry, A.; Seitz, E.W. Antimicrobial activity of aroma chemicals and essential oils. J. Am. Oil Chem. Soc. 1979, 56, 595–603. [Google Scholar] [CrossRef]
- Hammer, K.A.; Caarson, C.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Srivastava, M.; Singh, A.B.; Srivastava, A.K. Cinnamon bark oil, a potent fungitoxicant against fungi causing respiratory tract myoses. Allergy 1995, 50, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Youngsukkasem, S.; Akinbomi, J.; Rakshit, S.; Taherzadeh, M.J. Biogas production by encapsulated bacteria in a synthetic membranes: Protective effects in toxic media and high loading rates. Environ. Technol. 2013, 34, 2077–2084. [Google Scholar] [CrossRef] [PubMed]
- Wikandari, R.; Youngsukkasem, S.; Millati, R.; Taherzadeh, M.J. Performance of semi-semi-continuous membrane biotreactors in biogas production from toxic feedstock containing D-limonene. Bioresour. Technol. 2014, 170, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.A.; Siles, J.A.; China, A.F.; Martin, A. Biomethanization of orange peel waste. Bioresour. Technol. 2010, 101, 8993–8999. [Google Scholar] [CrossRef] [PubMed]
- Mizuki, E.; Akao, T.; Saruwatari, T. Inhibitory effect of citrus Unshu peel on anaerobic digestion. Biol. Wastes 1990, 33, 161–168. [Google Scholar] [CrossRef]
- Grohmann, K.; Baldwin, E.; Buslig, B. Production of ethanol from enzymatically hydrolyzed orange peel by the yeast Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 1994, 45–46, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Winniczuk, P.P.; Parish, M.F. Minimum inhibitory concentrations of antimicrobials against micro-organisms related to citrus juice. Food Microbiol. 1997, 14, 373–381. [Google Scholar] [CrossRef]
- Talebnia, F.; Niklasson, C.; Taherzadeh, M.J. Ethanol production from glucose and dilute-acid hydrolyzates by encapsulated S. cerevisiae. Biotechnol. Bioeng. 2004, 90, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Griffin, S.G.; Wyllie, S.G.; Markham, J.L.; Leach, D.N. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr. J. 1999, 14, 322–332. [Google Scholar] [CrossRef]
- Gutierrez, M.E.; Garcia, A.F.; de-Madariaga, M.A.; Sagrista, M.L.; Casado, F.J.; Mora, M. Interaction of tocophenols and phenolic compounds with membrane lipid components. Evaluatiuon of their antioxidant activity in a liposomal model system. Life Sci. 2003, 72, 2337–2360. [Google Scholar] [CrossRef]
- Lee, S.E.; Hwang, H.J.; Ha, J.S.; Jeong, H.S.; Kim, J.H. Screening of medicinal plant extracts for antioxidant activity. Life Sci. 2003, 73, 167–179. [Google Scholar] [CrossRef]
- Davidson, P.M.; Naidu, A.S. Phytophenols. In Natural Food Antimicrobial Systems; Naidu, A.S., Ed.; CRC Press: Boca Raton, FL, USA, 2000; pp. 265–294. [Google Scholar]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agengts from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Sikkema, J.; Bont, J.A.M.; Poolman, B. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 1994, 269, 8022–8028. [Google Scholar] [PubMed]
- Cardozo, P.W.; Calsamiglia, S.; Ferret, A.; Kamel, C. Effects of natural plant extracts on protein degradation and fermentation profiles in semi-continuous culture. J. Anim. Sci. 2004, 82, 3230–3236. [Google Scholar] [PubMed]
- Molero, R.; Ibars, M.; Calsamiglia, S.; Ferret, A.; Losa, R. Effect of a specific blend of essential oil compounds on dry matter and crude protein degradability in heifers fed diets with different forage to concentrate rations. Anim. Feed Sci. Technol. 2004, 114, 91–104. [Google Scholar] [CrossRef]
- Castillejos, L.; Calsamiglia, S.; Ferret, A.; Losa, R. Effects of dose and adaptation time of a specific blend of essential oils compounds on rumen fermentation. Anim. Feed Sci. Technol. 2007, 132, 186–201. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Singhania, R.R.; Christophe, G.; Perchet, G.; Troquet, J.; Larroche, C. Immersed membrane bioreactors: An overview with special emphasis on anaerobic bioprocesses. Bioresour. Technol. 2012, 122, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-H.; Qian, Y.-L.; Zhu, B.-K.; Xu, Y.-Y. Modification of porous poly(vinylidene fluoride) membrane using amphiphilic polymers with different structures in phase inversion process. J. Membr. Sci. 2008, 310, 567–576. [Google Scholar] [CrossRef]
- Sivagurunathan, P.; Gopalakrishnan, K.; Lin, C.-Y. Hydrogen and ethanol fermentation of various carbon sources by immobilized Escherichia coli (XL1-Blue). Int. J. Hydrog. Energy 2014, 39, 6881–6888. [Google Scholar] [CrossRef]
- Sivagurunathan, P.; Gopalakrishnan, K.; Sen, B.; Lin, C.-Y. Development of a novel hybrid immobilization material (HY-IM) for fermentative biohydrogen production from beverage wastewater. J. Chin. Chem. Soc. 2014, 61, 827–830. [Google Scholar] [CrossRef]
- Moreno-Andrade, I.; Moreno, G.; Kumar, G.; Buitron, G. Biohydrogen production from industrial wastewaters. Water Sci. Technol. 2015, 71, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Buitron, G.; Kumar, G.; Martinez-Arce, A.; Moreno, G. Hydrogen and methane production via a two-stage processes (H2-SBR + CH4-UASB) using tequila vinasses. Int. J. Hydrog. Energy 2014, 39, 19249–19255. [Google Scholar] [CrossRef]
- Bakonyi, P.; Kumar, G.; Nemestothy, N.; Lin, C.Y.; Belafi-Bako, K. Biohydrogen purification using a commercial polyimide membrane module: Studying the effects of some process variables. Int. J. Hydrog. Energy 2013, 38, 15092–15099. [Google Scholar] [CrossRef] [Green Version]
- Shan, B.; Cai, Y.-Z.; Brooks, J.D.; Corke, H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int. J. Food Microbiol. 2007, 117, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Caccioni, D.R.L.; Guizzardi, M.; Biondi, D.M.; Agatino, R.; Ruberto, G. Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and Penicillium italicum. Int. J. Food Microbiol. 1998, 43, 73–79. [Google Scholar] [CrossRef]
- Lay, J.J. Modelling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol. Bioeng. 2000, 68, 269–278. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, H.; Fang, H.H.P. Biohydrogen production from starch in wastewater under thermophilic condition. J. Environ. Manag. 2003, 69, 149–156. [Google Scholar] [CrossRef]
- Mah, R.A.; Ward, D.M.; Baresi, L.; Glass, T.L. Biogenesis of methane. Annu. Rev. Microbiol. 1977, 31, 309–341. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.E.; Van-Ginkel, S.; Logan, B.E. The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ. Sci. Technol. 2003, 37, 5186–5190. [Google Scholar] [CrossRef] [PubMed]
- Khanal, S.K.; Chen, W.H.; Li, L.; Sung, S. Biological hydrogen production: Effects of pH and intermediate products. Int. J. Hydrog. Energy 2004, 29, 1123–1131. [Google Scholar] [CrossRef]
- Hwang, M.H.; Jang, N.J.; Hyun, S.H.; Kim, I.S. Anaerobic bio-hydrogen production from ethanol fermentation: The role of pH. J. Biotechnol. 2004, 111, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Pourbafrani, M.; Talebnia, F.; niklasson, C.; Taherzadeh, M.J. Protective effect of encapsulation in fermentation of limonene-contained media and orange peel hydrolyzate. Int. J. Mol. Sci. 2007, 8, 777–787. [Google Scholar] [CrossRef]
- Crank, J.; Park, G.S. Diffusion in Polymers; Academic Press: New York, NY, USA, 1968. [Google Scholar]
- Nicholson, J.W. The Chemistry of Polymers; The Royal Society of Chemistry: Cambridge, UK, 1997. [Google Scholar]
- Hansen, T.L.; Schmidt, J.E.; Angelidaki, I.; Marca, E.; Jansen, J.I.; Mosbæk, H.; Christensen, T.H. Method for determination of methane potentials of solid organic waste. Waste Manag. 2004, 24, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Angelidaki, I.; Alves, M.M.; Bolzonella, D.; Borzacconi, L.; Campos, J.L.; Guwy, A.J.; Kalyuzhnyi, S.; Jenicek, P.; van Lier, J.B. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 2009, 59, 927–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.-Y.; Lay, C.-H.; Sen, B.; Chu, C.-Y.; Kumar, G.; Chen, C.-C.; Chang, J.-S. Fermentative hydrogen production from wastewaters: A review and prognosis. Int. J. Hydrog. Energy 2012, 37, 15632–15642. [Google Scholar] [CrossRef]
- Freeman, B.; Yampolskii, Y.; Pinnau, I. Materials Science of Membranes for Gas and Vapor Separation; John Wiley & Sons, Ltd.: New York, NY, USA, 2006. [Google Scholar]
- Anal, A.; Singh, H. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci. Technol. 2007, 18, 240–251. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinbomi, J.; Wikandari, R.; Taherzadeh, M.J. Enhanced Fermentative Hydrogen and Methane Production from an Inhibitory Fruit-Flavored Medium with Membrane-Encapsulated Cells. Membranes 2015, 5, 616-631. https://doi.org/10.3390/membranes5040616
Akinbomi J, Wikandari R, Taherzadeh MJ. Enhanced Fermentative Hydrogen and Methane Production from an Inhibitory Fruit-Flavored Medium with Membrane-Encapsulated Cells. Membranes. 2015; 5(4):616-631. https://doi.org/10.3390/membranes5040616
Chicago/Turabian StyleAkinbomi, Julius, Rachman Wikandari, and Mohammad J. Taherzadeh. 2015. "Enhanced Fermentative Hydrogen and Methane Production from an Inhibitory Fruit-Flavored Medium with Membrane-Encapsulated Cells" Membranes 5, no. 4: 616-631. https://doi.org/10.3390/membranes5040616
APA StyleAkinbomi, J., Wikandari, R., & Taherzadeh, M. J. (2015). Enhanced Fermentative Hydrogen and Methane Production from an Inhibitory Fruit-Flavored Medium with Membrane-Encapsulated Cells. Membranes, 5(4), 616-631. https://doi.org/10.3390/membranes5040616