Reverse Osmosis Membrane Engineering: Multidirectional Analysis Using Bibliometric, Machine Learning, Data, and Text Mining Approaches
<p>Yearly publications, average global citations per document published in the corresponding year <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mrow> <mi>A</mi> <mi>G</mi> <mi>C</mi> <mi>D</mi> </mrow> <mrow> <msub> <mrow> <mi>C</mi> </mrow> <mrow> <mi>y</mi> </mrow> </msub> </mrow> </msub> <mo>)</mo> </mrow> </semantics></math> and average normalized global citations per document published in the corresponding year <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mrow> <mi>A</mi> <mi>N</mi> <mi>G</mi> <mi>C</mi> <mi>D</mi> </mrow> <mrow> <msub> <mrow> <mi>C</mi> </mrow> <mrow> <mi>y</mi> </mrow> </msub> </mrow> </msub> <mo>)</mo> </mrow> </semantics></math> results of the collection.</p> "> Figure 2
<p>Classification of publications in terms of used polymeric material.</p> "> Figure 3
<p>(<b>a</b>) Surface-engineered RO membranes and their work devotion and (<b>b</b>) publication years of corresponding articles.</p> "> Figure 4
<p>Important metrics of top 10 scientists in the reverse osmosis membrane engineering domain based on the number of publications.</p> "> Figure 5
<p>Co-authorship analysis of the authors (weights = documents, min. number of documents of an author = 25, clusters with single items removed).</p> "> Figure 6
<p>Important metrics of top 10 journals publishing on RO membrane engineering based on the number of articles.</p> "> Figure 7
<p>Most relevant affiliations.</p> "> Figure 8
<p>Metrics of top 10 articles (based on global citations) [<a href="#B48-membranes-14-00259" class="html-bibr">48</a>,<a href="#B128-membranes-14-00259" class="html-bibr">128</a>,<a href="#B200-membranes-14-00259" class="html-bibr">200</a>,<a href="#B211-membranes-14-00259" class="html-bibr">211</a>,<a href="#B220-membranes-14-00259" class="html-bibr">220</a>,<a href="#B294-membranes-14-00259" class="html-bibr">294</a>,<a href="#B295-membranes-14-00259" class="html-bibr">295</a>,<a href="#B296-membranes-14-00259" class="html-bibr">296</a>,<a href="#B297-membranes-14-00259" class="html-bibr">297</a>,<a href="#B298-membranes-14-00259" class="html-bibr">298</a>] in the reverse osmosis membrane engineering domain.</p> "> Figure 9
<p>Most cited references (top 10) [<a href="#B138-membranes-14-00259" class="html-bibr">138</a>,<a href="#B300-membranes-14-00259" class="html-bibr">300</a>,<a href="#B301-membranes-14-00259" class="html-bibr">301</a>,<a href="#B302-membranes-14-00259" class="html-bibr">302</a>,<a href="#B303-membranes-14-00259" class="html-bibr">303</a>,<a href="#B304-membranes-14-00259" class="html-bibr">304</a>,<a href="#B305-membranes-14-00259" class="html-bibr">305</a>,<a href="#B306-membranes-14-00259" class="html-bibr">306</a>,<a href="#B307-membranes-14-00259" class="html-bibr">307</a>,<a href="#B308-membranes-14-00259" class="html-bibr">308</a>,<a href="#B309-membranes-14-00259" class="html-bibr">309</a>] by the RO membrane engineering community.</p> "> Figure 10
<p>Text mining on abstracts of the articles: (<b>a</b>) Reading time score, (<b>b</b>) Flesch reading ease score, and (<b>c</b>) technical term density ratio (%).</p> "> Figure 11
<p>Overlap percentages of author keywords in (<b>a</b>) titles, (<b>b</b>) abstracts, (<b>c</b>) overlap percentage, (<b>d</b>) cosine distance scores between author keywords and extracted keywords by Gemini.</p> ">
Abstract
:1. Introduction
2. Data, Software, and Methods
3. Results and Discussions
3.1. RO Membrane Engineering Statistics
3.2. Important Authors
3.3. Significant Journals
3.4. Essential Affiliations
3.5. Key Articles
3.6. Notable References
3.7. Text Mining Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, S.; Elimelech, M. Staged reverse osmosis operation: Configurations, energy efficiency, and application potential. Desalination 2015, 366, 9–14. [Google Scholar] [CrossRef]
- Qasim, M.; Badrelzaman, M.; Darwish, N.N.; Darwish, N.A.; Hilal, N. Reverse osmosis desalination: A state-of-the-art review. Desalination 2019, 459, 59–104. [Google Scholar] [CrossRef]
- Khanzada, N.K.; Choi, P.J.; An, A.K. Chapter 5—Hybrid forward/reverse osmosis (HFRO): An approach for optimized operation and sustainable resource recovery. In Clean Energy and Resource Recovery; An, A., Tyagi, V., Kumar, M., Cetecioglu, Z., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 69–94. [Google Scholar]
- Wu, Y.-G.; Jiang, M.-Y.; Zhao, J.; Cai, Y.-J.; Li, X.-Z.; Yang, X.; Jiang, H.; Sun, Y.-X.; Wei, N.-J.; Liu, Y.; et al. Polyelectrolyte-based antifouling and pH-responsive multilayer coatings for reverse osmosis membrane. Colloids Surf. A Physicochem. Eng. Asp. 2023, 679, 132642. [Google Scholar] [CrossRef]
- Guan, K.; Fang, S.; Zhou, S.; Fu, W.; Li, Z.; Gonzales, R.R.; Xu, P.; Mai, Z.; Hu, M.; Zhang, P.; et al. Thin film composite membrane with improved permeance for reverse osmosis and organic solvent reverse osmosis. J. Membr. Sci. 2023, 688, 122104. [Google Scholar] [CrossRef]
- Nulens, I.; Caspers, S.; Verbeke, R.; Kubarev, A.; McMillan, A.H.; Vankelecom, I.F.J. Expanding the toolbox for microfluidic-based in situ membrane characterization via microscopy. J. Membr. Sci. 2023, 685, 121897. [Google Scholar] [CrossRef]
- Khayet, M.; Cojocaru, C.; Essalhi, M. Artificial neural network modeling and response surface methodology of desalination by reverse osmosis. J. Membr. Sci. 2011, 368, 202–214. [Google Scholar] [CrossRef]
- Khayet, M.; Essalhi, M.; Armenta-Déu, C.; Cojocaru, C.; Hilal, N. Optimization of solar-powered reverse osmosis desalination pilot plant using response surface methodology. Desalination 2010, 261, 284–292. [Google Scholar] [CrossRef]
- Brooke, R.; Fan, L.; Khayet, M.; Wang, X. A complementary approach of response surface methodology and an artificial neural network for the optimization and prediction of low salinity reverse osmosis performance. Heliyon 2022, 8, e10692. [Google Scholar] [CrossRef]
- Khayet, M.; Mengual, J.I. Effect of salt type on mass transfer in reverse osmosis thin film composite membranes. Desalination 2004, 168, 383–390. [Google Scholar] [CrossRef]
- Sukarno; Chong, J.Y.; Cong, G. Predicting the boron removal of reverse osmosis membranes using machine learning. Desalination 2024, 586, 117854. [Google Scholar] [CrossRef]
- Talhami, M.; Wakjira, T.; Alomar, T.; Fouladi, S.; Fezouni, F.; Ebead, U.; Altaee, A.; Al-Ejji, M.; Das, P.; Hawari, A.H. Single and ensemble explainable machine learning-based prediction of membrane flux in the reverse osmosis process. J. Water Process Eng. 2024, 57, 104633. [Google Scholar] [CrossRef]
- Contreras-Martínez, J.; García-Payo, C.; Arribas, P.; Rodríguez-Sáez, L.; Lejarazu-Larrañaga, A.; García-Calvo, E.; Khayet, M. Recycled reverse osmosis membranes for forward osmosis technology. Desalination 2021, 519, 115312. [Google Scholar] [CrossRef]
- Contreras-Martínez, J.; García-Payo, C.; Khayet, M. Electrospun Nanostructured Membrane Engineering Using Reverse Osmosis Recycled Modules: Membrane Distillation Application. Nanomaterials 2021, 11, 1601. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Chen, Y.; Guo, P.; Su, W.; Xu, L.; Zhang, Y. Recycling End-of-Life RO Membranes for NF Membranes via Layer-by-Layer Assembly and Interfacial Polymerization. Ind. Eng. Chem. Res. 2023, 62, 9837–9848. [Google Scholar] [CrossRef]
- Khaless, K.; Achiou, B.; Boulif, R.; Benhida, R. Recycling of Spent Reverse Osmosis Membranes for Second Use in the Clarification of Wet-Process Phosphoric Acid. Minerals 2021, 11, 637. [Google Scholar] [CrossRef]
- Batista, N.E.; Carvalho, P.C.M.; Fernández-Ramírez, L.M.; Braga, A.P.S. Optimizing methodologies of hybrid renewable energy systems powered reverse osmosis plants. Renew. Sustain. Energ. Rev. 2023, 182, 113377. [Google Scholar] [CrossRef]
- Saboori, H. Hybrid renewable energy powered reverse osmosis desalination – Minimization and comprehensive analysis of levelized cost of water. Sustain. Energy Technol. Assess. 2023, 56, 103065. [Google Scholar] [CrossRef]
- Wang, L.; Sun, X.; Gao, F.; Yang, Y.; Song, R. Solar membrane distillation: An emerging technology for reverse osmosis concentrated brine treatment. Desalination 2024, 592, 118124. [Google Scholar] [CrossRef]
- Chen, B.; Yu, S.; Zhao, X. The separation of radionuclides and silicon from boron-containing radioactive wastewater with modified reverse osmosis membranes. Process Saf. Environ. Prot. 2021, 146, 639–646. [Google Scholar] [CrossRef]
- Chen, B.; Chen, D.; Zhao, X. Radioactive wastewater treatment with modified aromatic polyamide reverse osmosis membranes via quaternary ammonium cation grafting. Sep. Purif. Technol. 2020, 252, 117378. [Google Scholar] [CrossRef]
- Lee, B.-S. Nuclide separation modeling through reverse osmosis membranes in radioactive liquid waste. Nucl. Eng. Technol. 2015, 47, 859–866. [Google Scholar] [CrossRef]
- Sanmartino, J.A.; Khayet, M.; García-Payo, M.C.; El-Bakouri, H.; Riaza, A. Treatment of reverse osmosis brine by direct contact membrane distillation: Chemical pretreatment approach. Desalination 2017, 420, 79–90. [Google Scholar] [CrossRef]
- Reid, C.E.; Breton, E.J. Water and ion flow across cellulosic membranes. J. Appl. Polym. Sci. 1959, 1, 133–143. [Google Scholar] [CrossRef]
- Loeb, S.; Sourirajan, S. Sea Water Demineralization by Means of an Osmotic Membrane. In Saline Water Conversion—II; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1963; Volume 38, pp. 117–132. [Google Scholar]
- Beasley, J.K. The evaluation and selection of polymeric materials for reverse osmosis membranes. Desalination 1977, 22, 181–189. [Google Scholar] [CrossRef]
- Richter, J.W.; Square, K.; Hoehn, H.H. Permselective, Aromatic, Nitrogen-Containing Polymeric Membranes. U.S. Patent 3567632A, 2 March 1971. [Google Scholar]
- Cadotte, J.E. Interfacially Synthesized Reverse Osmosis Membrane. U.S. Patent 4277344A, 7 July 1981. [Google Scholar]
- Hailemariam, R.H.; Woo, Y.C.; Damtie, M.M.; Kim, B.C.; Park, K.-D.; Choi, J.-S. Reverse osmosis membrane fabrication and modification technologies and future trends: A review. Adv. Colloid Interface Sci. 2020, 276, 102100. [Google Scholar] [CrossRef]
- Goh, P.S.; Zulhairun, A.K.; Ismail, A.F.; Hilal, N. Contemporary antibiofouling modifications of reverse osmosis desalination membrane: A review. Desalination 2019, 468, 114072. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Amjad, H.; Khan, S.J.; Yasmeen, M.; Khan, A.A.; Khanzada, N.K. Performance Evaluation of UF Membranes Derived from Recycled RO Membrane, a Step towards Circular Economy in Desalination. Membranes 2023, 13, 628. [Google Scholar] [CrossRef]
- Powell, L.C.; Hilal, N.; Wright, C.J. Atomic force microscopy study of the biofouling and mechanical properties of virgin and industrially fouled reverse osmosis membranes. Desalination 2017, 404, 313–321. [Google Scholar] [CrossRef]
- Anis, S.F.; Hashaikeh, R.; Hilal, N. Reverse osmosis pretreatment technologies and future trends: A comprehensive review. Desalination 2019, 452, 159–195. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Hashaikeh, R.; Hilal, N. Fouling control in reverse osmosis membranes through modification with conductive carbon nanostructures. Desalination 2019, 470, 114118. [Google Scholar] [CrossRef]
- Do, V.T.; Tang, C.Y.; Reinhard, M.; Leckie, J.O. Effects of hypochlorous acid exposure on the rejection of salt, polyethylene glycols, boron and arsenic(V) by nanofiltration and reverse osmosis membranes. Water Res. 2012, 46, 5217–5223. [Google Scholar] [CrossRef] [PubMed]
- Do, V.T.; Tang, C.Y.; Reinhard, M.; Leckie, J.O. Degradation of Polyamide Nanofiltration and Reverse Osmosis Membranes by Hypochlorite. Environ. Sci. Technol. 2012, 46, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Farhat, A.; Ahmad, F.; Hilal, N.; Arafat, H.A. Boron removal in new generation reverse osmosis (RO) membranes using two-pass RO without pH adjustment. Desalination 2013, 310, 50–59. [Google Scholar] [CrossRef]
- Ruiz-García, A.; León, F.A.; Ramos-Martín, A. Different boron rejection behavior in two RO membranes installed in the same full-scale SWRO desalination plant. Desalination 2019, 449, 131–138. [Google Scholar] [CrossRef]
- Khanzada, N.K.; Deka, B.J.; Kharraz, J.A.; Wong, P.W.; Jassby, D.; Rehman, S.; Leu, S.-Y.; Kumar, M.; An, A.K. Elucidating the role of graphene oxide layers in enhancing N-Nitrosodimethylamine (NDMA) rejection and antibiofouling property of RO membrane simultaneously. J. Membr. Sci. 2022, 643, 120043. [Google Scholar] [CrossRef]
- Khanzada, N.K.; Farid, M.U.; Kharraz, J.A.; Choi, J.; Tang, C.Y.; Nghiem, L.D.; Jang, A.; An, A.K. Removal of organic micropollutants using advanced membrane-based water and wastewater treatment: A review. J. Membr. Sci. 2020, 598, 117672. [Google Scholar] [CrossRef]
- Anis, S.F.; Hashaikeh, R.; Hilal, N. Flux and salt rejection enhancement of polyvinyl(alcohol) reverse osmosis membranes using nano-zeolite. Desalination 2019, 470, 114104. [Google Scholar] [CrossRef]
- Al-Hobaib, A.S.; Al-Suhybani, M.S.; Al-Sheetan, K.M.; Mousa, H.; Shaik, M.R. New RO TFC Membranes by Interfacial Polymerization in n-Dodecane with Various co-Solvents. Membranes 2016, 6, 24. [Google Scholar] [CrossRef]
- Kamada, T.; Ohara, T.; Shintani, T.; Tsuru, T. Optimizing the preparation of multi-layered polyamide membrane via the addition of a co-solvent. J. Membr. Sci. 2014, 453, 489–497. [Google Scholar] [CrossRef]
- Kamada, T.; Ohara, T.; Shintani, T.; Tsuru, T. Controlled surface morphology of polyamide membranes via the addition of co-solvent for improved permeate flux. J. Membr. Sci. 2014, 467, 303–312. [Google Scholar] [CrossRef]
- Kong, C.; Shintani, T.; Kamada, T.; Freger, V.; Tsuru, T. Co-solvent-mediated synthesis of thin polyamide membranes. J. Membr. Sci. 2011, 384, 10–16. [Google Scholar] [CrossRef]
- Mokarizadeh, H.; Moayedfard, S.; Maleh, M.S.; Mohamed, S.I.G.P.; Nejati, S.; Esfahani, M.R. The role of support layer properties on the fabrication and performance of thin-film composite membranes: The significance of selective layer-support layer connectivity. Sep. Purif. Technol. 2021, 278, 119451. [Google Scholar] [CrossRef]
- Lim, Y.J.; Goh, K.; Lai, G.S.; Zhao, Y.; Torres, J.; Wang, R. Unraveling the role of support membrane chemistry and pore properties on the formation of thin-film composite polyamide membranes. J. Membr. Sci. 2021, 640, 119805. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Hoek, E.M.V. Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes. J. Membr. Sci. 2009, 336, 140–148. [Google Scholar] [CrossRef]
- Khanzada, N.K.; Jassby, D.; An, A.K. Conductive reverse osmosis membrane for electrochemical chlorine reduction and sustainable brackish water treatment. Chem. Eng. J. 2022, 435, 134858. [Google Scholar] [CrossRef]
- Ismail, R.A.; Kumar, M.; Khanzada, N.K.; Thomas, N.; Sreedhar, N.; An, A.K.; Arafat, H.A. Hybrid NF and UF membranes tailored using quaternized polydopamine for enhanced removal of salts and organic pollutants from water. Desalination 2022, 539, 115954. [Google Scholar] [CrossRef]
- Lau, W.J.; Gray, S.; Matsuura, T.; Emadzadeh, D.; Paul Chen, J.; Ismail, A.F. A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches. Water Res. 2015, 80, 306–324. [Google Scholar] [CrossRef]
- Khanzada, N.K.; Rehman, S.; Leu, S.-Y.; An, A.K. Evaluation of anti-bacterial adhesion performance of polydopamine cross-linked graphene oxide RO membrane via in situ optical coherence tomography. Desalination 2020, 479, 114339. [Google Scholar] [CrossRef]
- Khanzada, N.K.; Rehman, S.; Kharraz, J.A.; Farid, M.U.; Khatri, M.; Hilal, N.; An, A.K. Reverse osmosis membrane functionalized with aminated graphene oxide and polydopamine nanospheres plugging for enhanced NDMA rejection and anti-fouling performance. Chemosphere 2023, 338, 139557. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, X.; Zhao, X.-T.; Li, K.; Yu, C.-Y.; Liu, L.-F.; Zhou, Y.-F.; Gao, C.-J. High flux reverse osmosis membranes fabricated with hyperbranched polymers via novel twice-crosslinked interfacial polymerization method. J. Membr. Sci. 2020, 595, 117480. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, P.; Sun, F.; Zhang, W.; Li, M.; Sha, G.; Teng, L.; Wang, X.; Huo, M.; DuChanois, R.M.; et al. More resilient polyester membranes for high-performance reverse osmosis desalination. Science 2024, 384, 333–338. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, P.; Jiang, C.; DuChanois, R.M.; Zhang, X.; Elimelech, M. High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nat. Sustain. 2021, 4, 138–146. [Google Scholar] [CrossRef]
- Zakaria, N.H.; Majid, F.A.A.; Helmi, N.A.N.M.; Fadhlina, A.; Sheikh, H.I. Medicinal Potentials of Strobilanthes crispus (L.) and Orthosiphon stamineus Benth. in the Management of Kidney Stones: A Review and Bibliometric Analysis. J. Herb. Med. 2023, 42, 100773. [Google Scholar] [CrossRef]
- Dalal, R.; Sangwan, A.; Khari, M. The bibliometrics assessment of opportunistic network protocols & simulation tools. Telemat. Inform. Rep. 2023, 11, 100082. [Google Scholar] [CrossRef]
- Zhang, X.; Chu, D.; Zhao, X.; Gao, C.; Lu, L.; He, Y.; Bai, W. Machine learning-driven 3D printing: A review. Appl. Mater. Today 2024, 39, 102306. [Google Scholar] [CrossRef]
- Aytaç, E. Modeling Future Impacts on Land Cover of Rapid Expansion of Hazelnut Orchards: A Case Study on Samsun, Turkey. Eur. J. Sustain. Dev. Res. 2022, 6, em0193. [Google Scholar] [CrossRef]
- Aytaç, E. Forecasting Turkey’s Hazelnut Export Quantities with Facebook’s Prophet Algorithm and Box-Cox Transformation. ADCAIJ Adv. Dist. Comp. Artif. Int. J. 2021, 10, 33–47. [Google Scholar] [CrossRef]
- Xue, J.; Alinejad-Rokny, H.; Liang, K. Navigating micro- and nano-motors/swimmers with machine learning: Challenges and future directions. ChemPhysMater 2024, 3, 273–283. [Google Scholar] [CrossRef]
- Aytaç, E. Unsupervised learning approach in defining the similarity of catchments: Hydrological response unit based k-means clustering, a demonstration on Western Black Sea Region of Turkey. Int. Soil Water Conserv. Res. 2020, 8, 321–331. [Google Scholar] [CrossRef]
- Aytaç, E. Havzaların Benzerliklerini Tanımlamada Alternatif Bir Yaklaşım: Hiyerarşik Kümeleme Yöntemi Uygulaması. Afyon Kocatepe Univ. Fen Muhendis. Bilim. Derg. 2021, 21, 958–970. [Google Scholar] [CrossRef]
- Rezaei, T.; Javadi, A. Environmental impact assessment of ocean energy converters using quantum machine learning. J. Environ. Manag. 2024, 362, 121275. [Google Scholar] [CrossRef]
- Yatawatta, S. Reinforcement learning. Astron. Comput. 2024, 48, 100833. [Google Scholar] [CrossRef]
- Aytaç, E. Object Detection and Regression Based Visible Spectrophotometric Analysis: A Demonstration Using Methylene Blue Solution. ADCAIJ Adv. Dist. Comp. Artif. Int. J. 2023, 12, e29120. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, H.; Xu, Z.; Ding, K. The fusion of fuzzy theories and natural language processing: A state-of-the-art survey. Appl. Soft Comput. 2024, 162, 111818. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Zhang, J.; Cao, L.; Wang, Q. Automated analysis and assignment of maintenance work orders using natural language processing. Automa. Constr. 2024, 165, 105501. [Google Scholar] [CrossRef]
- Aytaç, E. Exploring Electrocoagulation Through Data Analysis And Text Mining Perspectives. Environ. Eng. Manag. J. 2022, 21, 671–685. [Google Scholar] [CrossRef]
- Carroll, P.; Singh, B.; Mangina, E. Uncovering gender dimensions in energy policy using Natural Language Processing. Renew. Sustain. Energ. Rev. 2024, 193, 114281. [Google Scholar] [CrossRef]
- Aytaç, E.; Khayet, M. A Topic Modeling Approach to Discover the Global and Local Subjects in Membrane Distillation Separation Process. Separations 2023, 10, 482. [Google Scholar] [CrossRef]
- Hobensack, M.; von Gerich, H.; Vyas, P.; Withall, J.; Peltonen, L.-M.; Block, L.J.; Davies, S.; Chan, R.; Van Bulck, L.; Cho, H.; et al. A rapid review on current and potential uses of large language models in nursing. Int. J. Nurs. Stud. 2024, 154, 104753. [Google Scholar] [CrossRef]
- Jalali, M.; Luo, Y.; Caulfield, L.; Sauter, E.; Nefedov, A.; Wöll, C. Large language models in electronic laboratory notebooks: Transforming materials science research workflows. Mater. Today Commun. 2024, 40, 109801. [Google Scholar] [CrossRef]
- Praveen, S.V.; Gajjar, P.; Ray, R.K.; Dutt, A. Crafting clarity: Leveraging large language models to decode consumer reviews. J. Retail. Consum. Serv. 2024, 81, 103975. [Google Scholar] [CrossRef]
- Ozmen, B.B.; Schwarz, G.S. Future of artificial intelligence in plastic surgery: Toward the development of specialty-specific large language models. J. Plast. Reconstr. Aesthetic Surg. 2024, 93, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, F.; Ren, M.; Gao, D. A new multifractal-based deep learning model for text mining. Inform. Process. Manag. 2024, 61, 103561. [Google Scholar] [CrossRef]
- Geng, Y. Research on the promotion of intelligent entertainment voice robots in personalized English learning based on data mining and gamified teaching experience. Entertain. Comput. 2025, 52, 100816. [Google Scholar] [CrossRef]
- Senave, E.; Jans, M.J.; Srivastava, R.P. The application of text mining in accounting. Int. J. Account. Inf. Syst. 2023, 50, 100624. [Google Scholar] [CrossRef]
- Khayet, M.; Aytaç, E. A Glimpse into Dr. Nidal Hilal’s Scientific Achievements. J. Membr. Sci. Res. 2024, 10, 1999042. [Google Scholar] [CrossRef]
- Aytaç, E.; Khayet, M. A deep dive into membrane distillation literature with data analysis, bibliometric methods, and machine learning. Desalination 2023, 553, 116482. [Google Scholar] [CrossRef]
- Aytaç, E.; Fombona-Pascual, A.; Lado, J.J.; Quismondo, E.G.; Palma, J.; Khayet, M. Faradaic deionization technology: Insights from bibliometric, data mining and machine learning approaches. Desalination 2023, 563, 116715. [Google Scholar] [CrossRef]
- Suwaileh, W.; Pathak, N.; Shon, H.; Hilal, N. Forward osmosis membranes and processes: A comprehensive review of research trends and future outlook. Desalination 2020, 485, 114455. [Google Scholar] [CrossRef]
- Dai, Y.; Song, Y.; Gao, H.; Wang, S.; Yuan, Y. Bibliometric analysis of research progress in membrane water treatment technology from 1985 to 2013. Scientometrics 2015, 105, 577–591. [Google Scholar] [CrossRef]
- Li, X.; Su, J.; Wang, H.; Boczkaj, G.; Mahlknecht, J.; Singh, S.V.; Wang, C. Bibliometric analysis of artificial intelligence in wastewater treatment: Current status, research progress, and future prospects. J. Environ. Chem. Eng. 2024, 12, 113152. [Google Scholar] [CrossRef]
- Tang, Y.; Long, X.; Wu, M.; Yang, S.; Gao, N.; Xu, B.; Dutta, S. Bibliometric review of research trends on disinfection by-products in drinking water during 1975–2018. Sep. Purif. Technol. 2020, 241, 116741. [Google Scholar] [CrossRef]
- Pang, T.; Shen, J. Visualizing the landscape and evolution of capacitive deionization by scientometric analysis. Desalination 2022, 527, 115562. [Google Scholar] [CrossRef]
- Adam, M.R.; Hubadillah, S.K.; Aziz, M.H.A.; Jamalludin, M.R. The emergence of adsorptive membrane treatment for pollutants removal—A mini bibliometric analysis study. Mater. Today Proc. 2023, 88, 15–22. [Google Scholar] [CrossRef]
- Tharayil, J.M.; Chinnaiyan, P.; John, D.M.; Kishore, M.S. Environmental sustainability of FO membrane separation applications—Bibliometric analysis and state-of-the-art review. Results Eng. 2024, 21, 101677. [Google Scholar] [CrossRef]
- Nuar, A.N.A.; Sen, S.C. Examining the Trend of Research on Big Data Architecture: Bibliometric Analysis using Scopus Database. Procedia Comput. Sci. 2024, 234, 172–179. [Google Scholar] [CrossRef]
- Jusoh, H.H.W.; Juahir, H.; Hanapi, N.H.M.; Afandi, N.Z.M.; Nasir, N.M.; Kurniawan, S.B.; Zakaria, N.; Nor, S.M.M. Harvesting solutions: Discover the evolution of agriculture wastewater treatment through comprehensive bibliometric analysis using scopus database 1971–2023. Desalination Water Treat. 2024, 317, 100291. [Google Scholar] [CrossRef]
- Pajankar, A. Introduction to Python. In Raspberry Pi Supercomputing and Scientific Programming: MPI4PY, NumPy, and SciPy for Enthusiasts; Pajankar, A., Ed.; Apress: Berkeley, CA, USA, 2017; pp. 43–55. [Google Scholar]
- Ihaka, R.; Gentleman, R. R: A Language for Data Analysis and Graphics. J. Comput. Graph. Stat. 1996, 5, 299–314. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Niu, B.; Loáiciga, H.A.; Wang, Z.; Zhan, F.B.; Hong, S. Twenty years of global groundwater research: A Science Citation Index Expanded-based bibliometric survey (1993–2012). J. Hydrol. 2014, 519, 966–975. [Google Scholar] [CrossRef]
- Aytaç, E.; Contreras-Martínez, J.; Khayet, M. Mathematical and computational modeling of membrane distillation technology: A data-driven review. Int. J. Thermofluids 2024, 21, 100567. [Google Scholar] [CrossRef]
- Ngassa, S.; Kilulya, K.; Masalu, R. Scientific Landscape on Phthalates Biodegradation Research: A Bibliometric and Scientometric Study. Tanzania J. Sci. 2023, 49, 842–858. [Google Scholar] [CrossRef]
- Ruiz-Pérez, M.; Seguí-Pons, J.M.; Salleras-Mestre, X. Bibliometric analysis of equity in transportation. Heliyon 2023, 9, e19089. [Google Scholar] [CrossRef]
- Liao, L.; Quan, L.; Yang, C.; Li, L. Knowledge synthesis of intelligent decision techniques applications in the AECO industry. Automa. Constr. 2022, 140, 104304. [Google Scholar] [CrossRef]
- Xu, D.; Sun, H.; Wang, J.; Wang, N.; Zuo, Y.; Mosa, A.A.; Yin, X. Global trends and current advances regarding greenhouse gases in constructed wetlands: A bibliometric-based quantitative review over the last 40 years. Ecol. Eng. 2023, 193, 107018. [Google Scholar] [CrossRef]
- García-Villar, C.; García-Santos, J.M. Bibliometric indicators to evaluate scientific activity. Radiología 2021, 63, 228–235. [Google Scholar] [CrossRef]
- Tol, R.S.J. A rational, successive g-index applied to economics departments in Ireland. J. Informetr. 2008, 2, 149–155. [Google Scholar] [CrossRef]
- Jamjoom, A.A.B.; Wiggins, A.N.; Loan, J.J.M.; Emelifeoneu, J.; Fouyas, I.P.; Brennan, P.M. Academic Productivity of Neurosurgeons Working in the United Kingdom: Insights from the H-Index and Its Variants. World Neurosurg. 2016, 86, 287–293. [Google Scholar] [CrossRef]
- Dragović, B.; Zrnić, N.; Dragović, A.; Tzannatos, E.; Dulebenets, M.A. A comprehensive bibliometric analysis and assessment of high-impact research on the berth allocation problem. Ocean Eng. 2024, 300, 117163. [Google Scholar] [CrossRef]
- Lathabai, H.H. ψ-index: A new overall productivity index for actors of science and technology. J. Informetr. 2020, 14, 101096. [Google Scholar] [CrossRef]
- Ward, A. Textstat. Available online: https://github.com/textstat/textstat (accessed on 22 April 2024).
- Ferguson, C.; Merga, M.; Winn, S. Communications in the time of a pandemic: The readability of documents for public consumption. Aust. N. Z. J. Public Health 2021, 45, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Earp, B.E.; Kilgallen, E.E.; Blazar, P. Readability of Online Hand Surgery Patient Educational Materials: Evaluating the Trend Since 2008. J. Hand Surg. 2022, 47, 186.e1–186.e8. [Google Scholar] [CrossRef] [PubMed]
- Taylor, Z.W. Writing Dollars into Sense: Simplifying Financial Aid for L2 Students. J. Stud. Aff. Res. Pract. 2019, 56, 438–453. [Google Scholar] [CrossRef]
- Ho, B.; Hong, E.M.; Benson, B.E. Assessing and Improving the Effectiveness of Online Patient Education Materials on Essential Vocal Tremor: A Comprehensive Evaluation. J. Voice 2024, in press. [Google Scholar] [CrossRef]
- Demberg, V.; Keller, F. Data from eye-tracking corpora as evidence for theories of syntactic processing complexity. Cognition 2008, 109, 193–210. [Google Scholar] [CrossRef]
- TF–IDF. Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer US: Boston, MA, USA, 2010; pp. 986–987. [Google Scholar]
- Gemini Team; Anil, R.; Borgeaud, S.; Wu, Y.; Alayrac, J.-B.; Yu, J.; Soricut, R.; Schalkwyk, J.; Dai, A.M.; Hauth, A.; et al. Gemini: A Family of Highly Capable Multimodal Models. arXiv 2023, arXiv:2312.11805. [Google Scholar]
- Chen, L.-C. An extended TF-IDF method for improving keyword extraction in traditional corpus-based research: An example of a climate change corpus. Data Knowl. Eng. 2024, 153, 102322. [Google Scholar] [CrossRef]
- Chen, L.-C.; Chang, K.-H. An entropy-based corpus method for improving keyword extraction: An example of sustainability corpus. Eng. Appl. Artif. Intel. 2024, 133, 108049. [Google Scholar] [CrossRef]
- Liaquat, S.; Zia, M.F.; Saleem, O.; Asif, Z.; Benbouzid, M. Performance analysis of distance metrics on the exploitation properties and convergence behaviour of the conventional firefly algorithm. Appl. Soft Comput. 2022, 126, 109255. [Google Scholar] [CrossRef]
- Yap, J.S.; Lim, M.H.; Salman, L.M. Improved versatility and robustness of bearing fault detection and diagnostic method for nuclear power plant. Nucl. Eng. Des. 2024, 428, 113474. [Google Scholar] [CrossRef]
- He, Z.; Lin, Y.; Lin, Z.; Wang, C. Multi-label feature selection via similarity constraints with non-negative matrix factorization. Knowl.-Based Syst. 2024, 297, 111948. [Google Scholar] [CrossRef]
- Mao, Y.; Liu, Q.; Zhang, Y. Sentiment analysis methods, applications, and challenges: A systematic literature review. J. King Saud Univ. Comput. Inf. Sci. 2024, 36, 102048. [Google Scholar] [CrossRef]
- Seong, B.; Song, K. Sentiment analysis of online responses in the performing arts with large language models. Heliyon 2023, 9, e22457. [Google Scholar] [CrossRef] [PubMed]
- Naznin, F.; Hazarika, I.; Laskar, D.; Mahanta, A.K. Mining association between different emotion classes present in users posts of social media. Soc. Netw. Anal. Min. 2024, 14, 76. [Google Scholar] [CrossRef]
- Aka Uymaz, H.; Kumova Metin, S. Vector based sentiment and emotion analysis from text: A survey. Eng. Appl. Artif. Intel. 2022, 113, 104922. [Google Scholar] [CrossRef]
- Nandwani, P.; Verma, R. A review on sentiment analysis and emotion detection from text. Soc. Netw. Anal. Min. 2021, 11, 81. [Google Scholar] [CrossRef]
- Al Hamoud, A.; Hoenig, A.; Roy, K. Sentence subjectivity analysis of a political and ideological debate dataset using LSTM and BiLSTM with attention and GRU models. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 7974–7987. [Google Scholar] [CrossRef]
- Hodgson, T.D. Selective properties of cellulose acetate membranes towards ions in aqueous solutions. Desalination 1970, 8, 99–138. [Google Scholar] [CrossRef]
- Shen, Q.; Song, Q.; Mai, Z.; Lee, K.R.; Yoshioka, T.; Guan, K.; Gonzales, R.R.; Matsuyama, H. When self-assembly meets interfacial polymerization. Sci. Adv. 2023, 9, eadf6122. [Google Scholar] [CrossRef]
- Jeong, B.-H.; Hoek, E.M.V.; Yan, Y.; Subramani, A.; Huang, X.; Hurwitz, G.; Ghosh, A.K.; Jawor, A. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. J. Membr. Sci. 2007, 294, 1–7. [Google Scholar] [CrossRef]
- Riley, R.; Gardner, J.O.; Merten, U. Cellulose Acetate Membranes: Electron Microscopy of Structure. Science 1964, 143, 801–803. [Google Scholar] [CrossRef] [PubMed]
- Nambi Krishnan, J.; Venkatachalam, K.R.; Ghosh, O.; Jhaveri, K.; Palakodeti, A.; Nair, N. Review of Thin Film Nanocomposite Membranes and Their Applications in Desalination. Front. Chem. 2022, 10, 781372. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xu, Z.; Pinnau, I. Fouling of reverse osmosis membranes by biopolymers in wastewater secondary effluent: Role of membrane surface properties and initial permeate flux. J. Membr. Sci. 2007, 290, 173–181. [Google Scholar] [CrossRef]
- Kang, G.; Liu, M.; Lin, B.; Cao, Y.; Yuan, Q. A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly(ethylene glycol). Polymer 2007, 48, 1165–1170. [Google Scholar] [CrossRef]
- Shen, M.; Keten, S.; Lueptow, R.M. Dynamics of water and solute transport in polymeric reverse osmosis membranes via molecular dynamics simulations. J. Membr. Sci. 2016, 506, 95–108. [Google Scholar] [CrossRef]
- Li, D.; Yan, Y.; Wang, H. Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes. Prog. Polym. Sci. 2016, 61, 104–155. [Google Scholar] [CrossRef]
- Pala, J.K.; Roy, A.; Ghosh, A.K. Chapter 9—Polymer-based reverse osmosis membranes. In Advancement in Polymer-Based Membranes for Water Remediation; Nayak, S.K., Dutta, K., Gohil, J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 311–333. [Google Scholar]
- Khorshidi, B.; Thundat, T.; Fleck, B.A.; Sadrzadeh, M. A Novel Approach Toward Fabrication of High Performance Thin Film Composite Polyamide Membranes. Sci. Rep. 2016, 6, 22069. [Google Scholar] [CrossRef]
- Chen, Y.; Jason Niu, Q.; Hou, Y.; Sun, H. Effect of interfacial polymerization monomer design on the performance and structure of thin film composite nanofiltration and reverse osmosis membranes: A review. Sep. Purif. Technol. 2024, 330, 125282. [Google Scholar] [CrossRef]
- Lau, W.J.; Ismail, A.F.; Misdan, N.; Kassim, M.A. A recent progress in thin film composite membrane: A review. Desalination 2012, 287, 190–199. [Google Scholar] [CrossRef]
- Mohammed, S.; Aburabie, J.; Hashaikeh, R. Facile morphological tuning of thin film composite membranes for enhanced desalination performance. Npj Clean Water 2023, 6, 55. [Google Scholar] [CrossRef]
- Farahbakhsh, J.; Vatanpour, V.; Khoshnam, M.; Zargar, M. Recent advancements in the application of new monomers and membrane modification techniques for the fabrication of thin film composite membranes: A review. React. Funct. Polym. 2021, 166, 105015. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Z.; Hu, Y.; Chen, Y. Thin-Film Composite Membrane Compaction: Exploring the Interplay among Support Compressive Modulus, Structural Characteristics, and Overall Transport Efficiency. Environ. Sci. Technol. 2024, 58, 8587–8596. [Google Scholar] [CrossRef] [PubMed]
- Usman, J.; Baig, U.; Abba, S.I.; Alharthi, F.A.; Fellows, C.M.; Waheed, A.; Aljundi, I.H. Tailoring thin film composite membranes for clean water production: A study on structural variations and predictive insights using machine learning. J. Environ. Chem. Eng. 2024, 12, 112569. [Google Scholar] [CrossRef]
- Seyedpour, F.; Farahbakhsh, J.; Dabaghian, Z.; Suwaileh, W.; Zargar, M.; Rahimpour, A.; Sadrzadeh, M.; Ulbricht, M.; Mansourpanah, Y. Advances and challenges in tailoring antibacterial polyamide thin film composite membranes for water treatment and desalination: A critical review. Desalination 2024, 581, 117614. [Google Scholar] [CrossRef]
- Mokarinezhad, N.; Hosseini, S.S.; Nxumalo, E.N. Development of polyamide/polyacrylonitrile thin film composite RO membranes by interfacial polymerization assisted with an aromatic/aliphatic organic solvent mixture. J. Appl. Polym. Sci. 2023, 140, e53811. [Google Scholar] [CrossRef]
- Xue, Y.-R.; Ma, Z.-Y.; Liu, C.; Zhu, C.-Y.; Wu, J.; Xu, Z.-K. Polyamide nanofilms synthesized by a sequential process of blade coating-spraying-interfacial polymerization toward reverse osmosis. Sep. Purif. Technol. 2023, 310, 123122. [Google Scholar] [CrossRef]
- Vatanpour, V.; Mahdiei, S.; Teber, O.O.; Koyuncu, I. Permeability improvement of reverse osmosis membranes by addition of dimethyl sulfoxide in the interfacial polymerization media. React. Funct. Polym. 2022, 181, 105436. [Google Scholar] [CrossRef]
- Verma, N.; Chen, L.; Fu, Q.; Wu, S.; Hsiao, B.S. Ionic Liquid-Mediated Interfacial Polymerization for Fabrication of Reverse Osmosis Membranes. Membranes 2022, 12, 1081. [Google Scholar] [CrossRef]
- Lv, X.; Wang, E.; Liu, S.; Liu, L.; Yin, Y.; Li, S.; Su, B.; Han, L. Tannic acid reinforced interfacial polymerization fabrication of internally pressurized thin-film composite hollow fiber reverse osmosis membranes with high performance. Desalination 2022, 538, 115926. [Google Scholar] [CrossRef]
- Gan, Q.; Peng, L.E.; Guo, H.; Yang, Z.; Tang, C.Y. Cosolvent-Assisted Interfacial Polymerization toward Regulating the Morphology and Performance of Polyamide Reverse Osmosis Membranes: Increased m-Phenylenediamine Solubility or Enhanced Interfacial Vaporization? Environ. Sci. Technol. 2022, 56, 10308–10316. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, Z.; Wang, J. Optimizing interfacial polymerization with UV-introduced photo-fries rearrangement for enhancing RO membrane performance. Chem. Eng. J. 2022, 437, 135380. [Google Scholar] [CrossRef]
- Shin, M.-G.; Choi, W.; Lee, J.-H. Highly Selective and pH-Stable Reverse Osmosis Membranes Prepared via Layered Interfacial Polymerization. Membranes 2022, 12, 156. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, L.; Li, P.; Sun, H.; Hou, Y.; Niu, Q.J. Ultrathin Film Composite Membranes Fabricated by Novel In Situ Free Interfacial Polymerization for Desalination. ACS Appl. Mater. Interfaces 2020, 12, 25304–25315. [Google Scholar] [CrossRef]
- Liu, L.; Lin, X.; Li, W.; Liu, X.; Fan, F.; Yang, Y.; Mei, Y. Thin film composite reverse osmosis membranes with metal-organic coordination complexes stabilized CNTs interlayer for enhanced removal of trace organic contaminants. J. Membr. Sci. 2023, 687, 122012. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, X.; Huang, M.; Jiang, H.; Toghan, A. Crown ether interlayer-modulated polyamide membrane with nanoscale structures for efficient desalination. Nano Res. 2023, 16, 6153–6159. [Google Scholar] [CrossRef]
- Jo, J.H.; Shin, S.S.; Jeon, S.; Park, S.-J.; Park, H.; Park, Y.-I.; Lee, J.-H. Star polymer-assembled adsorptive membranes for effective Cr(VI) removal. Chem. Eng. J. 2022, 449, 137883. [Google Scholar] [CrossRef]
- Li, C.; Zhao, Y.; Lai, G.S.; Wang, R. Fabrication of fluorinated polyamide seawater reverse osmosis membrane with enhanced boron removal. J. Membr. Sci. 2022, 662, 121009. [Google Scholar] [CrossRef]
- Aljubran, M.A.; Ali, Z.; Wang, Y.; Alonso, E.; Puspasari, T.; Cherviakouski, K.; Pinnau, I. Highly efficient size-sieving-based removal of arsenic(III) via defect-free interfacially-polymerized polyamide thin-film composite membranes. J. Membr. Sci. 2022, 652, 120477. [Google Scholar] [CrossRef]
- Nikbakht Fini, M.; Zhu, J.; Van der Bruggen, B.; Madsen, H.T.; Muff, J. Preparation, characterization and scaling propensity study of a dopamine incorporated RO/FO TFC membrane for pesticide removal. J. Membr. Sci. 2020, 612, 118458. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, G.; Xiong, C.; Long, S.; Wang, X.; Yang, J. Preparation and characterization of thin-film-composite reverse-osmosis polyamide membrane with enhanced chlorine resistance by introducing thioether units into polyamide layer. J. Membr. Sci. 2018, 564, 473–482. [Google Scholar] [CrossRef]
- Peyki, A.; Rahimpour, A.; Jahanshahi, M. Preparation and characterization of thin film composite reverse osmosis membranes incorporated with hydrophilic SiO2 nanoparticles. Desalination 2015, 368, 152–158. [Google Scholar] [CrossRef]
- Pham, M.-X.; Le, T.M.; Tran, T.T.; Phuong Ha, H.K.; Phong, M.T.; Nguyen, V.-H.; Tran, L.-H. Fabrication and characterization of polyamide thin-film composite membrane via interfacial polycondensation for pervaporation separation of salt and arsenic from water. RSC Adv. 2021, 11, 39657–39665. [Google Scholar] [CrossRef]
- Park, H.M.; Jee, K.Y.; Lee, Y.T. Preparation and characterization of a thin-film composite reverse osmosis membrane using a polysulfone membrane including metal-organic frameworks. J. Membr. Sci. 2017, 541, 510–518. [Google Scholar] [CrossRef]
- Song, X.; Qi, S.; Tang, C.Y.; Gao, C. Ultra-thin, multi-layered polyamide membranes: Synthesis and characterization. J. Membr. Sci. 2017, 540, 10–18. [Google Scholar] [CrossRef]
- Medina-Gonzalez, Y.; Aimar, P.; Lahitte, J.F.; Remigy, J.C. Towards green membranes: Preparation of cellulose acetate ultrafiltration membranes using methyl lactate as a biosolvent. Int. J. Sustain. Eng. 2011, 4, 75–83. [Google Scholar] [CrossRef]
- Islam, M.D.; Uddin, F.J.; Rashid, T.U.; Shahruzzaman, M. Cellulose acetate-based membrane for wastewater treatment—A state-of-the-art review. Mater. Adv. 2023, 4, 4054–4102. [Google Scholar] [CrossRef]
- Vatanpour, V.; Pasaoglu, M.E.; Barzegar, H.; Teber, O.O.; Kaya, R.; Bastug, M.; Khataee, A.; Koyuncu, I. Cellulose acetate in fabrication of polymeric membranes: A review. Chemosphere 2022, 295, 133914. [Google Scholar] [CrossRef]
- Moghiseh, M.; Safarpour, M.; Barzin, J. Cellulose acetate membranes fabricated by a combined vapor-induced/wet phase separation method: Morphology and performance evaluation. Iran. Polym. J. 2020, 29, 943–956. [Google Scholar] [CrossRef]
- Yang, S.; Tang, R.; Dai, Y.; Wang, T.; Zeng, Z.; Zhang, L. Fabrication of cellulose acetate membrane with advanced ultrafiltration performances and antibacterial properties by blending with HKUST-1@LCNFs. Sep. Purif. Technol. 2021, 279, 119524. [Google Scholar] [CrossRef]
- Wang, J.; Song, H.; Ren, L.; Talukder, M.E.; Chen, S.; Shao, J. Study on the Preparation of Cellulose Acetate Separation Membrane and New Adjusting Method of Pore Size. Membranes 2022, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Elkony, Y.; Mansour, E.-S.; Elhusseiny, A.; Hassan, H.; Ebrahim, S. Novel Grafted/Crosslinked Cellulose Acetate Membrane with N-isopropylacrylamide/N,N-methylenebisacrylamide for Water Desalination. Sci. Rep. 2020, 10, 9901. [Google Scholar] [CrossRef] [PubMed]
- Khulbe, K.C.; Matsuura, T.; Lamarche, G.; Lamarche, A.M.; Choi, C.; Noh, S.H. Study of the structure of asymmetric cellulose acetate membranes for reverse osmosis using electron spin resonance (ESR) method. Polymer 2001, 42, 6479–6484. [Google Scholar] [CrossRef]
- Worthley, C.H.; Constantopoulos, K.T.; Ginic-Markovic, M.; Pillar, R.J.; Matisons, J.G.; Clarke, S. Surface modification of commercial cellulose acetate membranes using surface-initiated polymerization of 2-hydroxyethyl methacrylate to improve membrane surface biofouling resistance. J. Membr. Sci. 2011, 385–386, 30–39. [Google Scholar] [CrossRef]
- Idris, A.; Ismail, A.F.; Noordin, M.Y.; Shilton, S.J. Optimization of cellulose acetate hollow fiber reverse osmosis membrane production using Taguchi method. J. Membr. Sci. 2002, 205, 223–237. [Google Scholar] [CrossRef]
- Murthy, Z.V.P.; Gupta, S.K. Estimation of mass transfer coefficient using a combined nonlinear membrane transport and film theory model. Desalination 1997, 109, 39–49. [Google Scholar] [CrossRef]
- Connell, P.J.; Dickson, J.M. Modeling reverse osmosis separations with strong solute-membrane affinity at different temperatures using the finely porous model. J. Appl. Polym. Sci. 1988, 35, 1129–1148. [Google Scholar] [CrossRef]
- Jeong, B.-H.; Subramani, A.; Yan, Y.; Hoek, E.M. Antifouling thin film nanocomposite (TFNC) membranes for desalination and water reclamation. In Proceedings of the AIChE Annual Meeting and Fall Showcase, Cincinnati, OH, USA, 4 November 2005. [Google Scholar]
- Kim, A.; Moon, S.J.; Kim, J.H.; Patel, R. Review on thin-film nanocomposite membranes with various quantum dots for water treatments. J. Ind. Eng. Chem. 2023, 118, 19–32. [Google Scholar] [CrossRef]
- Wei, X.; Liu, Y.; Zheng, J.; Wang, X.; Xia, S.; Van der Bruggen, B. A critical review on thin-film nanocomposite membranes enabled by nanomaterials incorporated in different positions and with diverse dimensions: Performance comparison and mechanisms. J. Membr. Sci. 2022, 661, 120952. [Google Scholar] [CrossRef]
- Yu, Q.; Zhou, Y.; Gao, C. UiO-66 regulated thin-film nanocomposite membranes for water treatment. Desalination 2024, 587, 117917. [Google Scholar] [CrossRef]
- Güvensoy-Morkoyun, A.; Kürklü-Kocaoğlu, S.; Yıldırım, C.; Velioğlu, S.; Karahan, H.E.; Bae, T.-H.; Tantekin-Ersolmaz, Ş.B. Carbon nanotubes integrated into polyamide membranes by support pre-infiltration improve the desalination performance. Carbon 2021, 185, 546–557. [Google Scholar] [CrossRef]
- Jang, K.; Lim, J.; Lee, J.; Alayande, A.B.; Jung, B.; Kim, I.S. Fabrication of nanocomposite forward osmosis hollow fiber membrane for low reverse salt flux by modification of active layer via co-extrusion with graphene oxide. Desalination Water Treat. 2020, 183, 121–130. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, J.; Qi, H.; Li, H.; Li, S.; Su, B.; Han, L. 2D COFs interlayer manipulated interfacial polymerization for fabricating high performance reverse osmosis membrane. Sep. Purif. Technol. 2022, 303, 122198. [Google Scholar] [CrossRef]
- Bonnett, B.L.; Smith, E.D.; De La Garza, M.; Cai, M.; Haag, J.V.I.V.; Serrano, J.M.; Cornell, H.D.; Gibbons, B.; Martin, S.M.; Morris, A.J. PCN-222 Metal–Organic Framework Nanoparticles with Tunable Pore Size for Nanocomposite Reverse Osmosis Membranes. ACS Appl. Mater. Interfaces 2020, 12, 15765–15773. [Google Scholar] [CrossRef]
- Bakhodaye Dehghanpour, S.; Parvizian, F.; Vatanpour, V.; Razavi, M. PVA/TS-1 composite embedded thin-film nanocomposite reverse osmosis membrane with enhanced desalination performance and fouling resistance. Chem. Eng. Commun. 2023, 210, 1916–1939. [Google Scholar] [CrossRef]
- Kalash, K.; Kadhom, M.; Al-Furaiji, M. Thin film nanocomposite membranes filled with MCM-41 and SBA-15 nanoparticles for brackish water desalination via reverse osmosis. Environ. Technol. Innov. 2020, 20, 101101. [Google Scholar] [CrossRef]
- Shen, H.; Wang, S.; Li, Y.; Gu, K.; Zhou, Y.; Gao, C. MeSiCl3 functionalized polyamide thin film nanocomposite for low pressure RO membrane desalination. Desalination 2019, 463, 13–22. [Google Scholar] [CrossRef]
- Ee, L.Y.; Zhao, Q.; Gao, J.; Lim, C.K.; Xue, K.; Chin, S.Y.; Li, S.F.Y.; Chung, T.-S.; Chen, S.B. Cyclodextrin-modified layered double hydroxide thin-film nanocomposite desalination membrane for boron removal. Chem. Eng. J. 2023, 474, 145723. [Google Scholar] [CrossRef]
- Ge, M.; Jia, Z.; Yang, Y.; Dong, P.; Peng, C.; Zhang, X.; Dewil, R.; Zhao, Y.; Van der Bruggen, B.; Zhang, J. In situ assembly of graphitic carbon nitride/polypyrrole in a thin-film nanocomposite membrane with highly enhanced permeability and durability. Desalination 2023, 555, 116566. [Google Scholar] [CrossRef]
- Hu, X.; Sun, J.; Peng, R.; Tang, Q.; Luo, Y.; Yu, P. Novel thin-film composite reverse osmosis membrane with superior water flux using parallel magnetic field induced magnetic multi-walled carbon nanotubes. J. Clean. Prod. 2020, 242, 118423. [Google Scholar] [CrossRef]
- Ge, M.; Jia, Z.; Jiang, Q.; Ying, G.; Yang, Y.; Wu, S.; Goto, T.; Zhang, J. Highly-permeable and antifouling thin-film nanocomposite reverse osmosis membrane: Beneficial effects of 1D/2D g-C3N4 nanohybrids. J. Environ. Chem. Eng. 2022, 10, 108902. [Google Scholar] [CrossRef]
- Khan, A.U.H.; Khan, Z.; Aljundi, I.H. Improved hydrophilicity and anti-fouling properties of polyamide TFN membrane comprising carbide derived carbon. Desalination 2017, 420, 125–135. [Google Scholar] [CrossRef]
- Seyyed Shahabi, S.; Azizi, N.; Vatanpour, V.; Yousefimehr, N. Novel functionalized graphitic carbon nitride incorporated thin film nanocomposite membranes for high-performance reverse osmosis desalination. Sep. Purif. Technol. 2020, 235, 116134. [Google Scholar] [CrossRef]
- Hu, W.; Zha, X.; Liu, N.; Ma, S.; Liu, X.; Xia, M.; Yang, Y.; Chen, Y.; Liu, K.; Wang, D. Polyamide thin film nanocomposite membrane with internal void structure mediated by silica and SDS for highly permeable reverse-osmosis application. Compos. Commun. 2022, 30, 101092. [Google Scholar] [CrossRef]
- Wu, B.; Wang, S.; Wang, J.; Song, X.; Zhou, Y.; Gao, C. Facile Fabrication of High-Performance Thin Film Nanocomposite Desalination Membranes Imbedded with Alkyl Group-Capped Silica Nanoparticles. Polymers 2020, 12, 1415. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Q.; Gao, X.; Tian, X.; Wei, Y.; Cao, Z.; Guo, C.; Zhang, H.; Ma, Z.; Zhang, Y. Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater desalination properties of thin-film nanocomposite reverse osmosis membranes. Front. Env. Sci. Eng. 2019, 14, 6. [Google Scholar] [CrossRef]
- Pang, R.; Zhang, K. Fabrication of hydrophobic fluorinated silica-polyamide thin film nanocomposite reverse osmosis membranes with dramatically improved salt rejection. J. Colloid Interface Sci. 2018, 510, 127–132. [Google Scholar] [CrossRef]
- Zhai, Z.; Zhao, N.; Dong, W.; Li, P.; Sun, H.; Niu, Q.J. In Situ Assembly of a Zeolite Imidazolate Framework Hybrid Thin-Film Nanocomposite Membrane with Enhanced Desalination Performance Induced by Noria–Polyethyleneimine Codeposition. ACS Appl. Mater. Interfaces 2019, 11, 12871–12879. [Google Scholar] [CrossRef]
- Huang, H.; Qu, X.; Dong, H.; Zhang, L.; Chen, H. Role of NaA zeolites in the interfacial polymerization process towards a polyamide nanocomposite reverse osmosis membrane. RSC Adv. 2013, 3, 8203–8207. [Google Scholar] [CrossRef]
- Fathizadeh, M.; Aroujalian, A.; Raisi, A. Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. J. Membr. Sci. 2011, 375, 88–95. [Google Scholar] [CrossRef]
- Lind, M.L.; Ghosh, A.K.; Jawor, A.; Huang, X.; Hou, W.; Yang, Y.; Hoek, E.M.V. Influence of Zeolite Crystal Size on Zeolite-Polyamide Thin Film Nanocomposite Membranes. Langmuir 2009, 25, 10139–10145. [Google Scholar] [CrossRef] [PubMed]
- Zaokari, Y.; Persaud, A.; Ibrahim, A. Biomaterials for Adhesion in Orthopedic Applications: A Review. Eng. Regen. 2020, 1, 51–63. [Google Scholar] [CrossRef]
- Zhao, X.; Cavaco-Paulo, A.; Silva, C. 4—Biosynthesis of polyesters and their application on cellulosic fibers. In Advances in Textile Biotechnology (Second Edition); Cavaco-Paulo, A., Nierstrasz, V.A., Wang, Q., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 49–75. [Google Scholar]
- Silva, C.; Cavaco-Paulo, A.M.; Fu, J.J. 5—Enzymatic biofinishes for synthetic textiles. In Functional Finishes for Textiles; Paul, R., Ed.; Woodhead Publishing: Sawston, UK, 2015; pp. 153–191. [Google Scholar]
- Wu, H.; Liu, Y.; Zhang, H.; Wang, J.; Wang, Z. Rapid construction of cyclodextrin polyester layer on polyamide for preparing highly permeable reverse osmosis membrane. J. Membr. Sci. 2022, 660, 120862. [Google Scholar] [CrossRef]
- Sanei, Z.; Ghanbari, T.; Sharif, A. Polyethylene glycol-grafted graphene oxide nanosheets in tailoring the structure and reverse osmosis performance of thin film composite membrane. Sci. Rep. 2023, 13, 16940. [Google Scholar] [CrossRef]
- Nchoe, O.B.; Matshetshe, K.; As’ Ballim, M.; Tetyana, P.; Sikhwivhilu, K.; Moloto, N. Fabrication of AgS-incorporated polyamide thin film nanocomposite reverse osmosis membranes with antifouling properties. J. Appl. Polym. Sci. 2023, 140, e54524. [Google Scholar] [CrossRef]
- Ahmad, N.A.; Tam, L.J.; Goh, P.S.; Azman, N.; Ismail, A.F.; Jamaluddin, K.; Arthanareeswaran, G. Treatment of radionuclide-containing wastewater using thin film composite reverse osmosis membrane with spray coating-assembled titania nanosheets. J. Environ. Chem. Eng. 2023, 11, 110540. [Google Scholar] [CrossRef]
- Tong, Y.; Wei, Y.; Zhang, H.; Wang, L.; Li, L.; Xiao, F.; Gao, C.; Zhu, G. Fabrication of polyamide thin film nanocomposite membranes with enhanced desalination performance modified by silica nanoparticles formed in-situ polymerization of tetramethoxysilane. J. Environ. Chem. Eng. 2023, 11, 109415. [Google Scholar] [CrossRef]
- Qi, H.; Peng, Y.; Lv, X.; Xu, F.; Su, B.; Han, L. Synergetic effects of COFs interlayer regulation and surface modification on thin-film nanocomposite reverse osmosis membrane with high performance. Desalination 2023, 548, 116265. [Google Scholar] [CrossRef]
- Han, J.; Cho, Y.H.; Kong, H.; Han, S.; Park, H.B. Preparation and characterization of novel acetylated cellulose ether (ACE) membranes for desalination applications. J. Membr. Sci. 2013, 428, 533–545. [Google Scholar] [CrossRef]
- Elimelech, M.; Xiaohua, Z.; Childress, A.E.; Seungkwan, H. Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J. Membr. Sci. 1997, 127, 101–109. [Google Scholar] [CrossRef]
- Shafiq, M.; Sabir, A.; Islam, A.; Khan, S.M.; Gull, N.; Hussain, S.N.; Butt, M.T.Z. Cellulaose acetate based thin film nanocomposite reverse osmosis membrane incorporated with TiO2 nanoparticles for improved performance. Carbohydr. Polym. 2018, 186, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, H.; El Gendi, A.; Shalaby, M.S.; Amin, A.; El- Bayoumi, M.; Shaban, A.M. Influence of cellulose acetate polymer proportion on the fabrication of polyvinylchloride reverse osmosis blend membrane, experimental design. Desalination Water Treat. 2018, 116, 29–38. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Mahmoud, S.A.; Mohamed, A.A. Nanomaterials-modified reverse osmosis membranes: A comprehensive review. RSC Adv. 2024, 14, 18879–18906. [Google Scholar] [CrossRef] [PubMed]
- Lü, Z.; Ding, G.; Liu, M.; Yu, S.; Gao, C. Improved separation performance, anti-fouling property and durability of polyamide-based RO membrane by constructing a polyvinyl alcohol/polyquaternium-10 surface coating layer. Desalination 2023, 564, 116755. [Google Scholar] [CrossRef]
- Chen, D.; Feng, H.; Li, J. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem. Rev. 2012, 112, 6027–6053. [Google Scholar] [CrossRef]
- Xu, P.; Na, N. Study on Antibacterial Properties of Cellulose Acetate Seawater Desalination Reverse-Osmosis Membrane with Graphene Oxide. J. Coast. Res. 2020, 105, 246–251. [Google Scholar] [CrossRef]
- Shi, J.; Wu, W.; Xia, Y.; Li, Z.; Li, W. Confined interfacial polymerization of polyamide-graphene oxide composite membranes for water desalination. Desalination 2018, 441, 77–86. [Google Scholar] [CrossRef]
- Pang, R.; Zhang, K. A facile and viable approach to fabricate polyamide membranes functionalized with graphene oxide nanosheets. RSC Adv. 2017, 7, 53463–53471. [Google Scholar] [CrossRef]
- Chae, H.-R.; Lee, J.; Lee, C.-H.; Kim, I.-C.; Park, P.-K. Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. J. Membr. Sci. 2015, 483, 128–135. [Google Scholar] [CrossRef]
- Hughes, K.J.; Iyer, K.A.; Bird, R.E.; Ivanov, J.; Banerjee, S.; Georges, G.; Zhou, Q.A. Review of Carbon Nanotube Research and Development: Materials and Emerging Applications. ACS Appl. Nano Mater. 2024, 7, 18695–18713. [Google Scholar] [CrossRef]
- Rathinavel, S.; Priyadharshini, K.; Panda, D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater. Sci. Eng. B 2021, 268, 115095. [Google Scholar] [CrossRef]
- Azami, H.; Omidkhah, M.R. Vertically aligned carbon nanotube membrane: Synthesis, characterization and application in salt water desalination. Adv. Environ. Technol. 2020, 6, 173–189. [Google Scholar] [CrossRef]
- Yang, D.; Li, Q.; Shi, J.; Wang, J.; Liu, Q. Inner surface modification of 1.76 nm diameter (13,13) carbon nanotubes and the desalination behavior of its reverse osmosis membrane. New J. Chem. 2017, 41, 14325–14333. [Google Scholar] [CrossRef]
- Kim, H.J.; Choi, K.; Baek, Y.; Kim, D.-G.; Shim, J.; Yoon, J.; Lee, J.-C. High-Performance Reverse Osmosis CNT/Polyamide Nanocomposite Membrane by Controlled Interfacial Interactions. ACS Appl. Mater. Interfaces 2014, 6, 2819–2829. [Google Scholar] [CrossRef]
- Kordala, N.; Wyszkowski, M. Zeolite Properties, Methods of Synthesis, and Selected Applications. Molecules 2024, 29, 1069. [Google Scholar] [CrossRef]
- Marioryad, H.; Ghaedi, A.M.; Emadzadeh, D.; Baneshi, M.M.; Vafaei, A.; Lau, W.-J. A Thin Film Nanocomposite Reverse Osmosis Membrane Incorporated with S-Beta Zeolite Nanoparticles for Water Desalination. ChemistrySelect 2020, 5, 1972–1975. [Google Scholar] [CrossRef]
- Safarpour, M.; Vatanpour, V.; Khataee, A.; Zarrabi, H.; Gholami, P.; Yekavalangi, M.E. High flux and fouling resistant reverse osmosis membrane modified with plasma treated natural zeolite. Desalination 2017, 411, 89–100. [Google Scholar] [CrossRef]
- Dong, H.; Zhao, L.; Zhang, L.; Chen, H.; Gao, C.; Winston Ho, W.S. High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination. J. Membr. Sci. 2015, 476, 373–383. [Google Scholar] [CrossRef]
- Janjua, T.I.; Cao, Y.; Kleitz, F.; Linden, M.; Yu, C.; Popat, A. Silica nanoparticles: A review of their safety and current strategies to overcome biological barriers. Adv. Drug Deliv. Rev. 2023, 203, 115115. [Google Scholar] [CrossRef]
- Huang, Y.; Li, P.; Zhao, R.; Zhao, L.; Liu, J.; Peng, S.; Fu, X.; Wang, X.; Luo, R.; Wang, R.; et al. Silica nanoparticles: Biomedical applications and toxicity. Biomed. Pharmacother. 2022, 151, 113053. [Google Scholar] [CrossRef]
- Li, X.; Liu, F.; Abdollahpour, A.; Jazebizadeh, M.H.; Wang, J.; Semiromi, D. An experimental evaluation of polyamide membrane-silica nanoparticles for the concentration of pomegranate juice. Food Biosci. 2023, 51, 102217. [Google Scholar] [CrossRef]
- Li, X.; Zheng, F.; Mohammadi, R.; Jazebizadeh, M.H.; Semiromi, D. Performance evaluation of polyamide reverse osmosis membranes incorporated silica nanoparticles for concentrating peach juice: An invitro evaluation. Food Biosci. 2022, 48, 101814. [Google Scholar] [CrossRef]
- Shen, H.; Wang, S.; Xu, H.; Zhou, Y.; Gao, C. Preparation of polyamide thin film nanocomposite membranes containing silica nanoparticles via an in-situ polymerization of SiCl4 in organic solution. J. Membr. Sci. 2018, 565, 145–156. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhao, D.L.; Chung, T.-S.; Chen, S.B. In-situ growth of layered double hydroxides (LDHs) onto thin-film composite membranes for enhanced reverse osmosis performance. Desalination 2023, 547, 116235. [Google Scholar] [CrossRef]
- Liu, W.-L.; Gao, J.-M.; Huang, Z.-H.; Zhang, H.; Li, M.-P.; Zhang, X.; Ma, X.-H.; Xu, Z.-L. Layered double hydroxide modified polyamide reverse osmosis membrane for improved permeability. Desalination Water Treat. 2020, 203, 35–46. [Google Scholar] [CrossRef]
- Mutharasi, Y.; Zhang, Y.; Weber, M.; Maletzko, C.; Chung, T.-S. Novel reverse osmosis membranes incorporated with Co-Al layered double hydroxide (LDH) with enhanced performance for brackish water desalination. Desalination 2021, 498, 114740. [Google Scholar] [CrossRef]
- Hirsch, U.M.; Teuscher, N.; Rühl, M.; Heilmann, A. Plasma-enhanced magnetron sputtering of silver nanoparticles on reverse osmosis membranes for improved antifouling properties. Surf. Interfaces 2019, 16, 1–7. [Google Scholar] [CrossRef]
- Manjumeena, R.; Duraibabu, D.; Sudha, J.; Kalaichelvan, P.T. Biogenic nanosilver incorporated reverse osmosis membrane for antibacterial and antifungal activities against selected pathogenic strains: An enhanced eco-friendly water disinfection approach. J. Environ. Sci. Health Part A 2014, 49, 1125–1133. [Google Scholar] [CrossRef]
- Zou, X.; Zhu, T.; Tang, J.; Gan, W.; Nong, G. Doping silver nanoparticles into reverse osmosis membranes for antibacterial properties. E-Polymers 2023, 23, 20228087. [Google Scholar] [CrossRef]
- Dong, C.; Wang, Z.; Wu, J.; Wang, Y.; Wang, J.; Wang, S. A green strategy to immobilize silver nanoparticles onto reverse osmosis membrane for enhanced anti-biofouling property. Desalination 2017, 401, 32–41. [Google Scholar] [CrossRef]
- Bangar, S.P.; Whiteside, W.S.; Ashogbon, A.O.; Kumar, M. Recent advances in thermoplastic starches for food packaging: A review. Food Packag. Shelf Life 2021, 30, 100743. [Google Scholar] [CrossRef]
- Singh, R.; kumar, N.; Mehrotra, T.; Bisaria, K.; Sinha, S. Chapter 9—Environmental hazards and biodegradation of plastic waste: Challenges and future prospects. In Bioremediation for Environmental Sustainability; Saxena, G., Kumar, V., Shah, M.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 193–214. [Google Scholar]
- Samnani, M.; Rathod, H.; Raval, H. A novel reverse osmosis membrane modified by polyvinyl alcohol with maleic anhydride crosslinking. Mater. Res. Express 2018, 5, 035304. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, K.; Yan, F.; Shi, Y.; Yu, P.; Yu, S.; Li, S.; Gao, C. Enhancing the performance of aromatic polyamide reverse osmosis membrane by surface modification via covalent attachment of polyvinyl alcohol (PVA). J. Membr. Sci. 2016, 501, 209–219. [Google Scholar] [CrossRef]
- Liu, M.; Chen, Q.; Wang, L.; Yu, S.; Gao, C. Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA). Desalination 2015, 367, 11–20. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, J.; Liu, M.; Huang, H.; Zhang, X.; Wei, Y. Polydopamine-based functional materials and their applications in energy, environmental, and catalytic fields: State-of-the-art review. Chem. Eng. J. 2020, 387, 124019. [Google Scholar] [CrossRef]
- Song, Y.; Chen, D.; Liu, D.; Hu, R.; Zhang, Y.; Hu, Y.; Song, X.; Gao, F.; Xie, Z.; Kang, J.; et al. In Situ Interfacial Polymerized Arginine-Doped Polydopamine Thin-Film Nanocomposite Membranes for High-Separation and Antifouling Reverse Osmosis. ACS Appl. Mater. Interfeacs 2023, 15, 56293–56304. [Google Scholar] [CrossRef]
- Shen, Q.; Lin, Y.; Ueda, T.; Zhang, P.; Jia, Y.; Istirokhatun, T.; Song, Q.; Guan, K.; Yoshioka, T.; Matsuyama, H. The underlying mechanism insights into support polydopamine decoration toward ultrathin polyamide membranes for high-performance reverse osmosis. J. Membr. Sci. 2022, 646, 120269. [Google Scholar] [CrossRef]
- Wang, J.; Guo, H.; Shi, X.; Yao, Z.; Qing, W.; Liu, F.; Tang, C.Y. Fast polydopamine coating on reverse osmosis membrane: Process investigation and membrane performance study. J. Colloid Interface Sci. 2019, 535, 239–244. [Google Scholar] [CrossRef]
- Karami, P.; Khorshidi, B.; Shamaei, L.; Beaulieu, E.; Soares, J.B.P.; Sadrzadeh, M. Nanodiamond-Enabled Thin-Film Nanocomposite Polyamide Membranes for High-Temperature Water Treatment. ACS Appl. Mater. Interfeacs 2020, 12, 53274–53285. [Google Scholar] [CrossRef]
- Zarshenas, K.; Dou, H.; Habibpour, S.; Yu, A.; Chen, Z. Thin Film Polyamide Nanocomposite Membrane Decorated by Polyphenol-Assisted Ti3C2Tx MXene Nanosheets for Reverse Osmosis. ACS Appl. Mater. Interfeacs 2022, 14, 1838–1849. [Google Scholar] [CrossRef]
- Wen, Y.; Dai, R.; Li, X.; Zhang, X.; Cao, X.; Wu, Z.; Lin, S.; Tang, C.Y.; Wang, Z. Metal-organic framework enables ultraselective polyamide membrane for desalination and water reuse. Sci. Adv. 2022, 8, eabm4149. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Zhang, X.; Li, X.; Wang, Z.; Tang, C.Y. Metal–Organic Framework Nanosheets for Thin-Film Composite Membranes with Enhanced Permeability and Selectivity. ACS Appl. Nano Mater. 2020, 3, 9238–9248. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Zhang, K. Influence of hydrophilic carbon dots on polyamide thin film nanocomposite reverse osmosis membranes. J. Membr. Sci. 2017, 537, 42–53. [Google Scholar] [CrossRef]
- Ng, Z.C.; Lau, W.J.; Lai, G.S.; Meng, J.; Gao, H.; Ismail, A.F. Facile fabrication of polyethyleneimine interlayer-assisted graphene oxide incorporated reverse osmosis membranes for water desalination. Desalination 2022, 526, 115502. [Google Scholar] [CrossRef]
- Al-Gamal, A.Q.; Falath, W.S.; Saleh, T.A. Enhanced efficiency of polyamide membranes by incorporating TiO2-Graphene oxide for water purification. J. Mol. Liq. 2021, 323, 114922. [Google Scholar] [CrossRef]
- Kim, H.J.; Lim, M.-Y.; Jung, K.H.; Kim, D.-G.; Lee, J.-C. High-performance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides. J. Mater. Chem. A 2015, 3, 6798–6809. [Google Scholar] [CrossRef]
- Fajardo-Diaz, J.L.; Takeuchi, K.; Morelos-Gomez, A.; Cruz-Silva, R.; Yamanaka, A.; Tejima, S.; Izu, K.; Saito, S.; Ito, I.; Maeda, J.; et al. Enhancing boron rejection in low-pressure reverse osmosis systems using a cellulose fiber–carbon nanotube nanocomposite polyamide membrane: A study on chemical structure and surface morphology. J. Membr. Sci. 2023, 679, 121691. [Google Scholar] [CrossRef]
- Hassan, F.; Mushtaq, R.; Saghar, S.; Younas, U.; Pervaiz, M.; Aljuwayid, A.m.; Habila, M.A.; Sillanpaa, M. Fabrication of graphene-oxide and zeolite loaded polyvinylidene fluoride reverse osmosis membrane for saltwater remediation. Chemosphere 2022, 307, 136012. [Google Scholar] [CrossRef]
- Yu, L.; Zhou, W.; Li, Y.; Zhou, Q.; Xu, H.; Gao, B.; Wang, Z. Antibacterial Thin-Film Nanocomposite Membranes Incorporated with Graphene Oxide Quantum Dot-Mediated Silver Nanoparticles for Reverse Osmosis Application. ACS Sustain. Chem. Eng. 2019, 7, 8724–8734. [Google Scholar] [CrossRef]
- Ng, Z.C.; Lau, W.J.; Ismail, A.F. GO/PVA-integrated TFN RO membrane: Exploring the effect of orientation switching between PA and GO/PVA and evaluating the GO loading impact. Desalination 2020, 496, 114538. [Google Scholar] [CrossRef]
- Rana, H.H.; Saha, N.K.; Jewrajka, S.K.; Reddy, A.V.R. Low fouling and improved chlorine resistant thin film composite reverse osmosis membranes by cerium(IV)/polyvinyl alcohol mediated surface modification. Desalination 2015, 357, 93–103. [Google Scholar] [CrossRef]
- Park, C.; Lei, J.; Kim, J.-O. Mitigation of biofouling with co-deposition of polydopamine and curcumin on the surface of a thin-film composite membrane. Chemosphere 2023, 310, 136910. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, Z.; He, Q.; Jackson, J.; Faria, A.F.; Zhang, W.; Song, D.; Ma, J.; Sun, Z. Facile preparation of anti-biofouling reverse osmosis membrane embedded with polydopamine-nano copper functionality: Performance and mechanism. J. Membr. Sci. 2022, 658, 120721. [Google Scholar] [CrossRef]
- Maddah, H.; Chogle, A. Biofouling in reverse osmosis: Phenomena, monitoring, controlling and remediation. Appl. Water Sci. 2017, 7, 2637–2651. [Google Scholar] [CrossRef]
- Jiang, S.; Li, Y.; Ladewig, B.P. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 2017, 595, 567–583. [Google Scholar] [CrossRef]
- Suresh, D.; Goh, P.S.; Ismail, A.F.; Wong, T.W. Insights into biofouling in reverse osmosis membrane: A comprehensive review on techniques for biofouling assay. J. Environ. Chem. Eng. 2023, 11, 110317. [Google Scholar] [CrossRef]
- Hoek, E.M.V.; Weigand, T.M.; Edalat, A. Reverse osmosis membrane biofouling: Causes, consequences and countermeasures. npj Clean Water 2022, 5, 45. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Amin, S.; Mohamed, A.A. Fouling in reverse osmosis membranes: Monitoring, characterization, mitigation strategies and future directions. Heliyon 2023, 9, e14908. [Google Scholar] [CrossRef]
- Long, T.; Wang, Z.; Luukkanen, S.; Yang, W.; Yang, C.; Deng, S.; Gu, T. Effect of environmentally friendly reverse osmosis scale inhibitors on inorganic calcium carbonate scale. Colloids Surf. A Physicochem. Eng. Asp. 2024, 702, 134883. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Y.; Hou, L.-a.; Takizawa, S.; Yang, Y. Insights into dynamic evolution of combined scaling-biofouling in reverse osmosis. J. Membr. Sci. 2024, 692, 122295. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Zhang, T.; Geng, Z.; Cheng, W. Improving permselectivity of the polyamide reverse osmosis membrane by a controlled-release sulfate radical modification. Sep. Purif. Technol. 2023, 319, 124067. [Google Scholar] [CrossRef]
- Hao, Z.; Zhao, Z.; Wu, H.; Zha, Z.; Tian, X.; Xie, L.; Zhao, S. Sulfonated Reverse Osmosis Membrane with Simultaneous Mitigation of Silica Scaling and Organic Fouling. Ind. Eng. Chem. Res. 2023, 62, 11646–11655. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.; Li, H.; Lu, P.; Yu, Y.; Zhang, X.; Wang, Y.; Xia, J.; He, D.; Li, Y. Diazotized polyamide membranes on commercial polyethylene textile with simultaneously improved water permeance, salt rejections and anti-fouling. Desalination 2023, 549, 116307. [Google Scholar] [CrossRef]
- Xie, T.; Wang, H.; Chen, K.; Li, F.; Zhao, S.; Sun, H.; Yang, X.; Hou, Y.; Li, P.; Niu, Q.J. High-performance polyethyleneimine based reverse osmosis membrane fabricated via spin-coating technology. J. Membr. Sci. 2023, 668, 121248. [Google Scholar] [CrossRef]
- Miao, Y.; Wang, C.; Wang, J.; Wang, Z. A novel UV-initiated modification process for fabricating high-performance TFC RO membrane. J. Membr. Sci. 2023, 666, 121158. [Google Scholar] [CrossRef]
- Suresh, D.; Goh, P.S.; Ismail, A.F.; Mansur, S.B.; Wong, K.C.; Asraf, M.H.; Malek, N.A.N.N.; Wong, T.W. Complexation of tannic acid/silver nanoparticles on polyamide thin film composite reverse osmosis membrane for enhanced chlorine resistance and anti-biofouling properties. Desalination 2022, 543, 116107. [Google Scholar] [CrossRef]
- Armendáriz-Ontiveros, M.M.; Villegas-Peralta, Y.; Madueño-Moreno, J.E.; Álvarez-Sánchez, J.; Dévora-Isiordia, G.E.; Sánchez-Duarte, R.G.; Madera-Santana, T.J. Modification of Thin Film Composite Membrane by Chitosan–Silver Particles to Improve Desalination and Anti-Biofouling Performance. Membranes 2022, 12, 851. [Google Scholar] [CrossRef]
- Li, S.-L.; Wang, J.; Guan, Y.; Miao, J.; Zhai, R.; Wu, J.; Hu, Y. Construction of pseudo-zwitterionic polyamide RO membranes surface by grafting positively charged small molecules. Desalination 2022, 537, 115892. [Google Scholar] [CrossRef]
- Park, S.-J.; Lee, M.-S.; Choi, W.; Lee, J.-H. Biocidal surfactant-assisted fabrication of thin film composite membranes with excellent and durable anti-biofouling performance. Chem. Eng. J. 2022, 431, 134114. [Google Scholar] [CrossRef]
- Nnadiekwe, C.C.; Abdulazeez, I.; Matin, A.; Khaled, M.M.; Khan, M.; Anand, D.; Ahmad, I. Enhanced Filtration Characteristics and Reduced Bacterial Attachment for Reverse Osmosis Membranes Modified by a Facile Method. ACS ES&T Water 2021, 1, 1136–1144. [Google Scholar] [CrossRef]
- Lu, J.; Yang, B.; Lu, D.; Qian, Y.; Ye, T.; Li, G.; Wang, J.; Yao, Z.; Jiao, L.; Zhang, L. Secondary interfacial reaction of p-aminodiphenylamine enables polyamide reverse osmosis membrane with enhanced and regenerative chlorine resistance. J. Membr. Sci. 2023, 688, 122148. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Q.; Xue, W.; Ding, W.; Zhang, K.; Wang, S. An economical and simple method for preparing highly permeable and chlorine-resistant reverse osmosis membranes with potential commercial applications. RSC Adv. 2023, 13, 32083–32096. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, L.; Xie, X.; Sun, Q.; Feng, J.; Dong, H.; Song, N.; Yu, L.; Dong, L. Self-healing polyamide reverse osmosis membranes with temperature-responsive intelligent nanocontainers for chlorine resistance. Front. Chem. Sci. Eng. 2023, 17, 1183–1195. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Y.; Liang, F.; Zhu, Y.; Jin, J. Chlorine resistant polyamide desalination membrane prepared via organic-organic interfacial polymerization. J. Membr. Sci. 2023, 672, 121444. [Google Scholar] [CrossRef]
- Li, D.; Lu, H.; Yan, X.; Wan, H.; Yan, G.; Zhang, G. Preparation of chlorine resistant thin-film-composite reverse-osmosis polyamide membranes with tri-acyl chloride containing thioether units. J. Appl. Polym. Sci. 2023, 140, e53518. [Google Scholar] [CrossRef]
- Shalaby, M.S.; Abdallah, H.; Wilken, R.; Christoph, S.; Shaban, A.M. Surface Treatment by Physical Irradiation for Antifouling, Chlorine-Resistant RO Membranes. Membranes 2023, 13, 227. [Google Scholar] [CrossRef]
- Vatanpour, V.; Iranpour Boroujeni, N.; Pasaoglu, M.E.; Mahmodi, G.; Mohammadikish, M.; Kazemi-Andalib, F.; Koyuncu, I. Novel infinite coordination polymer (ICP) modified thin-film polyamide nanocomposite membranes for simultaneous enhancement of antifouling and chlorine-resistance performance. J. Membr. Sci. 2022, 647, 120305. [Google Scholar] [CrossRef]
- Idrees, M.F.; Tariq, U. Enhancing chlorine resistance in polyamide membranes with surface & structure modification strategies. Water Supply 2021, 22, 1199–1215. [Google Scholar] [CrossRef]
- Sharabati, J.A.D.; Erkoc-Ilter, S.; Guclu, S.; Koseoglu-Imer, D.Y.; Unal, S.; Menceloglu, Y.Z.; Ozturk, I.; Koyuncu, I. Zwitterionic polysiloxane-polyamide hybrid active layer for high performance and chlorine resistant TFC desalination membranes. Sep. Purif. Technol. 2022, 282, 119965. [Google Scholar] [CrossRef]
- Khayet, M.; Aytaç, E.; Matsuura, T. Bibliometric and sentiment analysis with machine learning on the scientific contribution of Professor Srinivasa Sourirajan. Desalination 2022, 543, 116095. [Google Scholar] [CrossRef]
- Hilal, N. Professor Takeshi Matsuura: An Inspiration to Young Membranologists. J. Membr. Sci. Res. 2020, 6, 10. [Google Scholar] [CrossRef]
- Tang, C.Y.; Kwon, Y.-N.; Leckie, J.O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry. Desalination 2009, 242, 149–167. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Jeong, B.-H.; Huang, X.; Hoek, E.M.V. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. J. Membr. Sci. 2008, 311, 34–45. [Google Scholar] [CrossRef]
- Choi, W.; Choi, J.; Bang, J.; Lee, J.-H. Layer-by-Layer Assembly of Graphene Oxide Nanosheets on Polyamide Membranes for Durable Reverse-Osmosis Applications. ACS Appl. Mater. Interfeacs 2013, 5, 12510–12519. [Google Scholar] [CrossRef]
- Kwak, S.-Y.; Kim, S.H.; Kim, S.S. Hybrid Organic/Inorganic Reverse Osmosis (RO) Membrane for Bactericidal Anti-Fouling. 1. Preparation and Characterization of TiO2 Nanoparticle Self-Assembled Aromatic Polyamide Thin-Film-Composite (TFC) Membrane. Environ. Sci. Technol. 2001, 35, 2388–2394. [Google Scholar] [CrossRef]
- Freger, V.; Gilron, J.; Belfer, S. TFC polyamide membranes modified by grafting of hydrophilic polymers: An FT-IR/AFM/TEM study. J. Membr. Sci. 2002, 209, 283–292. [Google Scholar] [CrossRef]
- Bibliometrix. FAQ. Available online: https://www.bibliometrix.org/home/index.php/faq (accessed on 23 July 2024).
- Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef]
- Petersen, R.J. Composite reverse osmosis and nanofiltration membranes. J. Membr. Sci. 1993, 83, 81–150. [Google Scholar] [CrossRef]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef]
- Freger, V. Nanoscale Heterogeneity of Polyamide Membranes Formed by Interfacial Polymerization. Langmuir 2003, 19, 4791–4797. [Google Scholar] [CrossRef]
- Rana, D.; Matsuura, T. Surface Modifications for Antifouling Membranes. Chem. Rev. 2010, 110, 2448–2471. [Google Scholar] [CrossRef] [PubMed]
- Geise, G.M.; Park, H.B.; Sagle, A.C.; Freeman, B.D.; McGrath, J.E. Water permeability and water/salt selectivity tradeoff in polymers for desalination. J. Membr. Sci. 2011, 369, 130–138. [Google Scholar] [CrossRef]
- Lee, K.P.; Arnot, T.C.; Mattia, D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J. Membr. Sci. 2011, 370, 1–22. [Google Scholar] [CrossRef]
- Vrijenhoek, E.M.; Hong, S.; Elimelech, M. Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J. Membr. Sci. 2001, 188, 115–128. [Google Scholar] [CrossRef]
- Werber, J.R.; Deshmukh, A.; Elimelech, M. The Critical Need for Increased Selectivity, Not Increased Water Permeability, for Desalination Membranes. Environ. Sci. Tech. Lett. 2016, 3, 112–120. [Google Scholar] [CrossRef]
- Zhao, H.; Qiu, S.; Wu, L.; Zhang, L.; Chen, H.; Gao, C. Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. J. Membr. Sci. 2014, 450, 249–256. [Google Scholar] [CrossRef]
- Springer. Writing a Journal Manuscript—Title, Abstract and Keywords. Available online: https://www.springer.com/gp/authors-editors/authorandreviewertutorials/writing-a-journal-manuscript/title-abstract-and-keywords/10285522 (accessed on 15 July 2024).
- Schilhan, L.; Kaier, C.; Lackner, K. Increasing visibility and discoverability of scholarly publications with academic search engine optimization. Insights 2021, 34. [Google Scholar] [CrossRef]
- Smith, G.D. ‘Getting the most out from keywords’. J. Clin. Nurs. 2021, 30, e23–e24. [Google Scholar] [CrossRef]
membrane fabrication, membrane preparation, membrane synthesis, interfacial polymerization *, |
novel membrane fabrication, state-of-the-art membrane, nanocomposite membrane fabrication, |
Thin-film composite membrane fabrication, phenylenediamine and trimesoyl chloride, |
membrane engineering, polyamide membrane, cellulose acetate membrane, robust membrane, |
hollow fiber membrane, surface coating *, surface modification *, nanomaterial deposition *, |
functionalized nanomaterials *, layer-by-layer *, surface grafting *, membrane crosslinking, |
surface modified reverse osmosis membrane, polyamide layer regeneration *, |
polyamide layer regenerated *, polyamide layer reformation *, polyamide layer reformed *, |
tailored *, modification *, coated *, modified *, engineered surface * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aytaç, E.; Khanzada, N.K.; Ibrahim, Y.; Khayet, M.; Hilal, N. Reverse Osmosis Membrane Engineering: Multidirectional Analysis Using Bibliometric, Machine Learning, Data, and Text Mining Approaches. Membranes 2024, 14, 259. https://doi.org/10.3390/membranes14120259
Aytaç E, Khanzada NK, Ibrahim Y, Khayet M, Hilal N. Reverse Osmosis Membrane Engineering: Multidirectional Analysis Using Bibliometric, Machine Learning, Data, and Text Mining Approaches. Membranes. 2024; 14(12):259. https://doi.org/10.3390/membranes14120259
Chicago/Turabian StyleAytaç, Ersin, Noman Khalid Khanzada, Yazan Ibrahim, Mohamed Khayet, and Nidal Hilal. 2024. "Reverse Osmosis Membrane Engineering: Multidirectional Analysis Using Bibliometric, Machine Learning, Data, and Text Mining Approaches" Membranes 14, no. 12: 259. https://doi.org/10.3390/membranes14120259
APA StyleAytaç, E., Khanzada, N. K., Ibrahim, Y., Khayet, M., & Hilal, N. (2024). Reverse Osmosis Membrane Engineering: Multidirectional Analysis Using Bibliometric, Machine Learning, Data, and Text Mining Approaches. Membranes, 14(12), 259. https://doi.org/10.3390/membranes14120259