Comparing Antibody Responses to Homologous vs. Heterologous COVID-19 Vaccination: A Cross-Sectional Analysis in an Urban Bangladeshi Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Study Setting
2.4. Data Collection
2.5. Study Definitions
2.5.1. Homologous Booster Vaccination
2.5.2. Heterologous Booster Vaccination
2.6. Assessment Tools and Variables
2.7. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Impact of COVID-19 on People’s Livelihoods, Their Health and Our Food Systems; Joint Statement by ILO, FAO, IFAD and WHO; World Health Organization: Geneva, Switzerland, 2020; Volume 13. [Google Scholar]
- Ndwandwe, D.; Wiysonge, C.S. COVID-19 vaccines. Curr. Opin. Immunol. 2021, 71, 111–116. [Google Scholar] [CrossRef]
- Li, M.; Wang, H.; Tian, L.; Pang, Z.; Yang, Q.; Huang, T.; Fan, J.; Song, L.; Tong, Y.; Fan, H. COVID-19 vaccine development: Milestones, lessons and prospects. Signal Transduct. Target. Ther. 2022, 7, 146. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Lou, F.; Li, M.; Pang, Z.; Jiang, L.; Guan, L.; Tian, L.; Hu, J.; Fan, J.; Fan, H. Understanding the secret of SARS-CoV-2 variants of concern/interest and immune escape. Front. Immunol. 2021, 12, 744242. [Google Scholar] [CrossRef]
- Naaber, P.; Tserel, L.; Kangro, K.; Sepp, E.; Jürjenson, V.; Adamson, A.; Haljasmägi, L.; Rumm, A.P.; Maruste, R.; Kärner, J.; et al. Dynamics of antibody response to BNT162b2 vaccine after six months: A longitudinal prospective study. Lancet Reg. Health–Eur. 2021, 10, 100208. [Google Scholar] [CrossRef] [PubMed]
- Feikin, D.R.; Higdon, M.M.; Abu-Raddad, L.J.; Andrews, N.; Araos, R.; Goldberg, Y.; Groome, M.J.; Huppert, A.; O′Brien, K.L.; Smith, P.G.; et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: Results of a systematic review and meta-regression. Lancet 2022, 399, 924–944. [Google Scholar] [CrossRef] [PubMed]
- Pooley, N.; Abdool Karim, S.S.; Combadière, B.; Ooi, E.E.; Harris, R.C.; El Guerche Seblain, C.; Kisomi, M.; Shaikh, N. Durability of vaccine-induced and natural immunity against COVID-19: A narrative review. Infect. Dis. Ther. 2023, 12, 367–387. [Google Scholar] [CrossRef]
- Zulfiker, M.S.; Kabir, N.; Biswas, A.A.; Zulfiker, S.; Uddin, M.S. Analyzing the public sentiment on COVID-19 vaccination in social media: Bangladesh context. Array 2022, 15, 100204. [Google Scholar] [CrossRef]
- Nazmunnahar Ahamed, B.; Haque, M.A.; Tanbir, M.; Roknuzzaman, A.; Sarker, R.; Rabiul Islam, M. COVID-19 vaccination success in Bangladesh: Key strategies were prompt response, early drives for vaccines, and effective awareness campaigns. Health Sci. Rep. 2023, 6, e1281. [Google Scholar] [CrossRef] [PubMed]
- Hayat, M.; Uzair, M.; Ali Syed, R.; Arshad, M.; Bashir, S. Status of COVID-19 vaccination around South Asia. Hum. Vaccines Immunother. 2022, 18, 2016010. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Vaccination Dashboard for Bangladesh [Internet]. GoB. Available online: https://dashboard.dghs.gov.bd/pages/covid19-vaccination-update.php (accessed on 20 August 2024).
- Menni, C.; May, A.; Polidori, L.; Louca, P.; Wolf, J.; Capdevila, J.; Hu, C.; Ourselin, S.; Steves, C.J.; Valdes, A.M.; et al. COVID-19 vaccine waning and effectiveness and side-effects of boosters: A prospective community study from the ZOE COVID Study. Lancet Infect. Dis. 2022, 22, 1002–1010. [Google Scholar] [CrossRef]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.M.; et al. COVID-19 vaccine effectiveness against the Omicron (B. 1.1. 529) variant. N. Engl. J. Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef]
- Dadras, O.; SeyedAlinaghi, S.; Karimi, A.; Shojaei, A.; Amiri, A.; Mahdiabadi, S.; Fakhfouri, A.; Razi, A.; Mojdeganlou, H.; Mojdeganlou, P.; et al. COVID-19 vaccines’ protection over time and the need for booster doses; a systematic review. Arch. Acad. Emerg. Med. 2022, 10, e53. [Google Scholar] [PubMed]
- Sarkar, S.K.; Morshed, M.M. Spatial priority for COVID-19 vaccine rollout against limited supply. Heliyon 2021, 7, e08419. [Google Scholar] [CrossRef] [PubMed]
- Chiu, N.-C.; Chi, H.; Tu, Y.-K.; Huang, Y.-N.; Tai, Y.-L.; Weng, S.-L.; Chang, L.; Huang, D.T.-N.; Huang, F.-Y.; Lin, C.-Y. To mix or not to mix? A rapid systematic review of heterologous prime–boost COVID-19 vaccination. Expert Rev. Vaccines 2021, 20, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Atmar, R.L.; Lyke, K.E.; Deming, M.E.; Jackson, L.A.; Branche, A.R.; El Sahly, H.M.; Rostad, C.A.; Martin, J.M.; Johnston, C.; Rupp, R.E.; et al. Heterologous SARS-CoV-2 booster vaccinations–preliminary report. medRxiv 2021. [Google Scholar] [CrossRef]
- Clemens, S.A.C.; Weckx, L.; Clemens, R.; Mendes, A.V.A.; Souza, A.R.; Silveira, M.B.; da Guarda, S.N.F.; de Nobrega, M.M.; Pinto, M.I.d.M.; Gonzalez, I.G.S.; et al. Heterologous versus homologous COVID-19 booster vaccination in previous recipients of two doses of CoronaVac COVID-19 vaccine in Brazil (RHH-001): A phase 4, non-inferiority, single blind, randomised study. Lancet 2022, 399, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Atmar, R.L.; Lyke, K.E.; Deming, M.E.; Jackson, L.A.; Branche, A.R.; Sahly, H.M.E.; Rostad, C.A.; Martin, J.M.; Johnston, C.; Rupp, R.E.; et al. Homologous and Heterologous COVID-19 Booster Vaccinations. N. Engl. J. Med. 2022, 386, 1046–1057. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Peng, Z.; Si, S.; Alifu, X.; Zhou, H.; Chi, P.; Zhuang, Y.; Mo, M.; Yu, Y. Immunogenicity and safety of homologous and heterologous prime–boost immunization with COVID-19 vaccine: Systematic review and meta-analysis. Vaccines 2022, 10, 798. [Google Scholar] [CrossRef] [PubMed]
- Higdon, M.M.; Baidya, A.; Walter, K.K.; Patel, M.K.; Issa, H.; Espié, E.; Feikin, D.R.; Knoll, M.D. Duration of effectiveness of vaccination against COVID-19 caused by the omicron variant. Lancet Infect. Dis. 2022, 22, 1114–1116. [Google Scholar] [CrossRef]
- Favresse, J.; Bayart, J.-L.; Mullier, F.; Elsen, M.; Eucher, C.; Van Eeckhoudt, S.; Roy, T.; Wieers, G.; Laurent, C.; Dogné, J.M.; et al. Antibody titres decline 3-month post-vaccination with BNT162b2. Emerg. Microbes Infect. 2021, 10, 1495–1498. [Google Scholar] [CrossRef]
- Erice, A.; Varillas-Delgado, D.; Caballero, C. Decline of antibody titres 3 months after two doses of BNT162b2 in non-immunocompromised adults. Clin. Microbiol. Infect. 2022, 28, 139.e1–e4. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Trougakos, I.P.; Karalis, V.; Ntanasis-Stathopoulos, I.; Gumeni, S.; Apostolakou, F.; Gumeni, S.; Sklirou, A.D.; Skourti, S.; Gavriatopoulou, M.; et al. Kinetics of anti-SARS-CoV-2 antibody responses 3 months post complete vaccination with BNT162b2: A prospective study in 283 health workers. Cells 2021, 10, 1942. [Google Scholar] [CrossRef] [PubMed]
- Notarte, K.I.; Guerrero-Arguero, I.; Velasco, J.V.; Ver, A.T.; Santos de Oliveira, M.H.; Catahay, J.A.; Khan, M.S.; Pastrana, A.; Juszczyk, G.; Torrelles, J.B. Characterization of the significant decline in humoral immune response six months post-SARS-CoV-2 mRNA vaccination: A systematic review. J. Med. Virol. 2022, 94, 2939–2961. [Google Scholar] [CrossRef]
- Au, W.Y.; Cheung, P.P.-H. Effectiveness of heterologous and homologous COVID-19 vaccine regimens: Living systematic review with network meta-analysis. BMJ 2022, 377, e069989. [Google Scholar] [CrossRef]
- Yelin, I.; Katz, R.; Herzel, E.; Berman-Zilberstein, T.; Ben-Tov, A.; Kuint, J.; Gazit, S.; Patalon, T.; Chodick, G.; Kishony, R. Associations of the BNT162b2 COVID-19 vaccine effectiveness with patient age and comorbidities. medRxiv 2021. [Google Scholar] [CrossRef]
- Fonseca, M.H.G.; de Souza, T.d.F.G.; de Carvalho Araújo, F.M.; de Andrade, L.O.M. Dynamics of antibody response to CoronaVac vaccine. J. Med. Virol. 2022, 94, 2139–2148. [Google Scholar] [CrossRef] [PubMed]
- Lustig, Y.; Sapir, E.; Regev-Yochay, G.; Cohen, C.; Fluss, R.; Olmer, L.; Indenbaum, V.; Mandelboim, M.; Doolman, R.; Amit, S.; et al. BNT162b2 COVID-19 vaccine and correlates of humoral immune responses and dynamics: A prospective, single-centre, longitudinal cohort study in health-care workers. Lancet Respir. Med. 2021, 9, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Brisotto, G.; Muraro, E.; Montico, M.; Corso, C.; Evangelista, C.; Casarotto, M.; Caffau, C.; Vettori, R.; Cozzi, M.R.; Zanussi, S.; et al. IgG antibodies against SARS-CoV-2 decay but persist 4 months after vaccination in a cohort of healthcare workers. Clin. Chim. Acta 2021, 523, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Bello, J.; Morales-Núñez, J.J.; Machado-Sulbarán, A.C.; Díaz-Pérez, S.A.; Torres-Hernández, P.C.; Balcazar-Felix, P.; Gutiérrez-Brito, J.A.; Lomelí-Nieto, J.A.; Muñoz-Valle, J.F. Neutralizing antibodies against SARS-CoV-2, anti-Ad5 antibodies, and reactogenicity in response to Ad5-nCoV (CanSino Biologics) vaccine in individuals with and without prior SARS-CoV-2. Vaccines 2021, 9, 1047. [Google Scholar] [CrossRef]
- Fernandes, M.d.C.R.; Vasconcelos, G.S.; de Melo, A.C.L.; Matsui, T.C.; Caetano, L.F.; de Carvalho Araújo, F.M.; Fonseca, M.H.G. Influence of age, gender, previous SARS-CoV-2 infection, and pre-existing diseases in antibody response after COVID-19 vaccination: A review. Mol. Immunol. 2023, 156, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Crooke, S.N.; Ovsyannikova, I.G.; Poland, G.A.; Kennedy, R.B. Immunosenescence and human vaccine immune responses. Immun. Ageing 2019, 16, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Aiello, A.; Farzaneh, F.; Candore, G.; Caruso, C.; Davinelli, S.; Gambino, C.M.; Ligotti, M.E.; Zareian, N.; Accardi, G. Immunosenescence and its hallmarks: How to oppose aging strategically? A review of potential options for therapeutic intervention. Front. Immunol. 2019, 10, 2247. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.; Najjar-Debbiny, R.; Hanna, A.; Jabbour, A.; Ahmad, Y.A.; Saffuri, A.; Abu-Sinni, M.; Shkeiri, R.; Elemy, A.; Hakim, F.; et al. COVID-19 vaccine–Long term immune decline and breakthrough infections. Vaccine 2021, 39, 6984–6989. [Google Scholar] [CrossRef]
- Nomura, Y.; Sawahata, M.; Nakamura, Y.; Kurihara, M.; Koike, R.; Katsube, O.; Hagiwara, K.; Niho, S.; Masuda, N.; Tanaka, T.; et al. Age and smoking predict antibody titres at 3 months after the second dose of the BNT162b2 COVID-19 vaccine. Vaccines 2021, 9, 1042. [Google Scholar] [CrossRef] [PubMed]
- Salvagno, G.L.; Henry, B.M.; Di Piazza, G.; Pighi, L.; De Nitto, S.; Bragantini, D.; Gianfilippi, G.L.; Lippi, G. Anti-SARS-CoV-2 receptor-binding domain total antibodies response in seropositive and seronegative healthcare workers undergoing COVID-19 mRNA BNT162b2 vaccination. Diagnostics 2021, 11, 832. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Trougakos, I.P.; Apostolakou, F.; Charitaki, I.; Sklirou, A.D.; Mavrianou, N.; Papanagnou, E.D.; Liacos, C.I.; Gumeni, S.; Rentziou, G.; et al. Age-dependent and gender-dependent antibody responses against SARS-CoV-2 in health workers and octogenarians after vaccination with the BNT162b2 mRNA vaccine. Am. J. Hematol. 2021, 96, E257. [Google Scholar] [CrossRef]
- Ward, H.; Cooke, G.; Whitaker, M.; Redd, R.; Eales, O.; Brown, J.C.; Collet, K.; Cooper, E.; Daunt, A.; Jones, K. REACT-2 Round 5: Increasing prevalence of SARS-CoV-2 antibodies demonstrate impact of the second wave and of vaccine roll-out in England. medRxiv 2021. [Google Scholar] [CrossRef]
- Vassilaki, N.; Gargalionis, A.N.; Bletsa, A.; Papamichalopoulos, N.; Kontou, E.; Gkika, M.; Patas, K.; Theodoridis, D.; Manolis, I.; Ioannidis, A.; et al. Impact of age and sex on antibody response following the second dose of COVID-19 BNT162b2 mRNA vaccine in Greek healthcare workers. Microorganisms 2021, 9, 1725. [Google Scholar] [CrossRef]
- Wu, F.; Wang, A.; Liu, M.; Wang, Q.; Chen, J.; Xia, S.; Ling, Y.; Zhang, Y.; Xun, J.; Lu, L.; et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. medRxiv 2020. [Google Scholar] [CrossRef]
- Ozgocer, T.; Dagli, Ş.N.; Ceylan, M.R.; Disli, F.; Ucar, C.; Yildiz, S. Analysis of long-term antibody response in COVID-19 patients by symptoms grade, gender, age, BMI, and medication. J. Med. Virol. 2022, 94, 1412–1418. [Google Scholar] [CrossRef]
- Li, Z.; Xiang, T.; Liang, B.; Deng, H.; Wang, H.; Feng, X.; Quan, X.; Wang, X.; Li, S.; Lu, S.; et al. Characterization of SARS-CoV-2-Specific humoral and cellular immune responses induced by inactivated COVID-19 vaccines in a real-world setting. Front. Immunol. 2021, 12, 802858. [Google Scholar] [CrossRef]
- Choudhary, H.R.; Parai, D.; Chandra Dash, G.; Kshatri, J.S.; Mishra, N.; Choudhary, P.K.; Behera, S.; Ranjan Sahoo, N.; Podder, S. Persistence of antibodies against spike glycoprotein of SARS-CoV-2 in healthcare workers post double dose of BBV-152 and AZD1222 vaccines. Front. Med. 2021, 8, 778129. [Google Scholar] [CrossRef]
Characteristic | Homologous, n = 279 | Heterologous, n = 444 | Overall, n = 723 |
---|---|---|---|
Age (years) | 41.3 (±13.50) | 36.8 (±11.85) | 38.5 (±12.69) |
Age (years) | |||
<30 years | 60 (21.51%) | 142 (31.98%) | 202 (27.94%) |
31–40 years | 73 (26.16%) | 148 (33.33%) | 221 (30.57%) |
>40 years | 146 (52.33%) | 154 (34.68%) | 300 (41.49%) |
Sex | |||
Male | 89 (31.90%) | 216 (48.65%) | 305 (42.19%) |
Female | 190 (68.10%) | 228 (51.35%) | 418 (57.81%) |
Level of education | |||
No education | 34 (12.19%) | 36 (8.11%) | 70 (9.68%) |
Primary completed | 75 (26.88%) | 73 (16.44%) | 148 (20.47%) |
Secondary completed | 139 (49.82%) | 247 (55.63%) | 386 (53.39%) |
Higher | 31 (11.11%) | 88 (19.82%) | 119 (16.46%) |
Occupation | |||
Service (govt./non-govt.) | 77 (27.60%) | 231 (52.03%) | 308 (42.60%) |
Housewife | 134 (48.03%) | 114 (25.68%) | 248 (34.30%) |
Day labor/unskilled worker | 64 (22.94%) | 89 (20.05%) | 153 (21.16%) |
Student | 4 (1.43%) | 10 (2.25%) | 14 (1.94%) |
Crowding index | |||
<2 | 63 (22.58%) | 124 (27.93%) | 187 (25.86%) |
2 to 3 | 185 (66.31%) | 279 (62.84%) | 464 (64.18%) |
>3 | 31 (11.11%) | 41 (9.23%) | 72 (9.96%) |
Wealth index | |||
Poor | 135 (48.39%) | 177 (39.86%) | 312 (43.15%) |
Middle | 121 (43.37%) | 165 (37.16%) | 286 (39.56%) |
Rich | 23 (8.24%) | 102 (22.97%) | 125 (17.29%) |
Body Mass Index (BMI) | |||
Underweight (<18.5 kg/m2) | 11 (3.94%) | 23 (5.18%) | 34 (4.70%) |
Normal weight (18.5–24.9 kg/m2) | 178 (63.80%) | 252 (56.76%) | 430 (59.47%) |
Overweight (25–29.9 kg/m2) | 75 (26.88%) | 143 (32.21%) | 218 (30.15%) |
Obesity (≥30 kg/m2) | 15 (5.38%) | 26 (5.86%) | 41 (5.67%) |
Duration after receiving last booster dose in months | 4.5 [3.60–5.10] | 3.6 [1.88–4.78] | 4.1 [2.14–4.90] |
COVID-19 antibody in serum Anti-SARS-CoV2-S (U/mL) | 6958.0 [3974.00–12,728.50] | 8597.0 [5053.00–15,482.25] | 7985.0 [4630.00–14,716.00] |
Mean (±SD); n (%); Median [IQR] |
Known Morbidities Reported | Homologous, n = 279 | Heterologous, n = 444 | Overall, n = 723 |
---|---|---|---|
(multiple responses) | n (%) | n (%) | n (%) |
Diabetes | 31 (11.11%) | 28 (6.31%) | 59 (8.16%) |
Cancer | 3 (1.08%) | 5 (1.13%) | 8 (1.11%) |
Heart disease | 15 (5.38%) | 13 (2.93%) | 28 (3.87%) |
Respiratory disease | 10 (3.58%) | 14 (3.15%) | 24 (3.32%) |
Liver disease | 1 (0.36%) | 2 (0.45%) | 3 (0.41%) |
Kidney disease | 4 (1.43%) | 0 (0.00%) | 4 (0.55%) |
History of COVID-19 infection | 10 (3.58%) | 23 (5.18%) | 33 (4.56%) |
Number of times of COVID-19 infection | |||
No | 269 (96.42%) | 421 (94.82%) | 690 (95.44%) |
Once | 9 (3.23%) | 17 (3.83%) | 26 (3.60%) |
Twice and more | 1 (0.36%) | 6 (1.35%) | 7 (0.97%) |
Mobility | 38 (13.62%) | 50 (11.26%) | 88 (12.17%) |
Self-care | 103 (36.92%) | 200 (45.05%) | 303 (41.91%) |
Usual work | 104 (37.28%) | 218 (49.10%) | 322 (44.54%) |
Pain | 82 (29.39%) | 210 (47.30%) | 292 (40.39%) |
Anxiety | 31 (11.11%) | 41 (9.23%) | 72 (9.96%) |
Difficulty remembering | 78 (27.96%) | 130 (29.28%) | 208 (28.77%) |
Feeling weak | 89 (31.90%) | 137 (30.86%) | 226 (31.26%) |
Difficulty concentrating | 23 (8.24%) | 28 (6.31%) | 51 (7.05%) |
Change in appetite | 16 (5.73%) | 20 (4.50%) | 36 (4.98%) |
Unadjusted | Adjusted | |||
---|---|---|---|---|
Characteristic | Exponential Coefficient (95% CI) | p-Value | Exponential Coefficient (95% CI) | p-Value |
Type of vaccination | ||||
Homologous | — | — | ||
Heterologous | 1.23 (1.08, 1.40) | 0.001 | 1.10 (0.97, 1.25) | 0.146 |
Duration after receiving last booster dose in months | 0.84 (0.81, 0.87) | <0.001 | 0.85 (0.81, 0.88) | <0.001 |
Age (years) | ||||
<30 years | — | — | ||
31–40 years | 1.15 (0.98, 1.35) | 0.091 | 1.21 (1.03, 1.41) | 0.020 |
>40 years | 1.18 (1.01, 1.37) | 0.035 | 1.23 (1.07, 1.43) | 0.005 |
Sex | ||||
Male | — | — | ||
Female | 0.80 (0.70, 0.90) | <0.001 | 0.90 (0.80, 1.02) | 0.099 |
Wealth index | ||||
Poor | — | — | ||
Middle | 1.18 (1.03, 1.35) | 0.019 | 1.09 (0.95, 1.24) | 0.224 |
Rich | 1.16 (0.97, 1.38) | 0.101 | 0.92 (0.77, 1.10) | 0.358 |
BMI | ||||
Normal (18.5–24.9 kg/m2) | — | — | ||
Underweight (<18.5 kg/m2) | 1.25 (0.93, 1.68) | 0.148 | 1.12 (0.85, 1.49) | 0.417 |
Overweight (25–29.9 kg/m2) | 1.17 (1.02, 1.35) | 0.025 | 1.10 (0.96, 1.25) | 0.179 |
Obesity (≥30 kg/m2) | 1.23 (0.94, 1.62) | 0.134 | 1.16 (0.89, 1.51) | 0.258 |
History of COVID-19 infection | ||||
No | — | — | ||
Yes | 1.13 (0.84, 1.52) | 0.420 | 1.00 (0.75, 1.34) | 0.989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanin, K.I.; Khanam, M.; Sharaque, A.R.; Elahi, M.; Roy, B.R.; Hasan, M.K.; Dutta, G.K.; Dutta, A.; Islam, M.N.; Islam, M.S.; et al. Comparing Antibody Responses to Homologous vs. Heterologous COVID-19 Vaccination: A Cross-Sectional Analysis in an Urban Bangladeshi Population. Vaccines 2025, 13, 67. https://doi.org/10.3390/vaccines13010067
Sanin KI, Khanam M, Sharaque AR, Elahi M, Roy BR, Hasan MK, Dutta GK, Dutta A, Islam MN, Islam MS, et al. Comparing Antibody Responses to Homologous vs. Heterologous COVID-19 Vaccination: A Cross-Sectional Analysis in an Urban Bangladeshi Population. Vaccines. 2025; 13(1):67. https://doi.org/10.3390/vaccines13010067
Chicago/Turabian StyleSanin, Kazi Istiaque, Mansura Khanam, Azizur Rahman Sharaque, Mahbub Elahi, Bharati Rani Roy, Md. Khaledul Hasan, Goutam Kumar Dutta, Abir Dutta, Md. Nazmul Islam, Md. Safiqul Islam, and et al. 2025. "Comparing Antibody Responses to Homologous vs. Heterologous COVID-19 Vaccination: A Cross-Sectional Analysis in an Urban Bangladeshi Population" Vaccines 13, no. 1: 67. https://doi.org/10.3390/vaccines13010067
APA StyleSanin, K. I., Khanam, M., Sharaque, A. R., Elahi, M., Roy, B. R., Hasan, M. K., Dutta, G. K., Dutta, A., Islam, M. N., Islam, M. S., Khan, M. N. A., Mahmud, M., Nadia, N., Noushin, F., Roy, A. K., Sarker, P., & Tofail, F. (2025). Comparing Antibody Responses to Homologous vs. Heterologous COVID-19 Vaccination: A Cross-Sectional Analysis in an Urban Bangladeshi Population. Vaccines, 13(1), 67. https://doi.org/10.3390/vaccines13010067