Effectiveness of EV-A71 Vaccine and Its Impact on the Incidence of Hand, Foot and Mouth Disease: A Systematic Review
<p>Flowchart showing the screening process for included articles.</p> "> Figure 2
<p>Forest plot showing the overall OR and 95% CI of different vaccine doses. (<b>A</b>) one dose; (<b>B</b>) two dose [<a href="#B19-vaccines-12-01028" class="html-bibr">19</a>,<a href="#B20-vaccines-12-01028" class="html-bibr">20</a>,<a href="#B25-vaccines-12-01028" class="html-bibr">25</a>,<a href="#B26-vaccines-12-01028" class="html-bibr">26</a>,<a href="#B27-vaccines-12-01028" class="html-bibr">27</a>,<a href="#B28-vaccines-12-01028" class="html-bibr">28</a>,<a href="#B29-vaccines-12-01028" class="html-bibr">29</a>].</p> "> Figure 3
<p>Subgroup analysis was conducted on children aged 6–35 months (<b>A</b>); children aged 36–71 months (<b>B</b>); clinical severity = no severe disease progression (<b>C</b>) [<a href="#B19-vaccines-12-01028" class="html-bibr">19</a>,<a href="#B20-vaccines-12-01028" class="html-bibr">20</a>,<a href="#B25-vaccines-12-01028" class="html-bibr">25</a>,<a href="#B26-vaccines-12-01028" class="html-bibr">26</a>,<a href="#B27-vaccines-12-01028" class="html-bibr">27</a>,<a href="#B28-vaccines-12-01028" class="html-bibr">28</a>,<a href="#B29-vaccines-12-01028" class="html-bibr">29</a>].</p> "> Figure 4
<p>Funnel plot on different vaccine dose. (<b>A</b>) one dose; (<b>B</b>) two dose.</p> "> Figure 5
<p>Sensitivity analysis on different vaccine dose. (<b>A</b>) one dose; (<b>B</b>) two dose.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. The Criteria for Inclusion and Exclusion
2.3. Literature Screening and Data Extraction
2.4. Statistical Analysis
3. Results
3.1. Study Selection and the Records of Included Studies
3.2. Overall VE/OR and 95% CI
3.2.1. The Characteristics of Included Studies about VE
3.2.2. Overall VE/OR and 95% CI
3.2.3. Subgroup Analysis
3.2.4. Publication Bias and Sensitivity Analysis
3.3. Adverse Events
3.4. Epidemiological Characteristics of HFMD after the Use of EV-A71 Inactivated Vaccine
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, B.; Liu, F.; Liao, Q.; Wu, P.; Chang, Z.; Huang, J.; Long, L.; Luo, L.; Li, Y.; Leung, G.M.; et al. Epidemiology of hand, foot and mouth disease in China, 2008 to 2015 prior to the introduction of EV-A71 vaccine. Euro. Surveill. 2017, 22, 16-00824. [Google Scholar] [CrossRef]
- Zhao, T.S.; Du, J.; Sun, D.P.; Zhu, Q.R.; Chen, L.Y.; Ye, C.; Wang, S.; Liu, Y.Q.; Cui, F.; Lu, Q.B. A review and meta-analysis of the epidemiology and clinical presentation of coxsackievirus A6 causing hand-foot-mouth disease in China and global implications. Rev. Med. Virol. 2020, 30, e2087. [Google Scholar] [CrossRef]
- Liu, S.L.; Pan, H.; Liu, P.; Amer, S.; Chan, T.C.; Zhan, J.; Huo, X.; Liu, Y.; Teng, Z.; Wang, L.; et al. Comparative epidemiology and virology of fatal and nonfatal cases of hand, foot and mouth disease in mainland China from 2008 to 2014. Rev. Med. Virol. 2015, 25, 115–128. [Google Scholar] [CrossRef]
- Wang, S.M.; Liu, C.C. Enterovirus 71: Epidemiology, pathogenesis and management. Expert. Rev. Anti Infect. Ther. 2009, 7, 735–742. [Google Scholar] [CrossRef]
- Yamayoshi, S.; Ohka, S.; Fujii, K.; Koike, S. Functional comparison of SCARB2 and PSGL1 as receptors for enterovirus 71. J. Virol. 2013, 87, 3335–3347. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, C.; Wang, H.; Zhou, G.; Wang, X.; Zhang, R.; Chen, S.; Ren, J.; Chen, L.; Dang, D.; et al. Mast cells contribute to Enterovirus 71 infection-induced pulmonary edema in neonatal mice. Lab. Investg. 2018, 98, 1039–1051. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, S.; Zhou, G.; Jin, Y.; Zhang, R.; Yang, H.; Xi, Y.; Ren, J.; Duan, G. Involvement of the renin-angiotensin system in the progression of severe hand-foot-and-mouth disease. PLoS ONE 2018, 13, e0197861. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Z.; Yang, W.; Ren, J.; Tan, X.; Wang, Y.; Mao, N.; Xu, S.; Zhu, S.; Cui, A.; et al. An emerging recombinant human enterovirus 71 responsible for the 2008 outbreak of hand foot and mouth disease in Fuyang city of China. Virol. J. 2010, 7, 94. [Google Scholar] [CrossRef]
- Xing, W.; Liao, Q.; Viboud, C.; Zhang, J.; Sun, J.; Wu, J.T.; Chang, Z.; Liu, F.; Fang, V.J.; Zheng, Y.; et al. Hand, foot, and mouth disease in China, 2008–2012: An epidemiological study. Lancet Infect. Dis. 2014, 14, 308–318. [Google Scholar] [CrossRef]
- Li, R.; Liu, L.; Mo, Z.; Wang, X.; Xia, J.; Liang, Z.; Zhang, Y.; Li, Y.; Mao, Q.; Wang, J.; et al. An inactivated enterovirus 71 vaccine in healthy children. N. Engl. J. Med. 2014, 370, 829–837. [Google Scholar] [CrossRef]
- Zhu, F.; Xu, W.; Xia, J.; Liang, Z.; Liu, Y.; Zhang, X.; Tan, X.; Wang, L.; Mao, Q.; Wu, J.; et al. Efficacy, safety, and immunogenicity of an enterovirus 71 vaccine in China. N. Engl. J. Med. 2014, 370, 818–828. [Google Scholar] [CrossRef]
- Zhu, F.C.; Meng, F.Y.; Li, J.X.; Li, X.L.; Mao, Q.Y.; Tao, H.; Zhang, Y.T.; Yao, X.; Chu, K.; Chen, Q.H.; et al. Efficacy, safety, and immunology of an inactivated alum-adjuvant enterovirus 71 vaccine in children in China: A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2013, 381, 2024–2032. [Google Scholar] [CrossRef]
- Chinese Centre for Disease Control and Prevention. Technical Guideline on Use of Inactivated Enterovirus 71 Vaccine. Available online: http://www.chinacdc.cn/zxdt/201606/W020160608725047001222.pdf (accessed on 1 May 2016).
- McLean, H.Q.; Belongia, E.A. Influenza Vaccine Effectiveness: New Insights and Challenges. Cold Spring Harb. Perspect. Med. 2021, 11, a038315. [Google Scholar] [CrossRef]
- Chang, S.; Liu, H.; Wu, J.; Xiao, W.; Chen, S.; Qiu, S.; Duan, G.; Song, H.; Zhang, R. Effectiveness of BNT162b2 and mRNA-1273 Vaccines against COVID-19 Infection: A Meta-Analysis of Test-Negative Design Studies. Vaccines 2022, 10, 469. [Google Scholar] [CrossRef]
- Schwartz, L.M.; Halloran, M.E.; Rowhani-Rahbar, A.; Neuzil, K.M.; Victor, J.C. Rotavirus vaccine effectiveness in low-income settings: An evaluation of the test-negative design. Vaccine 2017, 35, 184–190. [Google Scholar] [CrossRef]
- Jackson, L.A.; Jackson, M.L.; Nelson, J.C.; Neuzil, K.M.; Weiss, N.S. Evidence of bias in estimates of influenza vaccine effectiveness in seniors. Int. J. Epidemiol. 2006, 35, 337–344. [Google Scholar] [CrossRef]
- Foppa, I.M.; Haber, M.; Ferdinands, J.M.; Shay, D.K. The case test-negative design for studies of the effectiveness of influenza vaccine. Vaccine 2013, 31, 3104–3109. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, L.; Ding, L.; Zhang, C.; Chen, Z.; Cheng, Y.; Wang, X.; Peng, H.; Tang, X.; Ren, X.; et al. Effectiveness of enterovirus A71 vaccine against pediatric HFMD and disease profile of post-vaccination infection. Vaccine 2024, 42, 2317–2325. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, J.; Zhang, C.; He, W.; Mo, J.; Zeng, J.; Chen, M.; Tan, Y.; Ning, C. Effectiveness of enterovirus A71 vaccine in severe hand, foot, and mouth disease cases in Guangxi, China. Vaccine 2020, 38, 1804–1809. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef]
- Biggerstaff, B.J.; Jackson, D. The exact distribution of Cochran’s heterogeneity statistic in one-way random effects meta-analysis. Stat. Med. 2008, 27, 6093–6110. [Google Scholar] [CrossRef]
- Kulinskaya, E.; Dollinger, M.B.; Bjørkestøl, K. On the moments of Cochran’s Q statistic under the null hypothesis, with application to the meta-analysis of risk difference. Res. Synth. Methods 2011, 2, 254–270. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Y.; Cheng, Y.; Wu, P.; Zhou, C.; Cui, P.; Song, C.; Liang, L.; Wang, F.; Qiu, Q.; et al. Effectiveness of EV-A71 vaccination in prevention of paediatric hand, foot, and mouth disease associated with EV-A71 virus infection requiring hospitalisation in Henan, China, 2017–2018: A test-negative case-control study. Lancet Child Adolesc. Health 2019, 3, 697–704. [Google Scholar] [CrossRef]
- Mao, Z.; Huang, B. Effectiveness of inactivated enterovirus type 71 vaccine against hand, foot and mouth disease and adverse reactions among 6-35-month-old children. Chin. J. Vaccines Immun. 2022, 28, 224–228. [Google Scholar]
- Wang, X.; An, Z.; Huo, D.; Jia, L.; Li, J.; Yang, Y.; Liang, Z.; Wang, Q.; Wang, H. Enterovirus A71 vaccine effectiveness in preventing enterovirus A71 infection among medically-attended hand, foot, and mouth disease cases, Beijing, China. Hum. Vaccin. Immunother. 2019, 15, 1183–1190. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, J.; Liu, F.; Song, Y.; Wang, Q.; Liu, Y.; Zhang, Y.; Li, Z.; Chang, Z. Effectiveness of Enterovirus 71 inactivated vaccines against hand, foot, and mouth disease: A test-negative case-control study. Hum. Vaccin. Immunother. 2024, 20, 2330163. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, M.; Jin, P.; Li, J.; Zhu, F. An evaluation of a test-negative design for EV-71 vaccine from a randomized controlled trial. Hum. Vaccin. Immunother. 2021, 17, 2101–2106. [Google Scholar] [CrossRef]
- Shen, L.Z.; Fu, J.; Pan, X.J.; Liang, H.; Xie, S.Y.; Chen, Z.P. Post-marketing observation on safety of inactivated enterovirus A71 vaccine (human diploid cell). Chin. J. Prev. Med. 2019, 53, 258–261. [Google Scholar] [CrossRef]
- Luo, Y.; Fu, J.; Pan, X.J.; Shen, L.Z.; Liang, Z.Z.; Chen, Y.P.; Hu, X.S.; Lyu, H.K.; Chen, Z.P. Post-marketing safety analysis of inactivated enterovirus A71 vaccines. Chin. J. Prev. Med. 2019, 53, 262–266. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, C.; Wang, X.; Ren, X.; Peng, H.; Tang, X.; Zhang, L.; Chen, Z.; Ye, Y.; Zheng, M.; et al. Molecular epidemiology and clinical features of hand, foot and mouth disease requiring hospitalization after the use of enterovirus A71 inactivated vaccine in Chengdu, China, 2017-2022: A descriptive study. Emerg. Microbes Infect. 2022, 11, 2510–2519. [Google Scholar] [CrossRef]
- Meng, X.-D.; Tong, Y.; Wei, Z.-N.; Wang, L.; Mai, J.-Y.; Wu, Y.; Luo, Z.-Y.; Li, S.; Li, M.; Wang, S.; et al. Epidemical and etiological study on hand, foot and mouth disease following EV-A71 vaccination in Xiangyang, China. Sci. Rep. 2020, 10, 20909. [Google Scholar] [CrossRef]
- Wang, M.; Chen, T.; Peng, J.; Luo, Y.; Du, L.; Lu, Z.; He, J.; Liu, C.; Gan, Q.; Ma, W.; et al. The spatial-temporal distribution and etiological characteristics of hand-foot-and-mouth disease before and after EV─A71 vaccination in Kunming, China, 2017–2020. Sci. Rep. 2022, 12, 17028. [Google Scholar] [CrossRef]
- Jiang, L.; Jiang, H.; Tian, X.; Xia, X.; Huang, T. Epidemiological characteristics of hand, foot, and mouth disease in Yunnan Province, China, 2008–2019. BMC Infect. Dis. 2021, 21, 751. [Google Scholar] [CrossRef]
- Huang, L.; Wang, T.; Liu, X.; Fu, Y.; Zhang, S.; Chu, Q.; Nie, T.; Tu, H.; Cheng, J.; Fan, Y. Spatial-temporal-demographic and virological changes of hand, foot and mouth disease incidence after vaccination in a vulnerable region of China. BMC Public Health 2022, 22, 1468. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, L.; Zhang, C.; He, W.; Tan, Y.; Ning, C. The changes in the epidemiology of hand, foot, and mouth disease after the introduction of the EV-A71 vaccine. Vaccine 2021, 39, 3319–3323. [Google Scholar] [CrossRef]
- Hong, J.; Liu, F.; Qi, H.; Tu, W.; Ward, M.P.; Ren, M.; Zhao, Z.; Su, Q.; Huang, J.; Chen, X.; et al. Changing epidemiology of hand, foot, and mouth disease in China, 2013-2019: A population-based study. Lancet Reg. Health West Pac. 2022, 20, 100370. [Google Scholar] [CrossRef]
- Wu, H.; Xue, M.; Wu, C.; Lu, Q.; Ding, Z.; Wang, X.; Fu, T.; Yang, K.; Lin, J. Trend of hand, foot, and mouth disease from 2010 to 2021 and estimation of the reduction in enterovirus 71 infection after vaccine use in Zhejiang Province, China. PLoS ONE 2022, 17, e0274421. [Google Scholar] [CrossRef]
- Head, J.R.; Collender, P.A.; Lewnard, J.A.; Skaff, N.K.; Li, L.; Cheng, Q.; Baker, J.M.; Li, C.; Chen, D.; Ohringer, A.; et al. Early Evidence of Inactivated Enterovirus 71 Vaccine Impact against Hand, Foot, and Mouth Disease in a Major Center of Ongoing Transmission in China, 2011–2018: A Longitudinal Surveillance Study. Clin. Infect. Dis. 2020, 71, 3088–3095. [Google Scholar] [CrossRef]
- Jackson, M.L.; Nelson, J.C. The test-negative design for estimating influenza vaccine effectiveness. Vaccine 2013, 31, 2165–2168. [Google Scholar] [CrossRef]
- De Serres, G.; Skowronski, D.M.; Wu, X.W.; Ambrose, C.S. The test-negative design: Validity, accuracy and precision of vaccine efficacy estimates compared to the gold standard of randomised placebo-controlled clinical trials. Euro. Surveill. 2013, 18, 20585. [Google Scholar] [CrossRef]
- Orenstein, E.W.; De Serres, G.; Haber, M.J.; Shay, D.K.; Bridges, C.B.; Gargiullo, P.; Orenstein, W.A. Methodologic issues regarding the use of three observational study designs to assess influenza vaccine effectiveness. Int. J. Epidemiol. 2007, 36, 623–631. [Google Scholar] [CrossRef]
- Gu, W.; Zeng, G.; Hu, Y.M.; Hu, Y.S.; Zhang, Y.; Hu, Y.L.; Wang, Y.; Li, J.X.; Zhu, F.C. A comparative analysis of immunogenicity and safety of an enterovirus 71 vaccine between children aged 3–5 years and infants aged 6–35 months. Expert. Rev. Vaccines 2018, 17, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Che, Y.; Wei, S.; Li, S.; Zhao, Z.; Tong, Y.; Wang, L.; Gong, W.; Zhang, Y.; Zhao, Y.; et al. Effectiveness and Safety of an Inactivated Enterovirus 71 Vaccine in Children Aged 6–71 Months in a Phase IV Study. Clin. Infect. Dis. 2020, 71, 2421–2427. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Zhang, X.; Chen, J.; Chen, W.; Wang, Z.; Li, Q.; Duan, K.; Wei, S.; Yang, B.; Qian, X.; et al. Immunogenicity and safety of an enterovirus 71 vaccine in children aged 36–71 months: A double-blind, randomised, similar vaccine-controlled, non-inferiority phase III trial. eClinicalMedicine 2022, 52, 101596. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, F.; Zeng, G.; Yang, H.; Zhu, T.; Yang, S.; Meng, X.; Mao, Q.; Liu, X. Immunogenicity and Safety of Inactivated Enterovirus 71 Vaccine in Children Aged 36–71 Months: A Double-Blind, Randomized, Controlled, Non-inferiority Phase III Trial. J. Pediatric Infect. Dis. Soc. 2021, 10, 440–447. [Google Scholar] [CrossRef]
- Ji, H.; Li, L.; Liu, Y.; Ge, H.; Wang, X.; Hu, J.; Wu, B.; Fu, J.; Zhang, Z.; Chen, X.; et al. Seroepidemiology of human enterovirus71 and coxsackievirusA16 in Jiangsu province, China. Virol. J. 2012, 9, 248. [Google Scholar] [CrossRef]
- Yang, B.; Wu, P.; Wu, J.T.; Lau, E.H.; Leung, G.M.; Yu, H.; Cowling, B.J. Seroprevalence of Enterovirus 71 Antibody Among Children in China: A Systematic Review and Meta-analysis. Pediatr. Infect. Dis. J. 2015, 34, 1399–1406. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Z.; Rao, Q.; Wang, X.; Wang, M.; Du, T.; Tang, J.; Long, S.; Zhang, J.; Luo, J.; et al. The epidemiological characteristics of enterovirus infection before and after the use of enterovirus 71 inactivated vaccine in Kunming, China. Emerg. Microbes Infect. 2021, 10, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.F.; Jia, L.P.; Yu, F.Y.; Liu, L.Y.; Song, Q.W.; Dong, H.J.; Deng, J.; Qian, Y.; Zhao, L.Q.; Deng, L.; et al. Molecular epidemiology of coxsackievirus A16 circulating in children in Beijing, China from 2010 to 2019. World J. Pediatr. 2021, 17, 508–516. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Cao, Z.; Xu, J.; Guo, J.; Zhao, L.; Wang, R.; Xu, Y.; Gao, R.; Gao, L.; et al. Epidemiology of Hand, Foot, and Mouth Disease and Genetic Evolutionary Characteristics of Coxsackievirus A10 in Taiyuan City, Shanxi Province from 2016 to 2020. Viruses 2023, 15, 694. [Google Scholar] [CrossRef]
- Tomba Ngangas, S.; Bisseux, M.; Jugie, G.; Lambert, C.; Cohen, R.; Werner, A.; Archimbaud, C.; Henquell, C.; Mirand, A.; Bailly, J.L. Coxsackievirus A6 Recombinant Subclades D3/A and D3/H Were Predominant in Hand-Foot-And-Mouth Disease Outbreaks in the Paediatric Population, France, 2010-2018. Viruses 2022, 14, 1078. [Google Scholar] [CrossRef] [PubMed]
- Carmona, R.C.C.; Machado, B.C.; Reis, F.C.; Jorge, A.M.V.; Cilli, A.; Dias, A.M.N.; Morais, D.R.; Leme, L.; Yu, A.L.F.; Silva, M.R.; et al. Hand, foot, and mouth disease outbreak by Coxsackievirus A6 during COVID-19 pandemic in 2021, São Paulo, Brazil. J. Clin. Virol. 2022, 154, 105245. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Huang, Y.; Bloom, M.S.; Zhang, Z.; Yang, Z.; Lu, J.; Xu, J.; Hao, Y. Assessing the vaccine effectiveness for hand, foot, and mouth disease in Guangzhou, China: A time-series analysis. Hum. Vaccin. Immunother. 2021, 17, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zhao, H.; Wu, D. Modelling and analysis of HFMD with the effects of vaccination, contaminated environments and quarantine in mainland China. Math. Biosci. Eng. 2018, 16, 474–500. [Google Scholar] [CrossRef]
- Liao, Y.; Jiang, Q.; Huo, X.; Yu, L.; Yang, J.; Zhao, H.; Li, D.; Xu, X.; Jiang, G.; Zhang, C.; et al. Preclinical safety evaluation of a bivalent inactivated EV71-CA16 vaccine in mice immunized intradermally. Hum. Vaccin. Immunother. 2023, 19, 2209472. [Google Scholar] [CrossRef]
- Liu, D.; Leung, K.; Jit, M.; Yu, H.; Yang, J.; Liao, Q.; Liu, F.; Zheng, Y.; Wu, J.T. Cost-effectiveness of bivalent versus monovalent vaccines against hand, foot and mouth disease. Clin. Microbiol. Infect. 2020, 26, 373–380. [Google Scholar] [CrossRef]
- Zhang, W.; Dai, W.; Zhang, C.; Zhou, Y.; Xiong, P.; Wang, S.; Ye, X.; Liu, Q.; Zhou, D.; Huang, Z. A virus-like particle-based tetravalent vaccine for hand, foot, and mouth disease elicits broad and balanced protective immunity. Emerg. Microbes Infect. 2018, 7, 94. [Google Scholar] [CrossRef]
- Liu, X.; Chang, S.; Wang, R.; Xiao, Y.; Li, F.; Xu, Q.; Zhang, S.; Chen, X.; Zhang, S.; Zhang, M.; et al. Immunogenicity and Safety of an Inactivated Enterovirus 71 Vaccine Administered Simultaneously with Hepatitis B Virus Vaccine, Group A Meningococcal Polysaccharide Vaccine, Measles-Rubella Combined Vaccine and Japanese Encephalitis Vaccine: A Multi-Center, Randomized, Controlled Clinical Trial in China. Vaccines 2022, 10, 895. [Google Scholar] [CrossRef]
- Chen, Y.; Xiao, Y.; Ye, Y.; Jiang, F.; He, H.; Luo, L.; Chen, H.; Shi, L.; Mu, Q.; Chen, W.; et al. Immunogenicity and safety of an inactivated enterovirus 71 vaccine coadministered with trivalent split-virion inactivated influenza vaccine: A phase 4, multicenter, randomized, controlled trial in China. Front. Immunol. 2022, 13, 1080408. [Google Scholar] [CrossRef] [PubMed]
Author | Design | Vaccines | Endpoint | Population | Area | Type | Study Period | Age | Sample | Male/Female | NOS |
---|---|---|---|---|---|---|---|---|---|---|---|
Du et al. [19] | TND | Mixed, not clear | HFMD cases | Hospital | Sichuan, China | R | June 2017–March 2022 | >6 months | 4833 | 1.63 | 7 |
Jiang et al. [20] | TND | Mixed, not clear | HFMD severe cases | Individual records of all severe cases | Guangxi, China | R | January 2017–December 2018 | 6–60 months | 2779 | 1.98 | 7 |
Li et al. [25] | TND | Mixed, not clear | HFMD cases | Hospital | Henan, China | R | February 2017–February 2018 | 6–71 months | 1803 | 1.97 | 9 |
Mao et al. [26] | TND | Sinovac Biotech Ltd. and Beijing | HFMD cases | Individual records of all cases | Wenzhou, China | P | January 2019–December 2019 | 6–35 months | 18860 | 1.27 | 7 |
Wang et al. [27] | TND | Mixed, not clear | HFMD cases | Individual records of all cases | Beijing, China | R | January 2017–December 2017 | 6–59 months | 2184 | 1.53 | 8 |
Zhang et al. [28] | TND | Mixed, not clear | HFMD cases | Individual records of all cases | Three provinces, China | P | January 2019–December 2019 | 6–71 months | 3223 | 1.48 | 7 |
Zhang et al. [29] | TND | Vigoo Biological Co., Ltd. | HFMD cases | From phase 3 trial | Jiangsu, China | P | NA | 6–35 months | 7325 | 1.30 | 7 |
Author | Area | Study Period | Age | Vaccine Dose | Male/Female | Type | Main Results |
---|---|---|---|---|---|---|---|
Mao et al. [26] | Wenzhou, China | January 2019–December 2019 | 6–35 months | 29.440 | 1.27 | P | The incidence of AEs in children vaccinated with EV-A71 vaccine was 1.29‰, among which the incidence of local and systemic reactions were 0.95‰ and 0.88‰, respectively. The incidence of AEs in grade I, II, III, and IV were 0.71‰, 0.51‰, 0.07‰, and 0.00‰, respectively |
Shen et al. [30] | Zhejiang, China | September 2016–December 2017 | 6–59 months | 32,230 | 1.07 | P | The incidence of AEs within 3 days was 2.045% (one dose) and 1.611 (two dose) respectively. The systemic AEs was high, with an incidence of 1.837% (one dose) and 1.453 (two dose), respectively. |
Luo et al. [31] | Zhejiang, China | April 2016–March 2018 | 6–59 months | 71,663 | 1.08 | P | The incidence of AEs within 30 min, 3 d, and 4–30 d were 0.33%, 1.58%, and 0.34%, respectively, and most of the AEs were mild, and most of them were common general reactions, without rare AEs. |
Author | Study Period | Group Description | Sample | Area | Main Results |
---|---|---|---|---|---|
Duan et al. [32] | 2017–2022 | post-vaccination | 5115 | Chengdu, China | A total of 4.3% presented with severe symptoms, and 4.1% of severe cases experienced significant complications. EV-A71 was no longer the major serotype for laboratory-confirmed HFMD, responsible for 15.6% of severe cases and 1.2% of mild cases. |
Meng et al. [33] | 2016–2017 | post-vaccination | 40,000 | Xiangyang, China | CV-A6 was the predominant serotype; CVA6 and EV-A71 had proportions of 59.54% and 3.03%, respectively. |
Wang et al. [34] | 2017–2020 | post-vaccination | 32,754 | Kunming, China | Other enteroviruses replaced EV-A71, and the incidence of EV-A71 decreased dramatically, whereas CV-A6 and CV-A16 had substantial outbreaks in 2018 and 2019, respectively. |
Jiang et al [35]. | 2008–2016 2017–2019 | pre-vaccination; post-vaccination | 400,704 277,731 | Yunnan, China | After the introduction of EV-A71 vaccines, the overall incidence of HFMD increased and reached over 200 cases per 100,000 population-years in 2018 and 2019. However, the case severity and case fatality rate decreased and remained lower than 1 and 0.005% after 2016, respectively. EV-A71-associated mild, severe, and fatal cases sharply decreased. |
Huang et al. [36] | 2012–2016 2017–2020 | pre-vaccination; post-vaccination | 82,944 60,436 | Hefei, China | The morbidity decreased from 215.22/105 in 2012–2016 to 179.81/105 in 2017–2020 The main pathogenic enterovirus gradually changed from EV-A71 to other enteroviruses, especially CV-A6 after the implementation of EV-A71 vaccination. |
Wang et al. [37] | 2013–2015 2017–2019 | pre-vaccination; post-vaccination | 749,736 632,276 | Guangxi, China | The proportion of HFMD cases aged 0–12 months decreased from 23.0% to 15.3% between 2013–2015 and 2017–2019; EV-A71 among laboratory-confirmed severe cases in 2013–2015 (62.8%) transformed to other EVs (67.2%) in 2017–2019. |
Hong et al. [38] | 2013–2015 2017–2019 | pre-vaccination; post-vaccination | NR | CDC Reported, China | After the launch of the EV-A71 vaccine, the median age of HFMD patients infected with EV-A71 increased from2.24 years (IQR: 1.43, 3.56) to 2.81 years (IQR:1.58, 4.01). The proportion of patients less than 3 years of age decreased while the proportion of patients 3–5 years of age increased. |
Wu et al [39]. | 2010–2016 2017–2021 | pre-vaccination; post-vaccination | NR | Zhejiang, China | The expected incidence will be 2.76 times (include the cases of 2020) and 2.43 times (exclude the cases of 2020) higher than the actual value assuming that the measures of vaccination are not taken. EV-A71 vaccines are very effective and should be administered in the age window between 5 months and 5 years. |
Head et al. [40] | 2011–2015 2017–2018 | pre-vaccination; post-vaccination | 134,760 98,698 | CDC Reported, China | The average incidence rate of EV-A71 HFMD in 2017–2018 was 60% (95% prediction interval [PI], 41–72%) lower than predicted in the absence of immunization, corresponding to an estimated 6911 (95% PI, 3246–11 542) EV-A71 cases averted over 2 years. There were 52% (95% PI, 42–60%) fewer severe HFMD cases than predicted. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Q.; Xie, Y.; Ji, F.; Zhao, F.; Song, X.; Lu, S.; Li, Z.; Geng, J.; Yang, H.; Long, J.; et al. Effectiveness of EV-A71 Vaccine and Its Impact on the Incidence of Hand, Foot and Mouth Disease: A Systematic Review. Vaccines 2024, 12, 1028. https://doi.org/10.3390/vaccines12091028
Hu Q, Xie Y, Ji F, Zhao F, Song X, Lu S, Li Z, Geng J, Yang H, Long J, et al. Effectiveness of EV-A71 Vaccine and Its Impact on the Incidence of Hand, Foot and Mouth Disease: A Systematic Review. Vaccines. 2024; 12(9):1028. https://doi.org/10.3390/vaccines12091028
Chicago/Turabian StyleHu, Quanman, Yaqi Xie, Fucang Ji, Fei Zhao, Xiaoru Song, Saiwei Lu, Zijie Li, Juan Geng, Haiyan Yang, Jinzhao Long, and et al. 2024. "Effectiveness of EV-A71 Vaccine and Its Impact on the Incidence of Hand, Foot and Mouth Disease: A Systematic Review" Vaccines 12, no. 9: 1028. https://doi.org/10.3390/vaccines12091028
APA StyleHu, Q., Xie, Y., Ji, F., Zhao, F., Song, X., Lu, S., Li, Z., Geng, J., Yang, H., Long, J., Jin, Y., Chen, S., & Duan, G. (2024). Effectiveness of EV-A71 Vaccine and Its Impact on the Incidence of Hand, Foot and Mouth Disease: A Systematic Review. Vaccines, 12(9), 1028. https://doi.org/10.3390/vaccines12091028