Immunogenicity and Protective Capacity of Sugar ABC Transporter Substrate-Binding Protein against Streptococcus suis Serotype 2, 7 and 9 Infection in Mice
<p>Predicted linear B cell epitopes of S-ABC. (<b>A</b>) Linear B cell epitopes of S-ABC were predicted using the bioinformatics software ABCpred and IEDB. The predicted B cell epitope sequences are boxed. (<b>B</b>) Screening for immunodominant linear B cell epitopes. The predicted B cell epitope peptides (EP1-5) were coated onto ELISA plates and incubated with rabbit sera specific to <span class="html-italic">S. suis</span> serotype 2. The OD<sub>450nm</sub> value of each well coated with peptide was normalized to the value of control wells and plotted. A relative OD<sub>450nm</sub> value of >2.1 was considered positive.</p> "> Figure 2
<p>Construction and expression of rS-ABC and rS-ABC-epitope proteins. (<b>A</b>) Schematic representation of the construction of rS-ABC-epitope. EP1 and EP5 were tandemly connected by GGGG linkers to be expressed as a multiple-epitope protein. (<b>B</b>) Expression and purification of rS-ABC and rS-ABC-epitope proteins. The rS-ABC and rS-ABC-epitope proteins were expressed from <span class="html-italic">E. coli</span>, induced with IPTG, and purified via their His-tag by using a Ni–NTA column. The resulting recombinant proteins were then examined using SDS-PAGE. Lanes: 1, protein marker; 2, uninduced bacterial cells; 3, bacterial cells induced with IPTG; and 4, purified recombinant protein. (<b>C</b>) Antigenic analysis of rS-ABC and rS-ABC-epitope proteins. The rS-ABC and rS-ABC-epitope purified proteins were examined by a Western blot using anti-His antibodies and positive rabbit sera containing antibodies specific to <span class="html-italic">S. suis</span> serotype 2.</p> "> Figure 3
<p>Levels of antibodies and cytokines in immunized mice. (<b>A</b>) Schematic representation of vaccination and sample collection. Mice were vaccinated with rS-ABC or rS-ABC-epitope proteins and then boosted at 14 days post-primary vaccination. (<b>B</b>) Levels of antibodies specific to rS-ABC or rS-ABC-epitope were examined with an ELISA in sera collected prior to primary vaccination, boost vaccination, and challenge. (<b>C</b>–<b>E</b>) Levels of IL-4 and IFN-γ in sera (B), lungs (<b>C</b>), and spleen (<b>D</b>) collected at 24 days post-primary vaccination were examined with an ELISA. Statistically significant differences between groups are indicated by asterisks (** <span class="html-italic">p</span> < 0.01).</p> "> Figure 4
<p>Protective efficacy of rS-ABC and rS-ABC-epitope in mice. Three-week-old BALB/c strain mice (8 mice per group) were vaccinated with rS-ABC or rS-ABC-epitope proteins and boosted at 14 days post-primary vaccination. Mice were challenged with a lethal dose of <span class="html-italic">S. suis</span> serotype 2, 7, or 9 at 10 days post-boost vaccination and monitored for 7 days. Animals succumbed to infection between 12 and 48 h post-challenge, and the survival curves were plotted.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Expression and Purification of Recombinant Proteins
2.3. Multiple Sequence Alignment
2.4. Prediction of Linear B Cell Epitopes
2.5. Screening for Immunodominant Linear B Cell Epitopes with an Enzyme-Linked Immunosorbent Assay (ELISA)
2.6. Western Blot Analysis
2.7. Immunization and Protection Assay
2.8. Detection of Antibodies with an ELISA
2.9. Detection of IL-4 and IFN-γ
2.10. Statistical Analysis
3. Results
3.1. Conservation and Prevalence of S-ABC across S. suis Serotypes
3.2. Immunodominant Linear B Cell Epitopes of S-ABC
3.3. Preparation of rS-ABC and rS-ABC-Epitope Proteins
3.4. Levels of Antibodies and Cytokines in Immunized Mice
3.5. Protective Efficacy of rS-ABC and rS-ABC-Epitope
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Staats, J.J.; Feder, I.; Okwumabua, O.; Chengappa, M.M. Streptococcus Suis: Past and Present. Vet. Res. Commun. 1997, 21, 381–407. [Google Scholar] [CrossRef]
- Vötsch, D.; Willenborg, M.; Weldearegay, Y.B.; Valentin-Weigand, P. Streptococcus Suis—The “Two Faces” of a Pathobiont in the Porcine Respiratory Tract. Front. Microbiol. 2018, 9, 480. [Google Scholar] [CrossRef]
- Gottschalk, M.; Segura, M.; Xu, J. Streptococcus Suis Infections in Humans: The Chinese Experience and the Situation in North America. Anim. Health Res. Rev. 2007, 8, 29–45. [Google Scholar] [CrossRef]
- Gottschalk, M.; Xu, J.; Calzas, C.; Segura, M. Streptococcus Suis: A New Emerging or an Old Neglected Zoonotic Pathogen? Future Microbiol. 2010, 5, 371–391. [Google Scholar] [CrossRef]
- Segura, M.; Aragon, V.; Brockmeier, S.; Gebhart, C.; Greeff, A.; Kerdsin, A.; O’Dea, M.; Okura, M.; Saléry, M.; Schultsz, C.; et al. Update on Streptococcus Suis Research and Prevention in the Era of Antimicrobial Restriction: 4th International Workshop on S. Suis. Pathogens 2020, 9, 374. [Google Scholar] [CrossRef]
- Segura, M. Streptococcus Suis Vaccines: Candidate Antigens and Progress. Expert Rev. Vaccines 2015, 14, 1587–1608. [Google Scholar] [CrossRef]
- Tan, C.; Zhang, A.; Chen, H.; Zhou, R. Recent Proceedings on Prevalence and Pathogenesis of Streptococcus Suis. Curr. Issues Mol. Biol. 2019, 473–520. [Google Scholar] [CrossRef]
- Pallarés, F.J.; Schmitt, C.S.; Roth, J.A.; Evans, R.B.; Kinyon, J.M.; Halbur, P.G. Evaluation of a Ceftiofur-Washed Whole Cell Streptococcus Suis Bacterin in Pigs. Can. J. Vet. Res. 2004, 68, 236–240. [Google Scholar]
- Wei, Z.; Li, R.; Zhang, A.; He, H.; Hua, Y.; Xia, J.; Cai, X.; Chen, H.; Jin, M. Characterization of Streptococcus Suis Isolates from the Diseased Pigs in China between 2003 and 2007. Vet. Microbiol. 2009, 137, 196–201. [Google Scholar] [CrossRef]
- Charland, N.; Jacques, M.; Lacouture, S.; Gottschalk, M. Characterization and Protective Activity of a Monoclonal Antibody against a Capsular Epitope Shared by Streptococcus Suis Serotypes 1, 2 and 1/2. Microbiology 1997, 143, 3607–3614. [Google Scholar] [CrossRef]
- Goyette-Desjardins, G.; Lacouture, S.; Auger, J.-P.; Roy, R.; Gottschalk, M.; Segura, M. Characterization and Protective Activity of Monoclonal Antibodies Directed against Streptococcus Suis Serotype 2 Capsular Polysaccharide Obtained Using a Glycoconjugate. Pathogens 2019, 8, 139. [Google Scholar] [CrossRef]
- Segura, M. Streptococcus Suis Research: Progress and Challenges. Pathogens 2020, 9, 707. [Google Scholar] [CrossRef]
- Yan, Z.; Yao, X.; Pan, R.; Zhang, J.; Ma, X.; Dong, N.; Wei, J.; Liu, K.; Qiu, Y.; Sealey, K.; et al. Subunit Vaccine Targeting Phosphate ABC Transporter ATP-Binding Protein, PstB, Provides Cross-Protection against Streptococcus Suis Serotype 2, 7, and 9 in Mice. Vet Sci. 2023, 10, 48. [Google Scholar] [CrossRef]
- Zhang, A.; Chen, B.; Mu, X.; Li, R.; Zheng, P.; Zhao, Y.; Chen, H.; Jin, M. Identification and Characterization of a Novel Protective Antigen, Enolase of Streptococcus Suis Serotype 2. Vaccine 2009, 27, 1348–1353. [Google Scholar] [CrossRef]
- Li, Y.; Gottschalk, M.; Esgleas, M.; Lacouture, S.; Dubreuil, J.D.; Willson, P.; Harel, J. Immunization with Recombinant Sao Protein Confers Protection against Streptococcus Suis Infection. Clin. Vaccine Immunol. 2007, 14, 937–943. [Google Scholar] [CrossRef]
- Wisselink, H.J.; Vecht, U.; Smith, H.E.; Stockhofe-Zurwieden, N. Protection of Pigs against Challenge with Virulent Streptococcus Suis Serotype 2 Strains by a Muramidase-released Protein and Extracellular Factor Vaccine. Vet. Rec. 2001, 148, 473–477. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, Y.; Zhou, J.; Liu, H.; Liao, X.; Luo, J.; Li, X.; Fang, W. Peptidyl Isomerase PrsA Is Surface-Associated on Streptococcus Suis and Offers Cross-Protection against Serotype 9 Strain. FEMS Microbiol. Lett. 2019, 366, fnz002. [Google Scholar] [CrossRef]
- Li, Q.; Lv, Y.; Li, Y.; Du, Y.; Guo, W.; Chu, D.; Wang, X.; Wang, S.; Shi, H. Live Attenuated Salmonella Enterica Serovar Choleraesuis Vector Delivering a Conserved Surface Protein Enolase Induces High and Broad Protection against Streptococcus Suis Serotypes 2, 7, and 9 in Mice. Vaccine 2020, 38, 6904–6910. [Google Scholar] [CrossRef]
- Zhang, A.; Xie, C.; Chen, H.; Jin, M. Identification of Immunogenic Cell Wall-associated Proteins of Streptococcus Suis Serotype 2. Proteomics 2008, 8, 3506–3515. [Google Scholar] [CrossRef]
- Zhu, Z.; Shi, Z.; Yan, W.; Wei, J.; Shao, D.; Deng, X.; Wang, S.; Li, B.; Tong, G.; Ma, Z. Nonstructural Protein 1 of Influenza A Virus Interacts with Human Guanylate-Binding Protein 1 to Antagonize Antiviral Activity. PLoS ONE 2013, 8, e55920. [Google Scholar] [CrossRef]
- Goyette-Desjardins, G.; Auger, J.-P.; Xu, J.; Segura, M.; Gottschalk, M. Streptococcus Suis, an Important Pig Pathogen and Emerging Zoonotic Agent—An Update on the Worldwide Distribution Based on Serotyping and Sequence Typing. Emerg. Microbes Infect. 2014, 3, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A Server for Prediction of Protective Antigens, Tumour Antigens and Subunit Vaccines. BMC Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, K.-J.; Cheng, L.-T.; Lee, J.-W.; Chung, Y.-C.; Chung, W.-B.; Chu, C.-Y. Immunization with Streptococcus Suis Bacterin plus Recombinant Sao Protein in Sows Conveys Passive Immunity to Their Piglets. BMC Vet. Res. 2016, 13, 15. [Google Scholar] [CrossRef] [PubMed]
- Kak, G.; Raza, M.; Tiwari, B.K. Interferon-Gamma (IFN-γ): Exploring Its Implications in Infectious Diseases. Biomol. Concepts 2018, 9, 64–79. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Niu, X.; Mei, W.; Li, W.; Liu, Y.; Willias, S.P.; Yuan, C.; Bei, W.; Wang, X.; Li, J. Immunogenicity and Protective Capacity of EF-Tu and FtsZ of Streptococcus Suis Serotype 2 against Lethal Infection. Vaccine 2018, 36, 2581–2588. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Kong, X.; Wang, Z.; Li, M.; Tan, Z.; Zhang, W. Evaluation of the Immunogenicity and Protective Ability of a Pili Subunit, SBP2’, of Streptococcus Suis Serotype 2. Res. Vet. Sci. 2021, 137, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Du, Y.; Mao, C.; Li, J.; Jin, M.; Sun, L.; Wang, Y. Immunogenicity and Protective Ability of RpoE against Streptococcus Suis Serotype 2. J. Appl. Microbiol. 2021, 130, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Dresen, M.; Valentin-Weigand, P.; Berhanu Weldearegay, Y. Role of Metabolic Adaptation of Streptococcus Suis to Host Niches in Bacterial Fitness and Virulence. Pathogens 2023, 12, 541. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Pan, X.; Li, X.; Liu, W.; Han, M.; Wang, C.; Wang, J.; Zheng, F.; Cao, M.; Tang, J. HtpS, a Novel Immunogenic Cell Surface-Exposed Protein of Streptococcus Suis, Confers Protection in Mice: HtpS Confers Protection in Mice. FEMS Microbiol. Lett. 2011, 314, 174–182. [Google Scholar] [CrossRef]
- Li, J.; Xia, J.; Tan, C.; Zhou, Y.; Wang, Y.; Zheng, C.; Chen, H.; Bei, W. Evaluation of the Immunogenicity and the Protective Efficacy of a Novel Identified Immunogenic Protein, SsPepO, of Streptococcus Suis Serotype 2. Vaccine 2011, 29, 6514–6519. [Google Scholar] [CrossRef]
- Zhang, Y.-M.; Shao, Z.-Q.; Wang, J.; Wang, L.; Li, X.; Wang, C.; Tang, J.; Pan, X. Prevalent Distribution and Conservation of Streptococcus Suis Lmb Protein and Its Protective Capacity against the Chinese Highly Virulent Strain Infection. Microbiol. Res. 2014, 169, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Holt, M.E.; Enright, M.R.; Alexander, T.J. Immunisation of pigs with killed cultures of Streptococcus suis type 2. Res. Vet. Sci. 1990, 48, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Esgleas, M.; Dominguez-Punaro, M.D.L.C.; Li, Y.; Harel, J.; Dubreuil, J.D.; Gottschalk, M. Immunization with SsEno Fails to Protect Mice against Challenge with Streptococcus Suis Serotype 2. FEMS Microbiol. Lett. 2009, 294, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Pan, X.; Sun, W.; Wang, C.; Zhang, H.; Li, X.; Ma, Y.; Shao, Z.; Ge, J.; Zheng, F.; et al. Streptococcus Suis Enolase Functions as a Protective Antigen Displayed on the Bacterial Cell Surface. J. Infect. Dis. 2009, 200, 1583–1592. [Google Scholar] [CrossRef] [PubMed]
- Sharon, J.; Rynkiewicz, M.J.; Lu, Z.; Yang, C. Discovery of Protective B-Cell Epitopes for Development of Antimicrobial Vaccines and Antibody Therapeutics. Immunology 2014, 142, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Liu, K.; Jiang, Y.; Wei, J.-C.; Chen, P.-Y. Multiple Linear B-Cell Epitopes of Classical Swine Fever Virus Glycoprotein E2 Expressed in E. coli as Multiple Epitope Vaccine Induces a Protective Immune Response. Virol. J. 2011, 8, 378. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Prakash, J.; Shukla, H.; Das, K.C.; Tripathi, T.; Dubey, V.K. Design of a Multi-Epitope Subunit Vaccine for Immune-Protection against Leishmania Parasite. Pathog. Glob. Health 2020, 114, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-J.; Zhang, J.-Y.; Wei, C.; Yang, L.-Y.; Zuo, Q.-F.; Zhuang, Y.; Feng, Y.-J.; Srinivas, S.; Zeng, H.; Zou, Q.-M. Immunisation with Immunodominant Linear B Cell Epitopes Vaccine of Manganese Transport Protein C Confers Protection against Staphylococcus Aureus Infection. PLoS ONE 2016, 11, e0149638. [Google Scholar] [CrossRef]
- Kong, L.; Wang, Z.; Sun, J. Tandem protective epitope of Streptococcus suis and the immunoprotective efficacy in mice. J. Shanghai Jiaotong Univ. Agric. Sci. 2019, 37, 1–8. [Google Scholar]
No. | Position | Amino Acid Sequence | Length | Recognized by Positive Sera |
---|---|---|---|---|
EP1 | 83-99 | SLDNQSGSAPDVMMAPY | 17 | Yes |
EP2 | 110-126 | QLSELTADDSKADDTTT | 17 | No |
EP3 | 233-247 | KTWYEKWPQGLQDGT | 15 | No |
EP4 | 268-282 | GPWKAASYKEAGVNY | 15 | No |
EP5 | 342-357 | ANTEAREYAVSKKDEL | 16 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Pan, R.; Zhang, J.; Sun, J.; Ma, X.; Dong, N.; Yao, X.; Wei, J.; Liu, K.; Qiu, Y.; et al. Immunogenicity and Protective Capacity of Sugar ABC Transporter Substrate-Binding Protein against Streptococcus suis Serotype 2, 7 and 9 Infection in Mice. Vaccines 2024, 12, 544. https://doi.org/10.3390/vaccines12050544
Yan Z, Pan R, Zhang J, Sun J, Ma X, Dong N, Yao X, Wei J, Liu K, Qiu Y, et al. Immunogenicity and Protective Capacity of Sugar ABC Transporter Substrate-Binding Protein against Streptococcus suis Serotype 2, 7 and 9 Infection in Mice. Vaccines. 2024; 12(5):544. https://doi.org/10.3390/vaccines12050544
Chicago/Turabian StyleYan, Zujie, Ruyi Pan, Junjie Zhang, Jianhe Sun, Xiaochun Ma, Nihua Dong, Xiaohui Yao, Jianchao Wei, Ke Liu, Yafeng Qiu, and et al. 2024. "Immunogenicity and Protective Capacity of Sugar ABC Transporter Substrate-Binding Protein against Streptococcus suis Serotype 2, 7 and 9 Infection in Mice" Vaccines 12, no. 5: 544. https://doi.org/10.3390/vaccines12050544
APA StyleYan, Z., Pan, R., Zhang, J., Sun, J., Ma, X., Dong, N., Yao, X., Wei, J., Liu, K., Qiu, Y., Sealey, K., Nichols, H., Jarvis, M. A., Upton, M., Li, X., Ma, Z., Liu, J., & Li, B. (2024). Immunogenicity and Protective Capacity of Sugar ABC Transporter Substrate-Binding Protein against Streptococcus suis Serotype 2, 7 and 9 Infection in Mice. Vaccines, 12(5), 544. https://doi.org/10.3390/vaccines12050544