Protective Effect of Aqueous Extract from the Leaves of Justicia tranquebariesis against Thioacetamide-Induced Oxidative Stress and Hepatic Fibrosis in Rats
<p>Leaves of <span class="html-italic">Justicia tranquebariensis</span> L.</p> "> Figure 2
<p>(<b>A</b>–<b>G</b>) Effects of <span class="html-italic">Justicia tranquebariesis</span> L. on liver lipid peroxidation and antioxidant enzyme activities in TAA intoxicated rats. Values are expressed as mean ± S.D. for six animals in each group. Values not sharing a common superscript (a–e) differ significantly. Letter “a” is significant to b, c, d, and e; likewise the letter “b” is significant to a, c, d and e. LPO—lipid peroxidation; TBA—thiobarbituric acid; SOD—superoxide dismutase; CAT—catalase; GPx—glutathione peroxidase; GR—glutathione reductase; NADPH—nicotinamide dinucleotide phosphatase; GST—glutathione transferase; CDNB—1-chloro-2,4-dinitrobenzene; GSH—glutathione.</p> "> Figure 3
<p>(<b>A</b>,<b>B</b>) Effects of <span class="html-italic">Justicia tranquebariesis</span> L. on hepatic markers and TB in TAA intoxicated rats. Values are expressed as mean ± S.D. for six animals in each group. Values not sharing a common superscript (a–d) differ significantly. Letter “a” is significant to b, c, and d; likewise a letter “b” is significant to a, c, and d. TB—total bilirubin; ALT—alanine aminotransferase; AST—aspartate aminotransferase; ALP—alkaline phosphatase; GGT—gamma-glutamyltransferase.</p> "> Figure 4
<p>Micrographs showing the effect of <span class="html-italic">Justicia tranquebariensis</span> on TAA-induced hepatic fibrosis in rats. (<b>A</b>) Section of normal control rats showing the histological appearance of hepatocytes with prominent nuclei and cytoplasm (H&E. 400×); (<b>B</b>) Section of <span class="html-italic">J. tranquebariensis</span> (400 mg/kg bw/p.o.) treated control rats showing the histological appearance of hepatocytes with prominent nuclei and cytoplasm (H&E. 400×); (<b>C</b>) Section of TAA (100 mg/kg bw/s.c.) treated control showing fatty degeneration of some hepatocytes, Kupfer cells characterized by cell swelling, the replacement of the cytoplasm with a clear fluid and a centrally located nucleus (↑↑ blue), loss of cell boundaries, hepatic necrosis, collagen and fibronectin deposition and inflammatory cell infiltration (H&E. 400×); (<b>D</b>) Section of TAA (100 mg/kg bw/s.c.) plus <span class="html-italic">J. tranquebariensis</span> (400 mg/kg bw/p.o.) treated rats showing regenerated cells and the almost normal architecture of the liver (↑ violet) with a decrease in collagen and fibronectin deposition (H&E. 400×); (<b>E</b>) Section of TAA (100 mg/kg bw/s.c.) plus silymarin (50 mg/kg bw)-treated rats showing regenerated cells and the almost normal architecture of the liver (↑ violet) with decrease in collagen and fibronectin deposition (H&E. 400×).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Preparation
2.2. Animals
2.3. Chemicals
2.4. Dose Determination
2.5. Experimental Design
2.6. Biochemical Parameters
2.7. Histological Investigations
2.8. Statistical Analysis
3. Results
3.1. Effects of J. tranquebariensis on Hepatic TBARS and Antioxidant Enzymes
3.2. Effects of J. tranquebariensis on Liver Marker Enzymes and Total Bilirubin
3.3. Histological Observation
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALP | alkaline phosphatase |
ALT | alanine transaminase |
ANOVA | one-way analysis of variance |
AST | aspartate transaminase |
bw | body weight |
CAT | catalase |
CDNB | 1-chloro-2,4-dinitrobenzene |
DMART | Duncan’s Multiple Range Test |
GGT | gamma glutamyl transpeptidase |
GPx | glutathione peroxidase |
GR | glutathione reductase |
GSH | reduced glutathione |
GST | glutathione s-transferase |
H&E | hematoxylin and eosin |
Kg | kilogram |
LPO | lipid peroxidation |
mg | milligram |
NADPH | nicotinamide adenine dinucleotide hydrogen phosphate |
ROS | reactive oxygen species |
s.c. | subcutaneous |
S.D. | standard deviation |
SOD | superoxide dismutase |
SPSS | Statistical Package for the Social Sciences |
TAA | thioacetamide |
TB | total bilirubin |
TBA | thiobarbituric acid |
TBARS | thiobarbituric acid reactive substances |
RNS | reactive nitrogen species |
CYP2E1 | cytochrome P450 2E1 |
References
- Kaur, V.; Kumar, M.; Kaur, P.; Kaur, S.; Singh, A.P.; Kaur, S. Hepatoprotective activity of Butea monosperma bark against thioacetamide-induced liver injury in rats. Biomed. Pharmacother. 2017, 89, 332–341. [Google Scholar] [CrossRef] [PubMed]
- El-Mihi, K.A.; Kenawy, H.I.; El-Karef, A.; Elsherbiny, N.M.; Eissa, L.A. Naringin attenuates thioacetamide-induced liver fibrosis in rats through modulation of the PI3K/Akt pathway. Life Sci. 2017, 187, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Fallowfield, J.A.; Kendall, T.J.; Iredale, J.P. Reversal of fibrosis: No longer a pipe dream? Clin. Liver Dis. 2006, 10, 481–497. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.H.; Pinzani, M. Reversal of liver fibrosis. Saudi J. Gastroenterol. 2009, 15, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Schuppan, D.; Ashfaq-Khan, M.; Yang, A.T.; Kim, Y.O. Liver fibrosis: Direct antifibrotic agents and targeted therapies. Matrix Biol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Sebastiani, G.; Gkouvatsos, K.; Pantopoulos, K. Chronic hepatitis C and liver fibrosis. World J. Gastroenterol. 2014, 20, 11033–11053. [Google Scholar] [CrossRef] [PubMed]
- Al-Attar, A.M.; Al-Rethea, H.A. Chemoprotective effect of omega-3 fatty acids on thioacetamide-induced hepatic fibrosis in male rats. Saudi J. Biol. Sci. 2017, 24, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, K.; Sukalingam, K.; Xu, B. Solanum trilobatum L. ameliorate thioacetamide-induced oxidative stress and hepatic damage in albino rats. Antioxidants 2017, 6, 68. [Google Scholar] [CrossRef] [PubMed]
- Bashandy, S.A.; Alaamer, A.; Moussa, S.A.; Omara, E. Role of zinc oxide nanoparticles in alleviating hepatic fibrosis and nephrotoxicity induced by thioacetamide in rats. Can. J. Physiol. Pharmacol. 2017, 16, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.M.; Wang, X.; Wang, L.; Ma, X.W.; Wu, H.; Bu, H.R.; Xie, X.Y.; Qi, J.N.; Zhu, Q. Efficacy and safety of combination therapy of chemoembolization and radiofrequency ablation with different time intervals for hepatocellular carcinoma patients. Surg. Oncol. 2017, 26, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Rehman, J.; Akhtar, N.; Asif, H.M.; Sultana, S.; Ahmad, M. Hepatoprotective evaluation of aqueous-ethanolic extract of Capparis decidua (Stems) in paracetamol-induced hepatotoxicity in experimental rabbits. Pak. J. Pharm. Sci. 2017, 30, 507–511. [Google Scholar] [PubMed]
- Prajapathi, N.D.; Purohit, S.S.; Sharma, A.K.; Kumar, T. A Hand Book of Medicinal Plants: A Complete Source of Book, 1st ed.; Agrobios Publisher: Jodhpur, India, 2003; p. 554. ISBN 13: 978-8177541342. [Google Scholar]
- Sekhar, J.; Penchala Pratap, G.; Sudarsanam, G.; Prasad, G.P. Ethnic information on treatments for snake bites in Kadapa district of Andhra Pradesh. Life Sci. Leaflet 2011, 12, 368–375. [Google Scholar]
- Akilandeswari, S.; Kumarasundari, S.K.; Valarmath, R.; Manimaran, S.; Sivakumar, M. Studies on anti-inflammatory activity of leaf extract of Justicia tranquebariensis L. Indian J. Nat. Prod. 2001, 17, 14–16. [Google Scholar]
- Begum, M.S.; Ilyas, M.H.M.; Burkanudeen, A. Antipyretic activity of extract of leaves of Justicia tranquebariensis (Linn) in albino mice. Pharmacist 2009, 4, 49–51. [Google Scholar]
- Raju, G.V.S.; Pillai, K.R. Lignans from Justicia tranquebariensis Linn. Indian J. Chem. 1989, 28, 558–561. [Google Scholar]
- Balamurugan, G.; Arunkumar, M.P.; Muthusamy, P.; Anbazhagan, S. Preliminary phytochemical screening, free radical scavenging and antimicrobial activities of Justicia tranquebariensis L. Res. J. Pharm. Technol. 2008, 1, 116–118. [Google Scholar]
- Begum, M.S.; Ilyas, M.H.M.; Burkanudeen, A. Protective and curative effects of Justicia tranquebariensis (Linn) leaves in acetaminophen-induced hepatotoxicity. Int. J. Pharm. Biol. Arch. 2011, 2, 989–995. [Google Scholar]
- Kantah, M.K.; Kobayashi, R.; Sollano, J.; Naito, Y.; Solimene, U.; Jains, S.; Catanzaro, R.; Minelli, E.; Polimeni, A.; Marotta, F. Hepatoprotective activity of a phytotherapeutic formula on thioacetamide-induced liver fibrosis model. Acta Biomed. 2011, 82, 82–89. [Google Scholar] [PubMed]
- Kumar, G.; Banu, G.S.; Pappa, P.V.; Sundararajan, M.; Pandian, M.R. Hepatoprotective activity of Trianthema portulacastrum L. against paracetamol and thioacetamide intoxication in albino rats. J. Ethnopharmacol. 2004, 92, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.K. Colorimetric assay of catalase. Anal. Biochem. 1972, 47, 389–394. [Google Scholar] [CrossRef]
- Bellomo, G.; Mirabelli, F.; DiMonte, D.; Richelmi, P.; Thor, H.; Orrenius, C.; Orrenius, S. Formation and reduction of glutathione-protein mixed disulfides during oxidative stress: A study with isolated hepatocytes and menadione (2-methyl-1,4-naphthoquinone). Biochem. Pharmacol. 1987, 36, 1313–1320. [Google Scholar] [CrossRef]
- Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: Biochemical role as a component of glutathione peroxidase. Science 1973, 179, 588–590. [Google Scholar] [CrossRef] [PubMed]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [PubMed]
- Moron, M.S.; Depierre, J.W.; Mannervik, B.; Moron, M.S.; Depierre, J.W.; Mannervik, B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim. Biophys. Acta 1979, 582, 67–78. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [PubMed]
- Kumar, G.; Banu, G.S.; Pandian, M.R. Biochemical activity of selenium and glutathione on country made liquor (CML) induced hepatic damage in rats. Indian J. Clin. Biochem. 2007, 22, 105–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.L.; Lin, H.W.; Chen, Y.C.; Yang, D.J.; Li, C.C.; Chang, Y.Y. Hepatoprotective effects of naturally fermented noni juice against thioacetamide-induced liver fibrosis in rats. J. Chin. Med. Assoc. 2017, 80, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Banu, G.S.; Kannan, V. Effects of Arrack on liver protein of Mus musculus. J. Ecobiol. 2006, 18, 321–324. [Google Scholar]
- Vakiloddin, S.; Fuloria, N.; Fuloria, S.; Dhanaraj, S.A.; Balaji, K.; Karupiah, S. Evidences of hepatoprotective and antioxidant effect of Citrullus colocynthis fruits in paracetamol-induced hepatotoxicity. Pak. J. Pharm. Sci. 2015, 28, 951–957. [Google Scholar] [PubMed]
- Simeonova, R.; Bratkov, V.M.; Kondeva-Burdina, M.; Vitcheva, V.; Manov, V.; Krasteva, I. Experimental liver protection of n-butanolic extract of Astragalus monspessulanus L. on carbon tetrachloride model of toxicity in rat. Redox Rep. 2015, 20, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Banu, G.S.; Kannan, V.; Pandian, M.R. Antihepatotoxic effect of β-carotene on paracetamol induced hepatic damage in rats. Indian J. Exp. Biol. 2005, 43, 351–355. [Google Scholar] [PubMed]
- Kumar, G.; Banu, G.S.; Balapala, K.R. Ameliorate the effect of Solanum trilobatum L. on hepatic enzymes in experimental diabetes. Nat. Prod. Indian J. 2011, 7, 315–319. [Google Scholar]
- Miguel, F.M.; Schemitt, E.G.; Colares, J.R.; Hartmann, R.M.; Morgan-Martins, M.I.; Marroni, N.P. Action of vitamin E on experimental severe acute liver failure. Arq. Gastroenterol. 2017, 54, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Thakare, V.N.; Aswar, M.K.; Kulkarni, Y.P.; Patil, R.R.; Patel, B.M. Silymarin ameliorates experimentally induced depressive-like behavior in rats: Involvement of hippocampal BDNF signaling, inflammatory cytokines, and oxidative stress response. Physiol. Behav. 2017, 179, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Vahabzadeh, M.; Amiri, N.; Karimi, G. Effects of Silymarin on the Metabolic Syndrome; a Review. J. Sci. Food Agric. 2018. [Google Scholar] [CrossRef] [PubMed]
- Mazhari, S.; Razi, M.; Sadrkhanlou, R. Silymarin and celecoxib ameliorate experimental varicocele-induced pathogenesis: Evidences for oxidative stress and inflammation inhibition. Int. Urol. Nephrol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Taleb, A.; Ahmad, K.A.; Ihsan, A.U.; Qu, J.; Lin, N.; Hezam, K.; Koju, N.; Hui, L.; Qilong, D. Antioxidant effects and mechanism of silymarin in oxidative stress-induced cardiovascular diseases. Biomed. Pharmacother. 2018, 102, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, R.; Karimi, J.; Khodadadi, I.; Tayebinia, H.; Kheiripour, N.; Hashemnia, M.; Goli, F. Silymarin ameliorates expression of urotensin II (U-II) and its receptor (UTR) and attenuates toxic oxidative stress in the heart of rats with type 2 diabetes. Biomed. Pharmacother. 2018, 101, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Eraky, S.M.; El-Mesery, M.; El-Karef, A.; Eissa, L.A.; El-Gayar, A.M. Silymarin and caffeine combination ameliorates experimentally-induced hepatic fibrosis through down-regulation of LPAR1 expression. Biomed. Pharmacother. 2018, 101, 49–57. [Google Scholar] [CrossRef] [PubMed]
- El-Newary, S.A.; Shaffie, N.M.; Omer, E.A. The protection of Thymus vulgaris leaves alcoholic extract against hepatotoxicity of alcohol in rats. Asian Pac. J. Trop. Med. 2017, 10, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Fraschini, F.; Demartini, G.; Esposti, D. Pharmacology of silymarin. Clin. Drug Investig. 2002, 22, 51–65. [Google Scholar] [CrossRef]
- Crocenzi, F.A.; Roma, M.G. Silymarin as a new hepatoprotective agent in experimental cholestasis: New possibilities for an ancient medication. Curr. Med. Chem. 2006, 13, 1055–1074. [Google Scholar] [CrossRef] [PubMed]
- Gazák, R.; Walterová, D.; Kren, V. Silybin and silymarin-New and emerging applications in medicine. Curr. Med. Chem. 2007, 14, 315–338. [Google Scholar] [CrossRef] [PubMed]
- Harati, K.; Behr, B.; Wallner, C.; Daigeler, A.; Hirsch, T.; Jacobsen, F.; Renner, M.; Harati, A.; Lehnhardt, M.; Becerikli, M. Anti-proliferative activity of epigallocatechin-3-gallate and silibinin on soft tissue sarcoma cells. Mol. Med. Rep. 2017, 15, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Salama, S.M.; Abdulla, M.A.; Alrashdi, A.S.; Hadi, A.H. Mechanism of hepatoprotective effect of Boesenbergia rotunda in thioacetamide-induced liver damage in rats. Evid. Based Complement. Altern. Med. 2013, 2013, 157456. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukalingam, K.; Ganesan, K.; Xu, B. Protective Effect of Aqueous Extract from the Leaves of Justicia tranquebariesis against Thioacetamide-Induced Oxidative Stress and Hepatic Fibrosis in Rats. Antioxidants 2018, 7, 78. https://doi.org/10.3390/antiox7070078
Sukalingam K, Ganesan K, Xu B. Protective Effect of Aqueous Extract from the Leaves of Justicia tranquebariesis against Thioacetamide-Induced Oxidative Stress and Hepatic Fibrosis in Rats. Antioxidants. 2018; 7(7):78. https://doi.org/10.3390/antiox7070078
Chicago/Turabian StyleSukalingam, Kumeshini, Kumar Ganesan, and Baojun Xu. 2018. "Protective Effect of Aqueous Extract from the Leaves of Justicia tranquebariesis against Thioacetamide-Induced Oxidative Stress and Hepatic Fibrosis in Rats" Antioxidants 7, no. 7: 78. https://doi.org/10.3390/antiox7070078
APA StyleSukalingam, K., Ganesan, K., & Xu, B. (2018). Protective Effect of Aqueous Extract from the Leaves of Justicia tranquebariesis against Thioacetamide-Induced Oxidative Stress and Hepatic Fibrosis in Rats. Antioxidants, 7(7), 78. https://doi.org/10.3390/antiox7070078