Syzyguim guineense Extracts Show Antioxidant Activities and Beneficial Activities on Oxidative Stress Induced by Ferric Chloride in the Liver Homogenate
Abstract
:1. Introduction
2. Material and Methods
2.1. Extraction and Preparation of Extract Solution
2.2. Determination of the Free Radical Scavenging Potential of the Samples
2.2.1. Scavenging Activity of DPPH Radical
2.2.2. Scavenging Effect of the ABTS+ Radical
2.2.3. Nitric Oxide Scavenging Activity
2.2.4. Hydroxyl Radical Scavenging Activity
2.3. Determination of the Total Antioxidant Potential of the Different Samples
2.3.1. Total Antioxidant Activity by Ferric Reducing Antioxidant Power Assay (FRAP)
2.3.2. Phosphomolybdenum Total Antioxidant Assay (PPMB)
2.3.3. Reducing Power Assay
2.4. Determination of the Phenolic Content of the Extracts
2.4.1. Total Phenol Determination
2.4.2. Determination of Total Flavonoid Content
2.4.3. Determination of Total Flavonols
2.4.4. Phytochemical Analysis
2.5. Protective Properties of the Plant against Oxidative Damage
2.5.1. Preparation of Liver Homogenate
2.5.2. Preparation of the Pro-Oxidative Solution
2.5.3. Total Protein Content
2.5.4. In vitro Lipid Peroxidation Assay
2.5.5. Determination of Peroxidase Activity
2.5.6. Determination of Catalase Activity
2.5.7. Superoxide Dismutase (SOD) Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Extraction
Extracts | Yield of Extraction | ||
---|---|---|---|
EtOH/H2O | MeOH | ||
S. guineense | Leaves | 15.6% | 6.67% |
Bark | 16% | 6.67% | |
Roots | 10.4% | 5% |
3.2. Phytochemical Extracts
Phytochemical Compounds | EtOH/H2O | MeOH | ||||
---|---|---|---|---|---|---|
Leaves | Bark | Roots | Leaves | Bark | Roots | |
Sugars | + | + | + | + | + | + |
Proteins | + | + | + | + | + | + |
+ | + | + | + | + | + | |
Lipids | + | + | + | + | + | + |
Alkaloids | + | + | + | + | + | + |
Saponins | + | + | + | + | + | + |
Stéroids/terpenoids | + | + | + | + | + | + |
Cardiac glycosides | + | + | + | + | + | + |
Tannins | + | + | + | + | + | + |
Resins | − | − | − | − | − | − |
Acids | − | − | − | − | − | − |
Coumarins | − | + | − | − | − | − |
3.3. Results of the Antioxidant Capacity of the Extracts of S. guineense
Solvents | Extracts | Total polyphenols (mg of QE/gDM) | Flavonoids (mg of QE/gDM) | Flavonols (mg of QE/gDM) |
---|---|---|---|---|
EtOH/H2O | Leaves | 2.59 ± 0.03 a,* | 0.35 ± 0.04 a,* | 0.0187 ± 0.003 * |
Bark | 4.67 ± 0.11 b,* | 0.79 ± 0.01 b,* | 0.0200 ± 0.003 * | |
Roots | 2.9 ± 0.17 a,* | 0.25 ± 0.02 c,* | 0.0245 ± 0.001 * | |
MeOH | Leaves | 1.6 ± 0.05 b | 0.06 ± 0.01 a | 0.0069 ± 0.002 |
Bark | 4.19 ± 0.05 a | 0.58 ± 0.04 b | 0.0054 ± 0.001 | |
Roots | 0.38 ± 0.04 c | 0.05 ± 0.01 a | 0.0081 ± 0.002 |
Solvents | Extracts | FRAP (mg AAE/gDM) | PPMB (mg AAE/gDM) |
---|---|---|---|
EtOH/H2O | Leaves | 8907.4 ± 30.6 a | 4000 ± 157.14 a,*,α |
Bark | 9131.48 ± 84.13 a | 8150 ± 135.71 b,α | |
Roots | 9009.26 ± 87.9 b,* | 5664.29 ± 64.29 c,*,α | |
MeOH | Leaves | 8850 ± 28.87 a,α | 1442.86 ± 71.43 a,α |
Bark | 9172.22 ± 78.37 b,α | 8042.86 ± 42.86 b,α | |
Roots | 1859.26 ± 50.1 c,α | 1114.29 ± 103.02 a,α | |
Vit C | 9009.26 ± 42.43 | 5964.29 ± 78.57 |
3.4. Antioxidant Activities of the Extracts of S. guieneense by Radical Scavenging
Solvents | Extracts | Correlation Coefficient ( R2) | |||||
---|---|---|---|---|---|---|---|
FRAP | PPMB | DPPH | ABTS | OH | NO | ||
EtOH/H2O | Leaves | −0.846 | 0.999 * | −0.839 | 0.696 | −0.371 | −0.031 * |
Bark | −0.068 | −0.318 | 0.133 | 0.972 | −0.445 | 0.869 | |
Roots | 0.694 | 0.999 * | 0.280 | −0.567 | 0.863 | −0.313 | |
MeOH | Leaves | −0.938 | 0.638 | −0.638 | 0.973 | 0.681 | 0.213 |
Bark | 0.425 | 0.999 * | 0.747 | −0.488 | −0.981 | −0.695 | |
Roots | 0.998 * | −0.592 | −0.515 | −0.796 | −0.750 | −0.412 |
Solvents | Fifty Percent Inhibitory Concentraion (μg/mL) | ||||
---|---|---|---|---|---|
DPPH | ABTS | OH | NO | ||
EtOH/H2O | Leaves | 5.67 ± 0 a,*,α | 92.8 ± 2.01 a,*,α | 274.4 ± 5.94 a,α | 276.19 ± 21 a,* |
Bark | 5.52 ± 0.02 b,α | 16.25 ± 0.12 b,*,α | 126.35 ± 1.79 b,α | 364.56 ± 10.79 b,α | |
Roots | 5.66 ± 0.04 a,*,α | 116.69 ± 3.61 c,*,α | 131.67 ± 2.03 c,*,α | 370.34 ± 5.96 b,*,α | |
MeOH | Leaves | 5.86 ± 0.01 a,α | 64.07 ± 1.25 a,α | 264.85 ± 11.83 a,α | 527.62 ± 2.25 a,α |
Bark | 5.55 ± 0.02 b,α | 14.67 ± 0.12 b,α | 126.61 ± 1.23 b | 368.35 ± 6.21 b,α | |
Roots | 6.01 ± 0.03 c,α | 393.98± 22.06 c,α | 240.4 ± 4.29 a,α | 397.16 ± 8.52 b,α | |
Vit C | 5.35 ± 0.01 | 12.73 ± 0.3 | 112.74 ± 1.73 | 257.74 ± 1.73 |
3.5. Protective Effect of Extracts of S. guineensis on Some Markers Involved on Oxidative Stress
Solvents | Parts of Plant | SOD (μmol/min/mg of Protein) | CAT (μmol/min/mg of Protein) | Peroxidase (μmol/min/mg of Protein) | MDA (μmol/mg of Protein) |
---|---|---|---|---|---|
EtOH/H2O | Leaves | 0.0522 ± 0.012 * | 0.65 ± 0.08 * | 52 ± 5.2 | 50.82 ± 0.66 *,a |
Bark | 0.0291 ± 0.0020 * | 0.61 ± 0.05 * | 67 ± 4.5 | 73.71 ± 4.33 *,b | |
Roots | 0.0097 ± 0.0005 | 0.71 ± 0.11 * | 61 ± 5.7 | 53.7 ± 1.52 *,a | |
MeOH | Leaves | 0.0135 ± 0.0034 | 0.98 ± 0.02 *,a | 62 ± 5.5 | 67.67 ± 3.67 *,a |
Bark | 0.0174 ± 0.0002 | 1.14 ± 0.08 *,b | 83 ± 5.5 * | 74.43 ± 2.64 *,b | |
Roots | 0.0193 ± 0.0001 | 1.42 ± 0.12 *,b,c | 58 ± 0.6 | 73.43 ± 0.1 *,b | |
Nor | 0.1082 ± 0.0005 | 1.59 ± 0.15 | 423 ± 49.99 | 74.72 ± 4.75 | |
Ctrl Neg | 0.0251 ± 0.0041 | 0.32 ± 0.02 | 52 ± 11.4 | 122.95 ± 1.09 | |
VitC | 0.0174 ± 0.0002 | 0.66 ± 0.06 * | 54 ± 0.1 | 70.98 ± 1.8 * |
4. Conclusions
Abbreviations
DPPH | 2,2-diphenyl-1-picrylhydrazyl, 1,1-diphenyl-2-picrylhydrazyl radical |
FRAP | Ferric Reducing Ability power |
ABTS | 2,2 -Azinobis(3-ethylbenzthiazoline)-6-sulfonic acid |
BHT | Butylated hydroxytoluene |
Vit C | Vitamine C |
MDA | Malondialdehyde |
TBA | Thiobarbituric acid |
SNP | Sodium nitroprusside |
SNP | Sodium nitroprusside |
SOD | Superoxide dismutase |
Acknowledgements
Author Contributions
Conflict of Interests
References
- Dhalla, N.S.; Temsah, R.M.; Netticadan, T. Role of oxidative stress in cardiovascular diseases. J. Hypertens. 2000, 18, 655–673. [Google Scholar] [CrossRef]
- Bokov, A.; Chaudhuri, A.; Richardson, A. The role of oxidative damage and stress in aging. Mech. Ageing Dev. 2004, 125, 811–826. [Google Scholar] [CrossRef]
- Madamanchi, N.R.; Vendrov, A.; Runge, M.S. Oxidative stress and vascular disease. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 29–38. [Google Scholar] [PubMed]
- Pham-Huy, A.L.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar] [PubMed]
- Habibur, R.; Manjula, K.; Anoosha, T.; Nagaveni, K.; Chinna Eswaraiah, M.; Dipankar, B. In vitro antioxidant activity of Citrullus lanatus seed extracts. Asian J. Pharm. Clin. Res. 2013, 6, 152–157. [Google Scholar]
- Devasagayam, A.P.T.; Tilak, C.J.; Boloor, K.K.; Sane, S.K.; Ghaskadbi, S.S.; Lele, D.R. Free radicals and antioxidants in human health: Current status and future prospects. J. Assoc. Physicians India 2004, 52, 794–804. [Google Scholar] [PubMed]
- Pandey, A.K.; Mishra, A.K.; Mishra, A. Antifungal and antioxidative potential of oil and extracts derived from leaves of Indian spice plant Cinnamomum tamala. Cell. Mol. Biol. 2012, 58, 142–147. [Google Scholar] [PubMed]
- Vinson, J.A.; Liang, X.Q.; Proch, J.; Hontz, B.A.; Dancel, J.; Sandone, N. Polyphenols antioxidants in citrus juices in vitro and in vivo studies relevant to heart diseases. Adv. Exp. Med. Biol. 2002, 50, 5113–5122. [Google Scholar]
- Pier-Giorgio, P. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Sealbert, A.; Johnson, J.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81, 2155–2175. [Google Scholar]
- Tchobsala, D.; Mbolo, M. Characterization and impact of wood logging on plant formations in Ngaoundéré District, Adamawa Region, Cameroon. J. Ecol. Nat. Env. 2013, 5, 265–277. [Google Scholar] [CrossRef]
- Saka, J.D.K.; Msonthi, J.D. Nutritional value of edible fruits of indigenous wild stress in Malawi. For. Ecol. Manag. 1994, 64, 245–248. [Google Scholar] [CrossRef]
- Ambé, G.A. Wild edible fruits from Guinean savannas of Ivory Coast: State of knowledge by local Malinke population. Biotechnol. Agron. Soc. Environ. 2001, 5, 43–58. [Google Scholar]
- Segawa, P.S.; Kasenene, J.M. Plants for malaria treatment in Southern Uganda: traditional use, preference and ecological viability. J. Ethnobiol. 2007, 27, 110–131. [Google Scholar] [CrossRef]
- Hamil, F.A.; Apio, S.; Mubiru, N.K.; Mosango, M.; Bukenya-Ziraba, R.; Maganyi, O.W.; Soejarto, D.D. Traditional herbal drugs of southern Uganda, I. J. Ethnopharmacol. 2000, 70, 281–300. [Google Scholar] [CrossRef] [PubMed]
- Oluwolé, O.G.A.; Pricilla, S.D; Jerome, D.M.; Lydia, P.M. Some herbal remedies from Manzini region of Swaziland. J. Ethnopharmacol. 2002, 79, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Tsakala, T.M.; Penge, O.; John, K. Screening of in vitro antibacterial activity from Syzygium guineense (Willd) hydrosoluble dry extract. Ann. Pharm. Fr. 1996, 54, 276–279. [Google Scholar] [PubMed]
- Matig, O.E.; Ndoye, O.; Kengue, J.; Awono, A. Edible forest fruit of Cameroon. In Books IRAD, IPGRI and CIFOR Collaboration; IPGRI: Yaounde, Cameroon, 2006. [Google Scholar]
- Mukherjee, P.K.; Saha, K.; Murugesan, T.; Mandal, S.C.; Pal, M.; Saha, B.P. Screening of anti-diarrhoeal profile of some plant extracts of a specific region of West Bengal, India. J. Ethnopharmacol. 1998, 60, 85–89. [Google Scholar] [CrossRef]
- Ashebir, M.; Ashenafi, M. Assessment of the antibacterial activity of some traditional medicinal plants on some food-borne pathogens. Ethiop. J. Health Dev. 1999, 13, 211–216. [Google Scholar]
- Oketch-Rabah, H.A.; Dossaji, S.F. Molluscicides of plant origin: Molluscicidal activity of some Kenyan medicinal plants. South Afr. J. Sci. 1998, 94, 299–301. [Google Scholar]
- Djoukeng, J.D.; Abou-Mansour, E.; Tabacchi, R.; Tapondjou, A.L.; Boud, H.; Lontsi, D. Antibacterial triterpenes from Syzygium guineense (Myrtaceae). J. Ethnopharmacol. 2005, 101, 283–286. [Google Scholar] [CrossRef]
- Parakashtha, G.; Tom Erik, G.; Anders, R.; Mona, S.; Bent, R.; Drissa, D.; Terje Einar, M.; Marit, I.; Berit, S.P. Chemical composition and immunological activities of polysaccharides isolated from the Malian medicinal plant Syzygium guineense. J. Pharmacog. Phytoth. 2010, 2, 76–85. [Google Scholar]
- Ior, L.D.; Otimenyin, S.O.; Umar, M. Anti-inflammatory and analgesic activities of the ethanolic extract of the leaf of Syzygium guineense in rats and mice. IOSR J. Pharm. 2012, 33–36. [Google Scholar]
- Noudogbessi, J.P.; Yédomonhan, P.; Sohounhloué, D.C.K.; Chalchat, J.C.; Figuérédo, G. Chemical composition of essential oil of Syzygium guineense (Willd.) DC. var. guineense (Myrtaceae) from Benin. Rec. Nat. Prod. 2008, 2, 33–38. [Google Scholar]
- Molyneux, P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxydant activity. J. Sci. Tecnol. 2004, 26, 211–219. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Garratt, D. The Quantitative Analysis of Drugs; Chapman and Hall Ltd.: Tokyo, Japan, 1964; pp. 456–458. [Google Scholar]
- Yu, W.; Zhao, Y.; Shu, B. The radical scavenging activities of radix puerariae isoflavonoids: A chemiluminescence study. Food Chem. 2004, 86, 525–529. [Google Scholar] [CrossRef]
- Benzie, F.; Strain, J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectophotometric quantitative of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Japn. J. Nutr. Dietetics 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Singleton, V.; Draper, D. The transfer of polyphenolic compuonds from grape seeds into wine. Am. J. Enol. Vitic. 1964, 15, 34–40. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Kumaran, A.; Karunakaran, R. In vitro antioxidant activities of methanol extracts of Phyllanthus species from India. LWT-Food Sci. Technol. 2007, 40, 344–352. [Google Scholar] [CrossRef]
- Kumar, S.; Mishra, A.; Pandey, A.K. Antioxidant mediated protective effect of Parthenium. hysterophorus against oxidative damage using in vitro models. BMC Compl. Altern. Med. 2013, 13, 120. [Google Scholar] [CrossRef]
- Biapa, P.; Matei, H.; Bâlici, S.; Oben, J.; Ngogang, J. Protective effects of stem bark of Harungana. madgascariensis on the red blood cell membrane. BMC Compl. Altern. Med. 2013, 13, 1–9. [Google Scholar] [CrossRef]
- Misra, H.; Fridovich, I. Estimation of superoxide dismutase. J. Biochem. 1972, 247, 3170–3178. [Google Scholar]
- Antolovich, M.; Prenzler, P.; Patsalides, E.; McDonald, S.; Robards, K. Methods for testing antioxidant activity. Analyst 2001, 127, 183–198. [Google Scholar]
- Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef]
- Penchev, P.I. Study Methods of Extraction and Purification of Bioactive Products from Plants by Coupling of Separation Techniques for Low and High Pressures. Ph.D. Thesis, University of Toulouse, Toulouse, France, July 2010. [Google Scholar]
- Rice-Evans, C. Flavonoids antioxidants. Curr. Med. Chem. 2001, 8, 797–807. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Ali, S.I.; El-Baz, F.K. Antioxidant and antibacterial activities of crude extracts and essential oils of Syzygium. cumini Leaves. PLoS One 2013, 8, e60269. [Google Scholar] [CrossRef]
- Inchuen, S.; Narkrugsa, W.; Pornchaloempong, P. Effect of drying methods on chemical composition, color and antioxidant properties of Thai red curry powder. Kasetsart J. 2010, 44, 142–151. [Google Scholar]
- Hamrouni-Sellami, I.; Rahali, F.Z.; Rebey, I.B.; Bourgou, S.; Limam, F.; Marzouk, B. Total phenolics, flavonoids, and antioxidant activity of sage (Salvia officinalis L.) plants as affected by different drying methods. Food Bioprocess Technol. 2013, 6, 806–817. [Google Scholar] [CrossRef]
- Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 1992, 40, 945–948. [Google Scholar] [CrossRef]
- Sunayana, S.; Verma, H.N. Antioxidant activity of Benincasa Hispida Seeds: Antioxidant activity of Benincasa hispida. J. Nat. Prod. Plant Resour. 2013, 3, 34–37. [Google Scholar]
- Sepici-Dincel, A.; Açıkgöz, Ş.; Çevik, C.; Sengelen, M.; Yeşilada, E. Effects of in vivo antioxidant enzyme activities of myrtle oil in normoglycaemic and alloxan diabetic rabbits. J. Ethnopharmacol. 2007, 110, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Adedapo, A.A.; Jimoh, F.O.; Afolayan, A.J.; Masika, P.J. Antioxidant activities and phenolic contents of the methanol extracts of the stems of Acokanthera. oppositifolia and Adenia. gummifera. BMC Compl. Altern. Med. 2008, 8, 1–7. [Google Scholar] [CrossRef]
- Debosree, G.; Syed, B.F.; Elina, M.; Monalisa, D.; Debasish, B. Protective effect of aqueous leaf extract of Murraya koenigi against lead induced oxidative stress in rat liver, heart and kidney: A dose response study. Asian J. Pharm. Clin. Res. 2012, 5, 54–58. [Google Scholar]
- Flora, S.J.S.; Pande, M.; Kannan, G.M.; Mehta, A. Lead induced oxidative stress and its recovery following co-administration of melatonin or N-acetycysteine during chelation with succimer in male rats. Cell. Mol. Biol. 2004, 50, 543–551. [Google Scholar] [PubMed]
- Chattopadhyay, A.; Biswas, S.; Bandyopadhyay, D.; Sarkar, C.; Datta, A.G. Effect of isoproterenol on lipid peroxidation and antioxidant enzymes of myocardial tissue of mice and protection by quinidine. Mol. Cell. Biochem. 2003, 245, 43–49. [Google Scholar] [CrossRef]
- Henry, W.L.; Chao-Lin, K.; Wen-Hu, Y.; Chia-Hsien, L.; Hong-Zin, L. Antioxidant enzymes activity involvement in luteolin-induced human lung squamous carcinoma CH27 cell apoptosis. Eur. J. Pharmacol. 2006, 534, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, D.; Roy, S.G.; Bandyopadhyay, A.; Chatyopadhyay, A.; Basu, A.; Mitra, E.; Ghosh, A.K.; Reiter, R.J.; Bandyopadhyay, D. Melatonin protects against isoproterenol-induced myocardial injury in the rat: Antioxidative mechanisms. J. Pineal. Res. 2010, 48, 251–262. [Google Scholar] [CrossRef]
- Lívia, S.O.; Caroline, D.; Cláudia, F.; Henriques, J.O.A.; Mirian, S. Hepatoprotective, cardioprotective, and renal-protective effects of organic and conventional grapevine leaf extracts (Vitis. labrusca var. Bordo) on Wistar rat tissues. An. Acad. Brasil. Ciênc. 2011, 83, 1403–1411. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Sharma, A.K.; Kumar, S.; Saxena, A.K.; Pandey, A.K. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant and anticancer activities. BioMed. Res. Int. 2013, 2013. [Google Scholar] [CrossRef]
- Sheena, N.; Ajith, T.A.; Janardhanan, K.K. Anti-inflammatory and antinociceptive activities of Ganoderma lucidum occurring in South India. Pharm. Biol. 2003, 41, 301–304. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pieme, C.A.; Ngoupayo, J.; Nkoulou, C.H.K.-K.; Moukette, B.M.; Nono, B.L.N.; Moor, V.J.A.; Minkande, J.Z.; Ngogang, J.Y. Syzyguim guineense Extracts Show Antioxidant Activities and Beneficial Activities on Oxidative Stress Induced by Ferric Chloride in the Liver Homogenate. Antioxidants 2014, 3, 618-635. https://doi.org/10.3390/antiox3030618
Pieme CA, Ngoupayo J, Nkoulou CHK-K, Moukette BM, Nono BLN, Moor VJA, Minkande JZ, Ngogang JY. Syzyguim guineense Extracts Show Antioxidant Activities and Beneficial Activities on Oxidative Stress Induced by Ferric Chloride in the Liver Homogenate. Antioxidants. 2014; 3(3):618-635. https://doi.org/10.3390/antiox3030618
Chicago/Turabian StylePieme, Constant Anatole, Joseph Ngoupayo, Claude Herve Khou-Kouz Nkoulou, Bruno Moukette Moukette, Borgia Legrand Njinkio Nono, Vicky Jocelyne Ama Moor, Jacqueline Ze Minkande, and Jeanne Yonkeu Ngogang. 2014. "Syzyguim guineense Extracts Show Antioxidant Activities and Beneficial Activities on Oxidative Stress Induced by Ferric Chloride in the Liver Homogenate" Antioxidants 3, no. 3: 618-635. https://doi.org/10.3390/antiox3030618
APA StylePieme, C. A., Ngoupayo, J., Nkoulou, C. H. K.-K., Moukette, B. M., Nono, B. L. N., Moor, V. J. A., Minkande, J. Z., & Ngogang, J. Y. (2014). Syzyguim guineense Extracts Show Antioxidant Activities and Beneficial Activities on Oxidative Stress Induced by Ferric Chloride in the Liver Homogenate. Antioxidants, 3(3), 618-635. https://doi.org/10.3390/antiox3030618