Antioxidant Potential of Xanthohumol in Disease Prevention: Evidence from Human and Animal Studies
"> Figure 1
<p>The scheme of AMPK pathway of cellular energy balance: maintained (<b>A</b>), compromise (<b>B</b>), and recovery (<b>C</b>). Arrows show the effects: increase <span class="html-fig-inline" id="antioxidants-13-01559-i001"><img alt="Antioxidants 13 01559 i001" src="/antioxidants/antioxidants-13-01559/article_deploy/html/images/antioxidants-13-01559-i001.png"/></span>, decrease <span class="html-fig-inline" id="antioxidants-13-01559-i002"><img alt="Antioxidants 13 01559 i002" src="/antioxidants/antioxidants-13-01559/article_deploy/html/images/antioxidants-13-01559-i002.png"/></span>. mTOR: mammalian target of rapamycin; ACC: Acetyl-CoA carboxylase; GS: glycogen synthase; ULK1: unc-51 like autophagy activating kinase 1; ATGL: Adipose triglyceride lipase; <span class="html-italic">TBC1D1</span>: TBC1 domain family member 1; <span class="html-italic">TSC2</span>: Tuberous sclerosis complex 2; PPP: Pentose phosphate pathway; NADPH: Nicotinamide adenine dinucleotide phosphate; H<sub>2</sub>O<sub>2</sub>: Hydrogen peroxide.</p> ">
Abstract
:1. Introduction
2. XN and AMPK Pathway in Digestive System Disease Prevention
2.1. Enhancement of AMPK Phosphorylation and Antioxidative Pathways by XN
2.2. Antioxidative Proprieties of XN and Enhanced AMPK Phosphorylation: Risks and Benefits
2.3. XN Stimulation of Gastric Mucosa Healing Process
2.4. Reduction of ROS and Inflammation in Pancreatic Diseases via NFr2/ARE/HO-1 Pathway Activation by XN
2.5. Inhibition of Stellate Cell Proliferation by XN Through NF-κB Pathway Suppression
2.6. Mechanisms of XN in Colorectal Cancer Suppression
3. XN and Dysbiosis on the Gut–Brain Axis
3.1. Role of Gut Microbiota in the XN Demethylation Process
3.2. Effect of XN on Gut–Brain Axis Balance in Neurogenerative Disorders
4. XN as a Remedy for Menopause Symptoms and Bone Structure
4.1. Effects of XN on Postmenopausal Hormones
4.2. XN Reduces Oxidative Stress and Promotes Bone Cell Proliferation by Inhibiting Aβ
5. Challenges and Limitations of XN Applications for Disease Prevention
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moureu, S.; Jacquin, J.; Samaillie, J.; Deweer, C.; Rivière, C.; Muchembled, J. Antifungal Activity of Hop Leaf Extracts and Xanthohumol on Two Strains of Venturia Inaequalis with Different Sensitivities to Triazoles. Microorganisms 2023, 11, 1605. [Google Scholar] [CrossRef]
- Baskar, V.; Venkatesh, R.; Ramalingam, S. Flavonoids (Antioxidants Systems) in Higher Plants and Their Response to Stresses. In Antioxidants and Antioxidant Enzymes in Higher Plants; Gupta, D., Palma, J., Corpas, F., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef] [PubMed]
- Vicente, O.; Boscaiu, M. Flavonoids: Antioxidant Compounds for Plant Defence... and for a Healthy Human Diet. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 14–21. [Google Scholar] [CrossRef]
- Tuli, H.S.; Aggarwal, V.; Parashar, G.; Aggarwal, D.; Parashar, N.C.; Tuorkey, M.J.; Varol, M.; Sak, K.; Kumar, M.; Buttar, H.S. Xanthohumol: A Metabolite with Promising Anti-Neoplastic Potential. Anticancer Agents Med. Chem. 2022, 22, 418–432. [Google Scholar] [CrossRef] [PubMed]
- Rachwał, K.; Waśko, A.; Gustaw, K.; Polak-Berecka, M. Utilization of Brewery Wastes in Food Industry. PeerJ 2020, 8, e9427. [Google Scholar] [CrossRef] [PubMed]
- Ferreyra, M.L.F.; Serra, P.; Casati, P. Recent Advances on the Roles of Flavonoids as Plant Protective Molecules after UV and High Light Exposure. Physiol. Plant. 2021, 173, 736–749. [Google Scholar] [CrossRef] [PubMed]
- Oledzka, E. Xanthohumol—A Miracle Molecule with Biological Activities: A Review of Biodegradable Polymeric Carriers and Naturally Derived Compounds for Its Delivery. Int. J. Mol. Sci. 2024, 25, 3398. [Google Scholar] [CrossRef] [PubMed]
- Garcia, D.; Shaw, R.J. AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Mol. Cell 2017, 66, 789–800. [Google Scholar] [CrossRef]
- Rodríguez, C.; Muñoz, M.; Contreras, C.; Prieto, D. AMPK, Metabolism, and Vascular Function. FEBS J. 2021, 288, 3746–3771. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran, A.; Choi, K.; Dasgupta, B. Insight on Transcriptional Regulation of the Energy Sensing AMPK and Biosynthetic mTOR Pathway Genes. Front. Cell Dev. Biol. 2020, 8, 671. [Google Scholar] [CrossRef]
- Hawley, S.A.; Pan, D.A.; Mustard, K.J.; Ross, L.; Bain, J.; Edelman, A.M.; Frenguelli, B.G.; Hardi, D.G. Calmodulin-Dependent Protein Kinase Kinase-Beta Is an Alternative Upstream Kinase for AMP-Activated Protein Kinase. Cell Metab. 2005, 2, 9–19. [Google Scholar] [CrossRef]
- Dando, I.; Donadelli, M.; Costanzo, C.; Dalla Pozza, E.; D’Alessandro, A.; Zolla, L.; Palmieri, M. Cannabinoids Inhibit Energetic Metabolism and Induce AMPK-Dependent Autophagy in Pancreatic Cancer Cells. Cell Death Dis. 2013, 4, e664. [Google Scholar] [CrossRef]
- Townsend, L.K.; Steinberg, G.R. AMPK and the Endocrine Control of Metabolism. Endocr. Rev. 2023, 44, 910–933. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ji, J.; Yan, X.-H. Cross-Talk between AMPK and mTOR in Regulating Energy Balance. Crit. Rev. Food Sci. Nutr. 2012, 52, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Xu, Y.; Liu, F. Hypothalamic Roles of mTOR Complex I: Integration of Nutrient and Hormone Signals to Regulate Energy Homeostasis. Am. J. Physiol.-Endocrinol. Metab. 2016, 310, E994–E1002. [Google Scholar] [CrossRef] [PubMed]
- Suvorova, I.I.; Pospelov, V.A. AMPK/Ulk1-Dependent Autophagy as a Key mTOR Regulator in the Context of Cell Pluripotency. Cell Death Dis. 2019, 10, 260. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Blessing, A.M.; Pulliam, T.L.; Shi, Y.; Wilkenfeld, S.R.; Han, J.J.; Murray, M.M.; Pham, A.H.; Duong, K.; Brun, S.N.; et al. Inhibition of CAMKK2 Impairs Autophagy and Castration-Resistant Prostate Cancer via Suppression of AMPK-ULK1 Signaling. Oncogene 2021, 40, 1690–1705. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, N.; Liu, P.; Xie, X. AMPK and Cancer. In AMP-Activated Protein Kinase; Cordero, M.D., Viollet, B., Eds.; Experientia Supplementum; Springer International Publishing: Cham, Switzerland, 2016; Volume 107, pp. 203–226. ISBN 978-3-319-43587-9. [Google Scholar]
- Jiang, X.; Overholtzer, M.; Thompson, C.B. Autophagy in Cellular Metabolism and Cancer. J. Clin. Investig. 2015, 125, 47–54. [Google Scholar] [CrossRef]
- Hardie, D.G. Molecular Pathways: Is AMPK a Friend or a Foe in Cancer? Clin. Cancer Res. 2015, 21, 3836–3840. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.M.; Chandel, N.S.; Hay, N. AMPK Regulates NADPH Homeostasis to Promote Tumour Cell Survival during Energy Stress. Nature 2012, 485, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Minaiyan, M.; Razzaghi, H.; Yegdaneh, A.; Talebi, A. Healing Effect of Hydroalcoholic Extract of Humulus lupulus L.(Hops) Aerial Parts on Indomethacin-Induced Gastric Ulcer in Rats. J. Rep. Pharm. Sci. 2022, 11, 257–265. [Google Scholar] [CrossRef]
- Wei, S.; Sun, T.; Du, J.; Zhang, B.; Xiang, D.; Li, W. Xanthohumol, a Prenylated Flavonoid from Hops, Exerts Anticancer Effects against Gastric Cancer in Vitro. Oncol. Rep. 2018, 40, 3213–3222. [Google Scholar] [CrossRef] [PubMed]
- Leung, P.S. Physiology of the Pancreas. In The Renin-Angiotensin System: Current Research Progress in The Pancreas; Advances in Experimental Medicine and Biology; Springer: Dordrecht, The Netherlands, 2010; Volume 690, pp. 13–27. ISBN 978-90-481-9059-1. [Google Scholar]
- Fusco, J.; El-Gohary, Y.; Gittes, G.K. Chap. 90—Anatomy, Physiology, and Embryology of the Pancreas. In Shackelford’s Surgery of the Alimentary Tract, 2 Volume Set, 8th ed.; Yeo, C.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1062–1075. ISBN 9780323402323. [Google Scholar]
- Tan, G.D. The Pancreas. Anaesth. Intensive Care Med. 2014, 15, 485–488. [Google Scholar] [CrossRef]
- Vujasinovic, M.; Valente, R.; Del Chiaro, M.; Permert, J.; Löhr, J.-M. Pancreatic Exocrine Insufficiency in Pancreatic Cancer. Nutrients 2017, 9, 183. [Google Scholar] [CrossRef]
- De Lucia, S.S.; Candelli, M.; Polito, G.; Maresca, R.; Mezza, T.; Schepis, T.; Pellegrino, A.; Zileri Dal Verme, L.; Nicoletti, A.; Franceschi, F.; et al. Nutrition in Acute Pancreatitis: From the Old Paradigm to the New Evidence. Nutrients 2023, 15, 1939. [Google Scholar] [CrossRef]
- Hines, O.J.; Pandol, S.J. Management of Severe Acute Pancreatitis. Br. Med. J. 2019, 367, l6227. [Google Scholar] [CrossRef]
- Sabater, L.; Ausania, F.; Bakker, O.J.; Boadas, J.; Domínguez-Muñoz, J.E.; Falconi, M.; Fernández-Cruz, L.; Frulloni, L.; González-Sánchez, V.; Lariño-Noia, J.; et al. Evidence-Based Guidelines for the Management of Exocrine Pancreatic Insufficiency after Pancreatic Surgery. Ann. Surg. 2016, 264, 949–958. [Google Scholar] [CrossRef]
- Huangfu, Y.; Yu, X.; Wan, C.; Zhu, Y.; Wei, Z.; Li, F.; Wang, Y.; Zhang, K.; Li, S.; Dong, Y.; et al. Xanthohumol Alleviates Oxidative Stress and Impaired Autophagy in Experimental Severe Acute Pancreatitis through Inhibition of AKT/mTOR. Front. Pharmacol. 2023, 14, 1105726. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Cervantes, G.I.; Ortega, D.R.; Blanco Ayala, T.; Pérez De La Cruz, V.; Esquivel, D.F.G.; Salazar, A.; Pineda, B. Redox and Anti-Inflammatory Properties from Hop Components in Beer-Related to Neuroprotection. Nutrients 2021, 13, 2000. [Google Scholar] [CrossRef]
- Wong, S.C.; Kamarudin, M.N.A.; Naidu, R. Anticancer Mechanism of Flavonoids on High-Grade Adult-Type Diffuse Gliomas. Nutrients 2023, 15, 797. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, X.; Contino, G.; Liesa, M.; Sahin, E.; Ying, H.; Bause, A.; Li, Y.; Stommel, J.M.; Dell’Antonio, G.; et al. Pancreatic Cancers Require Autophagy for Tumor Growth. Genes Dev. 2011, 25, 717–729. [Google Scholar] [CrossRef]
- Poillet-Perez, L.; Despouy, G.; Delage-Mourroux, R.; Boyer-Guittaut, M. Interplay between ROS and Autophagy in Cancer Cells, from Tumor Initiation to Cancer Therapy. Redox Biol. 2015, 4, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Matsuo, Y.; Imafuji, H.; Imafuji, H.; Okubo, T.; Maeda, Y.; Sato, T.; Shamoto, T.; Tsuboi, K.; Morimoto, M.; et al. Xanthohumol inhibits angiogenesis by suppressing nuclearfactor-jB activation in pancreatic cancer. Cancer Sci. 2018, 109, 132–140. [Google Scholar] [CrossRef]
- Li, Q.; Yang, G.; Feng, M.; Zheng, S.; Cao, Z.; Qiu, J.; You, L.; Zheng, L.; Hu, Y.; Zhang, T.; et al. NF-κB in Pancreatic Cancer: Its Key Role in Chemoresistance. Cancer Lett. 2018, 421, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Silke, J.; O’Reilly, L.A. NF-κB and Pancreatic Cancer; Chapter and Verse. Cancers 2021, 13, 4510. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J. A Review of Liver Fibrosis and Cirrhosis Regression. J. Pathol. Transl. Med. 2023, 57, 189–195. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Traub, J.; Reiss, L.; Aliwa, B.; Stadlbauer, V. Malnutrition in Patients with Liver Cirrhosis. Nutrients 2021, 13, 540. [Google Scholar] [CrossRef] [PubMed]
- Kleczka, A.; Mazur, B.; Tomaszek, K.; Dzik, R.; Kabała-Dzik, A. Diagnostyka Zwłóknienia Wątroby z Wykorzystaniem Digitalizacji i Analizy Cyfrowej. J. Lab. Diagn. 2023, 59, 2. [Google Scholar]
- Chen, P.-Y.; Chao, T.-Y.; Hsu, H.-J.; Wang, C.-Y.; Lin, C.-Y.; Gao, W.-Y.; Wu, M.-J.; Yen, J.-H. The Lipid-Modulating Effect of Tangeretin on the Inhibition of Angiopoietin-like 3 (ANGPTL3) Gene Expression through Regulation of LXRα Activation in Hepatic Cells. Int. J. Mol. Sci. 2021, 22, 9853. [Google Scholar] [CrossRef] [PubMed]
- Choi, T.-Y.; Choi, T.-I.; Lee, Y.-R.; Choe, S.-K.; Kim, C.-H. Zebrafish as an Animal Model for Biomedical Research. Exp. Mol. Med. 2021, 53, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.-Y.; Chen, P.-Y.; Hsu, H.-J.; Liou, J.-W.; Wu, C.-L.; Wu, M.-J.; Yen, J.-H. Xanthohumol, a Prenylated Chalcone, Regulates Lipid Metabolism by Modulating the LXRα/RXR-ANGPTL3-LPL Axis in Hepatic Cell Lines and High-Fat Diet-Fed Zebrafish Models. Biomed. Pharmacother. 2024, 174, 116598. [Google Scholar] [CrossRef] [PubMed]
- She, J.; Gu, T.; Pang, X.; Liu, Y.; Tang, L.; Zhou, X. Natural Products Targeting Liver X Receptors or Farnesoid X Receptor. Front. Pharmacol. 2022, 12, 772435. [Google Scholar] [CrossRef]
- Dixon, E.D.; Nardo, A.D.; Claudel, T.; Trauner, M. The Role of Lipid Sensing Nuclear Receptors (PPARs and LXR) and Metabolic Lipases in Obesity, Diabetes and NAFLD. Genes 2021, 12, 645. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-F.; Chen, P.-Y.; Hsu, H.-J.; Wu, M.-J.; Yen, J.-H. Xanthohumol Suppresses Mylip/Idol Gene Expression and Modulates LDLR Abundance and Activity in HepG2 Cells. J. Agric. Food Chem. 2017, 65, 7908–7918. [Google Scholar] [CrossRef] [PubMed]
- Michalopoulos, G.K.; Bhushan, B. Liver Regeneration: Biological and Pathological Mechanisms and Implications. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 40–55. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.-H.; Fan, L.; Zhang, Y.; Zhu, Y.-K.; Zong, X.-L.; Peng, G.-N.; Cao, S.-Z. Protective Effect and Mechanism of Placenta Extract on Liver. Nutrients 2022, 14, 5071. [Google Scholar] [CrossRef] [PubMed]
- Kasztelan-Szczerbińska, B.; Słomka, M.; Daniluk, J.; Celiński, K.; Cicho, H.; Lach, M.S.; Jastrzębska, I. Stellate Cells as a Central Regulator of Intracellular Signaling in the Process of Liver Fibrosis. Postępy Nauk Med. 2010, 1, 69–74. [Google Scholar]
- Senoo, H.; Mezaki, Y.; Fujiwara, M. The Stellate Cell System (Vitamin A-Storing Cell System). Anat. Sci. Int. 2017, 92, 387–455. [Google Scholar] [CrossRef] [PubMed]
- Kisseleva, T.; Brenner, D. Molecular and Cellular Mechanisms of Liver Fibrosis and Its Regression. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 151–166. [Google Scholar] [CrossRef]
- Yoneda, A.; Sakai-Sawada, K.; Niitsu, Y.; Tamura, Y. Vitamin A and Insulin Are Required for the Maintenance of Hepatic Stellate Cell Quiescence. Exp. Cell Res. 2016, 341, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.S.; Ghosh, S. Regulation of NF-κB by TNF Family Cytokines. Semin. Immunol. 2014, 26, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Dorn, C.; Heilmann, J.; Hellerbrand, C. Protective effect of xanthohumol on toxin-induced liver inflammation and fibrosis. Z. Für Gastroenterol. 2012, 50, 29. [Google Scholar] [CrossRef]
- Kang, J.; Postigo-Fernandez, J.; Kim, K.; Zhu, C.; Yu, J.; Meroni, M.; Mayfield, B.; Bartolomé, A.; Dapito, D.H.; Ferrante, A.W.; et al. Notch-Mediated Hepatocyte MCP-1 Secretion Causes Liver Fibrosis. JCI Insight 2023, 8, e165369. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.-M.; Han, Y.-M.; Song, M.-Y.; Lee, D.-Y.; Kim, H.S.; Kim, S.-H.; Kim, E.-H. Xanthohumol Interferes with the Activation of TGF-β Signaling in the Process Leading to Intestinal Fibrosis. Nutrients 2022, 15, 99. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.-M.; Yun, S.-M.; Choi, Y.-H.; Heo, J.; Kim, N.-J.; Kim, S.-H.; Kim, E.-H. Xanthohumol Prevents Dextran Sulfate Sodium-Induced Colitis via Inhibition of IKKβ/NF-κB Signaling in Mice. Oncotarget 2018, 9, 866–880. [Google Scholar] [CrossRef] [PubMed]
- Lavrador, M.S.F.; Afonso, M.S.; Cintra, D.E.; Koike, M.; Nunes, V.S.; Demasi, M.; Lin, C.J.; Beda, L.M.M.; Gioielli, L.A.; Bombo, R.D.P.A.; et al. Interesterified Fats Induce Deleterious Effects on Adipose Tissue and Liver in LDLr-KO Mice. Nutrients 2019, 11, 466. [Google Scholar] [CrossRef]
- Azzouz, L.L.; Sandeep, S. Physiology, Large Intestine. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507857/ (accessed on 31 July 2023).
- Gill, S.; Chater, P.I.; Wilcox, M.D.; Pearson, J.P.; Brownlee, I.A. The Impact of Dietary Fibres on the Physiological Processes of the Large Intestine. Bioact. Carbohydr. Diet. Fibre 2018, 16, 62–74. [Google Scholar] [CrossRef]
- Granados-Romero, J.J.; Valderrama-Treviño, A.I.; Contreras-Flores, E.H.; Barrera-Mera, B.; Herrera Enríquez, M.; Uriarte-Ruíz, K.; Arauz-Peña, G. Colorectal Cancer: A Review. Int. J. Res. Med. Sci. 2017, 5, 4667. [Google Scholar] [CrossRef]
- Rahman, B.; Al-Marzooq, F.; Saad, H.; Benzina, D.; Al Kawas, S. Dysbiosis of the Subgingival Microbiome and Relation to Periodontal Disease in Association with Obesity and Overweight. Nutrients 2023, 15, 826. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, N.H.; Razalli, N.H.; Shahril, M.R.; Muhammad Nawawi, K.N.; Mohd Mokhtar, N.; Abd Rashid, A.A.; Ashari, L.S.; Jan Mohamed, H.J.; Raja Ali, R.A. Dietary Inflammatory Index, Obesity, and the Incidence of Colorectal Cancer: Findings from a Hospital-Based Case-Control Study in Malaysia. Nutrients 2023, 15, 982. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Li, Z.; Gao, C.-Y.; Cho, C.H. Mechanisms of Drug Resistance in Colon Cancer and Its Therapeutic Strategies. World J. Gastroenterol. 2016, 22, 6876. [Google Scholar] [CrossRef] [PubMed]
- Longley, D.B.; Allen, W.L.; Johnston, P.G. Drug Resistance, Predictive Markers and Pharmacogenomics in Colorectal Cancer. Biochim. Biophys. Acta BBA—Rev. Cancer 2006, 1766, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.-H.; Sun, T.-L.; Xiang, D.-X.; Wei, S.-S.; Li, W.-Q. Anticancer Activity and Mechanism of Xanthohumol: A Prenylated Flavonoid From Hops (Humulus lupulus L.). Front. Pharmacol. 2018, 9, 530. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, W.; Liu, H.; Yu, X. Xanthohumol Inhibits Colorectal Cancer Cells via Downregulation of Hexokinases II-Mediated Glycolysis. Int. J. Biol. Sci. 2019, 15, 2497–2508. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.; Silván, B.; Entrialgo-Cadierno, R.; Villar, C.J.; Capasso, R.; Uranga, J.A.; Lombó, F.; Abalo, R. Antiproliferative and Palliative Activity of Flavonoids in Colorectal Cancer. Biomed. Pharmacother. 2021, 143, 112241. [Google Scholar] [CrossRef] [PubMed]
- Murphrey, M.B.; Quaim, L.; Rahimi, N.; Varacallo, M. Biochemistry, Epidermal Growth Factor Receptor. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Guo, D.; Zhang, B.; Liu, S.; Jin, M. Xanthohumol Induces Apoptosis via Caspase Activation, Regulation of Bcl-2, and Inhibition of PI3K/Akt/mTOR-Kinase in Human Gastric Cancer Cells. Biomed. Pharmacother. 2018, 106, 1300–1306. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Orłowski, M.; Klepacki, Ł.; Zinkiewicz, K.; Kurpiewski, W.; Kaczerska, D.; Pesta, W.; Zieliński, E.; Siermontowski, P. Rectal Aberrant Crypt Foci (ACF) as a Predictor of Benign and Malignant Neoplastic Lesions in the Large Intestine. BMC Cancer 2020, 20, 133. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, L.; Li, G.; Gao, Z. Xanthohumol Protects against Azoxymethane-induced Colorectal Cancer in Sprague-Dawley Rats. Environ. Toxicol. 2020, 35, 136–144. [Google Scholar] [CrossRef]
- Gomaa, E.Z. Human Gut Microbiota/Microbiome in Health and Diseases: A Review. Antonie Van Leeuwenhoek 2020, 113, 2019–2040. [Google Scholar] [CrossRef]
- Fishbein, S.R.S.; Mahmud, B.; Dantas, G. Antibiotic Perturbations to the Gut Microbiome. Nat. Rev. Microbiol. 2023, 21, 772–788. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, T.S.; Das, M.; Jeffery, I.B.; O’Toole, P.W. Adjusting for Age Improves Identification of Gut Microbiome Alterations in Multiple Diseases. eLife 2020, 9, e50240. [Google Scholar] [CrossRef]
- Logan, I.E.; Shulzhenko, N.; Sharpton, T.J.; Bobe, G.; Liu, K.; Nuss, S.; Jones, M.L.; Miranda, C.L.; Vasquez-Perez, S.; Pennington, J.M.; et al. Xanthohumol Requires the Intestinal Microbiota to Improve Glucose Metabolism in Diet-Induced Obese Mice. Mol. Nutr. Food Res. 2021, 65, 2100389. [Google Scholar] [CrossRef] [PubMed]
- Moens, E.; Bolca, S.; Van de Wiele, T.; Van Landschoot, A.; Goeman, J.L.; Possemiers, S.; Verstraete, W. Exploration of Isoxanthohumol Bioconversion from Spent Hops into 8-Prenylnaringenin Using Resting Cells of Eubacterium Limosum. AMB Express 2020, 10, 79. [Google Scholar] [CrossRef] [PubMed]
- Possemiers, S.; Rabot, S.; Espín, J.C.; Bruneau, A.; Philippe, C.; González-Sarrías, A.; Verstraete, W. Eubacterium Limosum Activates Isoxanthohumol from Hops (Humulus lupulus L.) into the Potent Phytoestrogen 8-Prenylnaringenin In Vitro and in Rat Intestine3. J. Nutr. 2008, 138, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bobe, G.; Revel, J.S.; Rodrigues, R.R.; Sharpton, T.J.; Fantacone, M.L.; Raslan, K.; Miranda, C.L.; Lowry, M.B.; Blakemore, P.R.; et al. Improvements in Metabolic Syndrome by Xanthohumol Derivatives Are Linked to Altered Gut Microbiota and Bile Acid Metabolism. Mol. Nutr. Food Res. 2020, 64, 1900789. [Google Scholar] [CrossRef] [PubMed]
- Cermak, P.; Olsovska, J.; Mikyska, A.; Dusek, M.; Kadleckova, Z.; Vanicek, J.; Nyc, O.; Sigler, K.; Bostikova, V.; Bostik, P. Strong Antimicrobial Activity of Xanthohumol and Other Derivatives from Hops (Humulus lupulus L.) on Gut Anaerobic Bacteria. Apmis 2017, 125, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Hart, A.L.; Stagg, A.J.; Frame, M.; Graffner, H.; Glise, H.; Falk, P.; Kamm, M.A. The Role of the Gut Flora in Health and Disease, and Its Modification as Therapy. Aliment. Pharmacol. Ther. 2002, 16, 1383–1393. [Google Scholar] [CrossRef]
- Martin, C.R.; Osadchiy, V.; Kalani, A.; Mayer, E.A. The Brain-Gut-Microbiome Axis. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-L.; Liou, J.-M.; Lu, T.-M.; Lin, Y.-H.; Wang, C.-K.; Pan, T.-M. Effects of Vigiis 101-LAB on a Healthy Population’s Gut Microflora, Peristalsis, Immunity, and Anti-Oxidative Capacity: A Randomized, Double-Blind, Placebo-Controlled Clinical Study. Heliyon 2020, 6, e04979. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chen, X.; Zhao, J.; Yang, C.; Huang, G.; Zhang, Z.; Liu, J. Protective Signature of Xanthohumol on Cognitive Function of APP/PS1 Mice: A Urine Metabolomics Approach by Age. Front. Pharmacol. 2024, 15, 1423060. [Google Scholar] [CrossRef]
- Sun, X.L.; Zhang, J.B.; Guo, Y.X.; Xia, T.S.; Xu, L.C.; Rahmand, K.; Xin, H.L. Xanthohumol Ameliorates Memory Impairment and Reduces the Deposition of β-Amyloid in APP/PS1 Mice via Regulating the mTOR/LC3II and Bax/Bcl-2 Signalling Pathways. J. Pharm. Pharmacol. 2021, 73, 1230–1239. [Google Scholar] [CrossRef]
- Liu, W.; He, K.; Wu, D.; Zhou, L.; Li, G.; Lin, Z.; Pui Man Hoi, M. Natural Dietary Compound Xanthohumol Regulates the Gut Microbiota and Its Metabolic Profile in a Mouse Model of Alzheimer’s Disease. Molecules 2022, 27, 1281. [Google Scholar] [CrossRef] [PubMed]
- Dodiya, H.B.; Kuntz, T.; Shaik, S.M.; Baufeld, C.; Leibowitz, J.; Zhang, X.; Sisodia, S.S. Sex-Specific Effects of Microbiome Perturbations on Cerebral Aβ Amyloidosis and Microglia Phenotypes. J. Exp. Med. 2019, 216, 1542–1560. [Google Scholar] [CrossRef] [PubMed]
- Abdi, F.; Mobedi, H.; Mosaffa, N.; Dolatian, M.; Ramezani Tehrani, F. Hormone Therapy for Relieving Postmenopausal Vasomotor Symptoms: A Systematic Review. Arch. Iran. Med. 2016, 19, 141–146. [Google Scholar] [PubMed]
- Van Breemen, R.B.; Chen, L.; Tonsing-Carter, A.; Banuvar, S.; Barengolts, E.; Viana, M.; Chen, S.-N.; Pauli, G.F.; Bolton, J.L. Pharmacokinetic Interactions of a Hop Dietary Supplement with Drug Metabolism in Perimenopausal and Postmenopausal Women. J. Agric. Food Chem. 2020, 68, 5212–5220. [Google Scholar] [CrossRef]
- Żołnierczyk, A.K.; Mączka, W.K.; Grabarczyk, M.; Wińska, K.; Woźniak, E.; Anioł, M. Isoxanthohumol—Biologically Active Hop Flavonoid. Fitoterapia 2015, 103, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Wuttke, W.; Seidlova-Wuttke, D. Foreword to the Special Issue on Phytoestrogens and Beyond. J. Steroid Biochem. Mol. Biol. 2014, 139, 223–224. [Google Scholar] [CrossRef] [PubMed]
- Milligan, S.R.; Kalita, J.C.; Heyerick, A.; Rong, H.; De Cooman, L.; De Keukeleire, D. Identification of a Potent Phytoestrogen in Hops (Humulus lupulus L.) and Beer. J. Clin. Endocrinol. Metab. 1999, 84, 2249. [Google Scholar] [CrossRef] [PubMed]
- Rietjens, I.M.C.M.; Louisse, J.; Beekmann, K. The Potential Health Effects of Dietary Phytoestrogens. Br. J. Pharmacol. 2017, 174, 1263–1280. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Nikolic, D.; Chadwick, L.R.; Pauli, G.F.; van Breemen, R.B. Identification of Human Hepatic Cytochrome P450 Enzymes Involved in the Metabolism of 8-Prenylnaringenin and Isoxanthohumol from Hops (Humulus lupulus L.). Drug Metab. Dispos. 2006, 34, 1152–1159. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.R.; Kim, H.J.; Yu, S.H.; Lee, B.S.; Jeon, S.Y.; Lee, J.J.; Lee, Y.C. Combination of Red Clover and Hops Extract Improved Menopause Symptoms in an Ovariectomized Rat Model. Evid.-Based Complement. Altern. Med. 2020, 2020, 7941391. [Google Scholar] [CrossRef] [PubMed]
- Aghamiri, V.; Mirghafourvand, M.; Mohammad-Alizadeh-Charandabi, S.; Nazemiyeh, H. The Effect of Hop (Humulus lupulus L.) on Early Menopausal Symptoms and Hot Flashes: A Randomized Placebo-Controlled Trial. Complement. Ther. Clin. Pract. 2016, 23, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.H.; Chen, L.R.; Chen, K.H. Osteoporosis Due to Hormone Imbalance: An Overview of the Effects of Estrogen Deficiency and Glucocorticoid Overuse on Bone Turnover. Int. J. Mol. Sci. 2022, 23, 1376. [Google Scholar] [CrossRef]
- Brier, M.R.; Gordon, B.; Friedrichsen, K.; McCarthy, J.; Stern, A.; Christensen, J.; Ances, B.M. Tau and Aβ Imaging, CSF Measures, and Cognition in Alzheimer’s Disease. Sci. Transl. Med. 2016, 8, 338ra66. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Zhang, J.; Guo, Y.; Jiang, Y.; Qiao, F.; Li, K.; Xin, H. Humulus lupulus L. Extract Protects against Senior Osteoporosis through Inhibiting Amyloid β Deposition and Oxidative Stress in APP/PS1 Mutated Transgenic Mice and Osteoblasts. Molecules 2023, 28, 583. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Xia, T.; Zhang, S.; Zhang, J.; Xu, L.; Han, T.; Xin, H. Hops Extract and Xanthohumol Ameliorate Bone Loss Induced by Iron Overload via Activating Akt/GSK3β/Nrf2 Pathway. J. Bone Miner. Metab. 2022, 40, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Dobrzyński, M.; Bazan, J.; Garnian, A.; Rosinczuk-Tonderys, J.; Parulska, O.; Calkosinski, I. The Use of Acetylsalicylic Acid and Tocopherol in Protecting Bone Against the Effects of Dioxin Contamination. Rocz. Ochr. Srodowiska 2014, 16, 300–322. [Google Scholar]
- Całkosińska, A.; Dominiak, M.; Sobolewska, S.; Leśków, A.; Tarnowska, M.; Całkosiński, A.; Dobrzyński, M. The Protective Effect of Xanthohumol on the Content of Selected Elements in the Bone Tissue for Exposed Japanese Quails to TCDD. Int. J. Environ. Res. Public Health 2020, 17, 5883. [Google Scholar] [CrossRef]
- Klimek, K.; Tyśkiewicz, K.; Miazga-Karska, M.; Dębczak, A.; Rój, E.; Ginalska, G. Bioactive Compounds Obtained from Polish “Marynka” Hop Variety Using Efficient Two-Step Supercritical Fluid Extraction and Comparison of Their Antibacterial, Cytotoxic, and Anti-Proliferative Activities In Vitro. Molecules 2021, 26, 2366. [Google Scholar] [CrossRef]
- Neumann, H.F.; Frank, J.; Venturelli, S.; Egert, S. Bioavailability and Cardiometabolic Effects of Xanthohumol: Evidence from Animal and Human Studies. Mol. Nutr. Food Res. 2022, 66, 2100831. [Google Scholar] [CrossRef] [PubMed]
- Harish, V.; Haque, E.; Śmiech, M.; Taniguchi, H.; Jamieson, S.; Tewari, D.; Bishayee, A. Xanthohumol for Human Malignancies: Chemistry, Pharmacokinetics and Molecular Targets. Int. J. Mol. Sci. 2021, 22, 4478. [Google Scholar] [CrossRef] [PubMed]
- Dorn, C.; Bataille, F.; Gaebele, E.; Heilmann, J.; Hellerbrand, C. Xanthohumol Feeding Does Not Impair Organ Function and Homoeostasis in Mice. Food Chem. Toxicol. 2010, 48, 1890–1897. [Google Scholar] [CrossRef] [PubMed]
- Mukai, R.; Hata, N. Tissue Distribution and Pharmacokinetics of Isoxanthohumol from Hops in Rodents. Food Sci. Nutr. 2024, 12, 2210–2219. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.E.; Whyand, T.; Caplin, M.E. Benefits of Xanthohumol in Hyperlipidaemia, Obesity and Type 2 Diabetes Mellitus: A Review. J. Obes. Chronic Dis. 2019, 3, 14–18. [Google Scholar] [CrossRef]
- Harish, V.; Almalki, W.H.; Alshehri, A.; Alzahrani, A.; Alzarea, S.I.; Kazmi, I.; Gulati, M.; Tewari, D.; Chellappan, D.K.; Gupta, G.; et al. Bioanalytical Method Development, Validation and Stability Assessment of Xanthohumol in Rat Plasma. Molecules 2022, 27, 7117. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Hansen, P.; Wang, G.; Qiu, L.; Dong, J.; Yin, H.; Qian, Z.; Yang, M.; Miao, J. Pharmacological Profile of Xanthohumol, a Prenylated Flavonoid from Hops (Humulus lupulus). Molecules 2015, 20, 754–779. [Google Scholar] [CrossRef] [PubMed]
- Vicente De Andrade Silva, G.; Demaman Arend, G.; Antonio Ferreira Zielinski, A.; Di Luccio, M.; Ambrosi, A. Xanthohumol Properties and Strategies for Extraction from Hops and Brewery Residues: A Review. Food Chem. 2023, 404, 134629. [Google Scholar] [CrossRef] [PubMed]
Organ/System | Disease/Disorder | Model | Pathway | Action | Results | Reference |
---|---|---|---|---|---|---|
Liver | Fibrosis | Mice | TGF-β1/NF-κB | ↓ NF-κB inhibit synthesis of MCP-1, ICAM-1 | ↓ Inflammation, ↑ Inactive form of stellate cells, collagenase synthesis | Kisseleva et al. [53] Lee et al. [40] |
Pancreas | Cancer | Mice | NF-κB/TNF-α/IL-6/IL-17/mTOR/AKT | ↓ NF-κB/TNF-α/IL-6/IL-17/mTOR/AKT/VEGF, ROS | ↓ Inflammation, ROS, ↓ VEGF, IL-8 ↑ NrF-2, IL-10, ARE | Huangfu et al. [32] Vazquez-Cervantes et al. [33] Silke et al. [39] |
Colon | Cancer | Mice | EGFR/AKT/ACF/HKII/ | ↑Inhibition of EGFR ↓ ACT and HKII activity, ↑ Bax synthesis, ↓ ACF | ↓ inflammation, polyps formation, glycolysis ↑ cancer cells apoptosis | Liu et al. [69] Guo et al. [72] |
Microbiome | Mice | XN/P450/ IXN/TXN/DXN | ↓ IL-6/Tnf-α/IL-22, ↑ occludin | ↓ inflammation, C. difficile activity ↑ mucosa tight junction, Bacterioidetes and Tenericutes | Cermak et al. [82] Zhang et al. [81] | |
Stomach | Ulcers | Rats/in vitro | Bcl-2/Bax, NF-κB/ROS | ↓ Blc-2, NF-κB ↑ Bax, ROS | ↓ inflammation ↑ cancer cells apoptosis | Minaiyan et al. [23] Wei et al. [24] |
Nervous system | Alzheimer | Mice | mTOR/LC3II, Bax/Bcl-2 | ↓ IL-6, Interleukin-1β | ↓ Aβ, Pro-inflammatory cytokines, ↑ autophagy, anti-apoptotic activity, ↑ cognitive functions | Sun et al. [87] Liu et al. [86] |
Endocrine system | Menopause | Human/rats | O-demethylation/P-450 | ↑ ER-α, ER-β binding | ↓ LDL, TAG, cholesterol ↑ HDL ↑ well-being | Kim et al. [97] Aghamiri et al. [98] |
Osteoporosis | Mice | TNF/IL-1/IL-6 | ↓ Nrf2, HO-1, IL-1, IL-6, Aβ, ↑ RUNX2 | ↑ anti-inflammatory cytokines, ↑ osteoblastic differentiation | Xia et al. [101] Sun et al. [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piekara, J.; Piasecka-Kwiatkowska, D. Antioxidant Potential of Xanthohumol in Disease Prevention: Evidence from Human and Animal Studies. Antioxidants 2024, 13, 1559. https://doi.org/10.3390/antiox13121559
Piekara J, Piasecka-Kwiatkowska D. Antioxidant Potential of Xanthohumol in Disease Prevention: Evidence from Human and Animal Studies. Antioxidants. 2024; 13(12):1559. https://doi.org/10.3390/antiox13121559
Chicago/Turabian StylePiekara, Jakub, and Dorota Piasecka-Kwiatkowska. 2024. "Antioxidant Potential of Xanthohumol in Disease Prevention: Evidence from Human and Animal Studies" Antioxidants 13, no. 12: 1559. https://doi.org/10.3390/antiox13121559
APA StylePiekara, J., & Piasecka-Kwiatkowska, D. (2024). Antioxidant Potential of Xanthohumol in Disease Prevention: Evidence from Human and Animal Studies. Antioxidants, 13(12), 1559. https://doi.org/10.3390/antiox13121559