Duodenum and Caecum Microbial Shift Modulates Immune and Antioxidant Response Through Energy Homeostasis in Hu Sheep Fed Vegetable Waste and Rice Straw Silage
"> Figure 1
<p>Schematic diagram showing outline of experiment.</p> "> Figure 2
<p>Fungal microbial structure in experimental diets: (<b>A</b>) PCoA plot showing beta diversity. (<b>B</b>) Species accumulation curve. (<b>C</b>) Comparison of top two phyla among groups. (<b>D</b>) Differential analysis of microbial communities at genus level. (<b>E</b>) Functional enrichment analysis showing differences among the groups. “*” on the bars shows significant difference among the groups.</p> "> Figure 3
<p>Bacterial diversity and phylum comparison among dietary groups in duodenum and caecum. (<b>A</b>) PCoA plot showing beta diversity for microbiota in duodenum. (<b>B</b>) PCoA plot showing beta diversity for microbiota in caecum. (<b>C</b>) Species accumulation curve showing distribution of species in duodenum. (<b>D</b>) Comparison of most abundant phyla in duodenum. (<b>E</b>) Comparison of most abundant phyla in caecum. (<b>F</b>) Species accumulation curve showing distribution of species in caecum.</p> "> Figure 4
<p>Differences in microbial communities of duodenum and caecum: (<b>A</b>) Differential analysis of microbial communities at phylum level in duodenum. (<b>B</b>) LeFSe analysis showing biomarkers at genus level in duodenum. (<b>C</b>) Cladogram showing differences at all taxonomic levels among the groups. (<b>D</b>) Differential analysis of microbial communities at phylum level in duodenum. (<b>E</b>) LeFSe analysis showing biomarkers at genus level in caecum. (<b>F</b>) Cladogram showing differences at all taxonomic levels among the groups in caecum.</p> "> Figure 5
<p>Differences in metabolic pathways enrichment among dietary treatments and correlation analysis between significant microbial communities and metabolic pathways: (<b>A</b>) Differential analysis of metabolic pathways in duodenum. (<b>B</b>) Correlation between significant microbial communities and metabolic pathways in duodenum. (<b>C</b>) Differential analysis of metabolic pathways in caecum. (<b>D</b>) Correlation between significant microbial communities and metabolic pathways in caecum.</p> "> Figure 6
<p>Redundancy analysis (RDA) and correlation network: (<b>A</b>) RDA analysis showing association between duodenal microbial communities and VFAs; (<b>B</b>) RDA analysis showing association between cecal microbial communities and VFAs; (<b>C</b>) Spearman correlation network between significant intestinal microbes and significant immune indices. Blue lines show significant positive correlations (<span class="html-italic">p</span> < 0.05; r > 0.75), and red lines represent significant negative correlations (<span class="html-italic">p</span> < 0.05; r < −0.75).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silage Preparation and Toxin Content Estimation
2.2. Animal Model and Experimental Design:
2.3. Determination of Growth Performance
2.4. Sample Collection
2.5. Determination of Digestive Enzyme Activities and VFA Content
2.6. Determination of Antioxidant and Inflammatory Parameters
2.7. Determination of Gene Expression of Glucose and Amino Acid Transporters
2.8. Microbial DNA Extraction and 16 S/ITS rRNA Sequencing
2.9. Data Analysis
3. Results
3.1. Toxin Content in the Feed
3.2. Fungal Microbial Structure of Experimental Diets
3.3. Growth Performance
3.4. Digestive Enzymes Activity, VFA Content and Nutrient Transporters
3.5. Bacterial Microbial Community and Functional Prediction Enrichment in Duodenum
3.6. Bacterial Microbial Community and Functional Prediction Enrichment in Caecum
3.7. Antioxidant and Inflammatory Indices
3.8. Interaction of Microbes and Physiological Indices
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGrath, J.; Duval, S.M.; Tamassia, L.F.M.; Kindermann, M.; Stemmler, R.T.; de Gouvea, V.N.; Acedo, T.S.; Immig, I.; Williams, S.N.; Celi, P. Nutritional Strategies in Ruminants: A Lifetime Approach. Res. Vet. Sci. 2018, 116, 28–39. [Google Scholar] [CrossRef]
- Areaya, A.N. Major Non-Conventional Feed Resources of Fivestock. Int. J. Eng. Dev. Res. 2018, 6, 786–789. [Google Scholar]
- Guo, Y. Mutant Resource for Chinese Cabbage. Nat. Food 2022, 3, 188. [Google Scholar] [CrossRef]
- Wang, X.; Dou, Z.; Shi, X.; Zou, C.; Liu, D.; Wang, Z.; Guan, X.; Sun, Y.; Wu, G.; Zhang, B.; et al. Innovative Management Programme Reduces Environmental Impacts in Chinese Vegetable Production. Nat. Food 2021, 2, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, T.; Xing, Z.; Ma, Y.; Nan, F.; Pan, L.; Chen, J. Anaerobic Co-Digestion of Chinese Cabbage Waste and Cow Manure at Mesophilic and Thermophilic Temperatures: Digestion Performance, Microbial Community, and Biogas Slurry Fertility. Bioresour. Technol. 2022, 363, 127976. [Google Scholar] [CrossRef] [PubMed]
- Solomon, H.M.; Kautter, D.A.; Lilly, T.; Rhodehamel, E.J. Outgrowth of Clostridium Botulinum in Shredded Cabbage at Room Temperature under a Modified Atmosphere. J. Food Prot. 1990, 53, 831–834. [Google Scholar] [CrossRef]
- Ngu, N.T.; Ledin, I. Effects of Feeding Wastes from Brassica Species on Growth of Goats and Pesticide/Insecticide Residues in Goat Meat. Asian-Australas. J. Anim. Sci. 2005, 18, 197–202. [Google Scholar] [CrossRef]
- Alengebawy, A.; Ran, Y.; Ghimire, N.; Osman, A.I.; Ai, P. Rice Straw for Energy and Value-Added Products in China: A Review. Environ. Chem. Lett. 2023, 21, 2729–2760. [Google Scholar] [CrossRef]
- Jackson, M.G. Rice Straw as Livestock Feed. World Anim. Rev. 1977, 23, 79–81. [Google Scholar]
- Partovi, E.; Rouzbehan, Y.; Fazaeli, H.; Rezaei, J. Broccoli Byproduct-Wheat Straw Silage as a Feed Resource for Fattening Lambs. Transl. Anim. Sci. 2020, 4, txaa078. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, V.; Dehghan-Banadaky, M.; Ganjkhanlou, M.; Kazemi-Bonchenari, M. Effects of Feeding Wheat Straw or Beet Pulp in Starters Supplemented with Either Soybean Oil or Palm Fatty Acids on Growth Performance and Urinary Purine Derivatives in Dairy Calves. Anim. Feed Sci. Technol. 2023, 297, 115569. [Google Scholar] [CrossRef]
- Han, H.; Zhang, L.; Shang, Y.; Wang, M.; Phillips, C.J.C.; Wang, Y.; Su, C.; Lian, H.; Fu, T.; Gao, T. Replacement of Maize Silage and Soyabean Meal with Mulberry Silage in the Diet of Hu Lambs on Growth, Gastrointestinal Tissue Morphology, Rumen Fermentation Parameters and Microbial Diversity. Animals 2022, 12, 1406. [Google Scholar] [CrossRef]
- Wang, B.; Luo, H. Effects of Mulberry Leaf Silage on Antioxidant and Immunomodulatory Activity and Rumen Bacterial Community of Lambs. BMC Microbiol. 2021, 21, 250. [Google Scholar] [CrossRef]
- Zhang, X.; Li, C.; Shahzad, K.; Han, M.; Guo, Y.; Huang, X.; Wu, T.; Wang, L.; Zhang, Y.; Tang, H. Seasonal Differences in Fecal Microbial Community Structure and Metabolism of House-Feeding Chinese Merino Fine-Wool Sheep. Front. Vet. Sci. 2022, 9, 875729. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.-L.; Zhao, Y.; Chen, M.-M.; Li, Y.; Li, Y.; Wu, S.-J.; Zhang, J.-L.; Zhang, X.-S.; Yu, K.; Lian, Z.-X. Shifts in Intestinal Microbiota and Improvement of Sheep Immune Response to Resist Salmonella Infection Using Toll-like Receptor 4 (TLR4) Overexpression. Front. Microbiol. 2023, 14, 1075164. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.A.; Artis, D. Intestinal Bacteria and the Regulation of Immune Cell Homeostasis. Annu. Rev. Immunol. 2009, 28, 623–667. [Google Scholar] [CrossRef] [PubMed]
- Karakan, T.; Ozkul, C.; Küpeli Akkol, E.; Bilici, S.; Sobarzo-Sánchez, E.; Capasso, R. Gut-Brain-Microbiota Axis: Antibiotics and Functional Gastrointestinal Disorders. Nutrients 2021, 13, 389. [Google Scholar] [CrossRef]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, Stability and Resilience of the Human Gut Microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Popova, M.; McGovern, E.; McCabe, M.S.; Martin, C.; Doreau, M.; Arbre, M.; Meale, S.J.; Morgavi, D.P.; Waters, S.M. The Structural and Functional Capacity of Ruminal and Cecal Microbiota in Growing Cattle Was Unaffected by Dietary Supplementation of Linseed Oil and Nitrate. Front. Microbiol. 2017, 8, 937. [Google Scholar] [CrossRef]
- de Oliveira, M.N.V.; Jewell, K.A.; Freitas, F.S.; Benjamin, L.A.; Tótola, M.R.; Borges, A.C.; Moraes, C.A.; Suen, G. Characterizing the Microbiota across the Gastrointestinal Tract of a Brazilian Nelore Steer. Vet. Microbiol. 2013, 164, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, G.T. Microbial Community Composition along the Digestive Tract in Forage-and Grain-Fed Bison. BMC Vet. Res. 2017, 13, 253. [Google Scholar] [CrossRef]
- Myer, P.R.; Wells, J.E.; Smith, T.P.; Kuehn, L.A.; Freetly, H.C. Microbial Community Profiles of the Colon from Steers Differing in Feed Efficiency. Springerplus 2015, 4, 454. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.H.; Yang, L.; Xue, F.G.; Xin, H.R.; Jiang, L.S.; Xiong, B.H.; Beckers, Y. Relationship between Thiamine and Subacute Ruminal Acidosis Induced by a High-Grain Diet in Dairy Cows. J. Dairy Sci. 2016, 99, 8790–8801. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Shahzad, K.; Shen, S.; Dai, R.; Lu, Y.; Lu, Z.; Li, C.; Chen, Y.; Qi, R.; Gao, P. Altering Dietary Soluble Protein Levels with Decreasing Crude Protein May Be a Potential Strategy to Improve Nitrogen Efficiency in Hu Sheep Based on Rumen Microbiome and Metabolomics. Front. Nutr. 2022, 8, 815358. [Google Scholar] [CrossRef]
- Zhang, Z.; Gu, Y.; Wang, S.; Zhen, Y.; Chen, Y.; Wang, Y.; Mao, Y.; Meng, J.; Duan, Z.; Xu, J. Effective Microorganism Combinations Improve the Quality of Compost-Bedded Pack Products in Heifer Barns: Exploring Pack Bacteria-Fungi Interaction Mechanisms. BMC Microbiol. 2024, 24, 302. [Google Scholar] [CrossRef]
- Li, C.; Chen, N.; Zhang, X.; Shahzad, K.; Qi, R.; Zhang, Z.; Lu, Z.; Lu, Y.; Yu, X.; Zafar, M.H. Mixed Silage with Chinese Cabbage Waste Enhances Antioxidant Ability by Increasing Ascorbate and Aldarate Metabolism through Rumen Prevotellaceae UCG-004 in Hu Sheep. Front. Microbiol. 2022, 13, 978940. [Google Scholar] [CrossRef]
- Christensen, C.M. Storage of Cereal Grains and Their Products; American Association of Cereal Chemists Inc.: St. Paul, MN, USA, 1982. [Google Scholar]
- Umarov, G.G.; Abdurokhmonov, S.X.; Tulaganov, B.Q.; Telovov, A.T.; Bozorboev, A.A. Washing Steps and the Process of Saturation of Contaminants with Moisture in the Processing of Fruits and Vegetables. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Tashkent, Uzbekistan, 20 May 2022; IOP Publishing: Bristol, UK, 2022; Volume 1076, p. 12054. [Google Scholar]
- Rai, A.; Das, M.; Tripathi, A. Occurrence and Toxicity of a Fusarium Mycotoxin, Zearalenone. Crit. Rev. Food Sci. Nutr. 2020, 60, 2710–2729. [Google Scholar] [CrossRef]
- Zhang, G.-L.; Feng, Y.-L.; Song, J.-L.; Zhou, X.-S. Zearalenone: A Mycotoxin with Different Toxic Effect in Domestic and Laboratory Animals’ Granulosa Cells. Front. Genet. 2018, 9, 667. [Google Scholar] [CrossRef] [PubMed]
- Kaci, H.; Dombi, Á.; Gömbös, P.; Szabó, A.; Bakos, É.; Özvegy-Laczka, C.; Poór, M. Interaction of Mycotoxins Zearalenone, α-Zearalenol, and β-Zearalenol with Cytochrome P450 (CYP1A2, 2C9, 2C19, 2D6, and 3A4) Enzymes and Organic Anion Transporting Polypeptides (OATP1A2, OATP1B1, OATP1B3, and OATP2B1). Toxicol. Vitr. 2024, 96, 105789. [Google Scholar] [CrossRef] [PubMed]
- Feng, N.; Zhong, F.; Cai, G.; Zheng, W.; Zou, H.; Gu, J.; Yuan, Y.; Zhu, G.; Liu, Z.; Bian, J. Fusarium Mycotoxins Zearalenone and Deoxynivalenol Reduce Hepatocyte Innate Immune Response after the Listeria Monocytogenes Infection by Inhibiting the TLR2/NFκB Signaling Pathway. Int. J. Mol. Sci. 2023, 24, 9664. [Google Scholar] [CrossRef]
- Das, N.G.; Sultana, N.; Amanullah, S.M.; Jalil, M.A.; Huque, K.S. Feeding of Vegetable Waste Silage to Lambs by Replacing Maize Silage. J. Appl. Anim. Res. 2022, 50, 386–393. [Google Scholar] [CrossRef]
- Pokluda, R. Nutritional Quality of Chinese Cabbage from Integrated Culture. Hortic. Sci. 2008, 35, 145–150. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Genomic Insights into the Distribution of Peptidases and Proteolytic Capacity among Prevotella and Paraprevotella Species. Microbiol. Spectr. 2022, 10, e0218521. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Kakuta, M.; Yamaguchi, R.; Sato, N.; Mikami, T.; Murashita, K.; Nakaji, S.; Itoh, K.; Imoto, S. Impact of Salivary and Pancreatic Amylase Gene Copy Numbers on Diabetes, Obesity, and Functional Profiles of Microbiome in Northern Japanese Population. Sci. Rep. 2022, 12, 7628. [Google Scholar] [CrossRef]
- Wang, D.; Tang, G.; Wang, Y.; Yu, J.; Chen, L.; Chen, J.; Wu, Y.; Zhang, Y.; Cao, Y.; Yao, J. Rumen Bacterial Cluster Identification and Its Influence on Rumen Metabolites and Growth Performance of Young Goats. Anim. Nutr. 2023, 15, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; He, W.; Wu, T.; Elmhadi, M.; Jiang, N.; Zhang, A.; Guan, P. Supplementation of Coated Sodium Butyrate Relieved Weaning Stress and Reshaped Microbial Flora in Weaned Lambs. Front. Vet. Sci. 2024, 11, 1423920. [Google Scholar] [CrossRef]
- Poulsen, S.B.; Fenton, R.A.; Rieg, T. Sodium-Glucose Cotransport. Curr. Opin. Nephrol. Hypertens. 2015, 24, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Chen, H.; Xue, J.; Li, P.; Fu, X. The Role of GLUT2 in Glucose Metabolism in Multiple Organs and Tissues. Mol. Biol. Rep. 2023, 50, 6963–6974. [Google Scholar] [CrossRef]
- Cui, A.; Huang, T.; Li, S.; Ma, A.; Pérez, J.L.; Sander, C.; Keskin, D.B.; Wu, C.J.; Fraenkel, E.; Hacohen, N. Dictionary of Immune Responses to Cytokines at Single-Cell Resolution. Nature 2024, 625, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Harvanová, G.; Duranková, S.; Bernasovská, J. The Role of Cytokines and Chemokines in the Inflammatory Response. Alergol. Pol. J. Allergol. 2023, 10, 210–219. [Google Scholar] [CrossRef]
- Arkhipov, V.I.; Pershina, E.V.; Levin, S.G. The Role of Anti-Inflammatory Cytokines in Memory Processing in a Healthy Brain. Behav. Brain Res. 2019, 367, 111–116. [Google Scholar] [CrossRef]
- Moore, K.W.; de Waal Malefyt, R.; Coffman, R.L.; O’Garra, A. Interleukin-10 and the Interleukin-10 Receptor. Annu. Rev. Immunol. 2001, 19, 683–765. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, F.; Pasolli, E.; Ercolini, D. Newly Explored Faecalibacterium Diversity Is Connected to Age, Lifestyle, Geography, and Disease. Curr. Biol. 2020, 30, 4932–4943. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, M.; Martín, R.; Torres-Maravilla, E.; Chadi, S.; González-Dávila, P.; Sokol, H.; Langella, P.; Chain, F.; Bermúdez-Humarán, L.G. Butyrate Mediates Anti-Inflammatory Effects of Faecalibacterium Prausnitzii in Intestinal Epithelial Cells through Dact3. Gut Microbes 2020, 12, 1826748. [Google Scholar] [CrossRef]
- Ishida, K.; Kishi, Y.; Oishi, K.; Hirooka, H.; Kumagai, H. Effects of Feeding Polyphenol-rich Winery Wastes on Digestibility, Nitrogen Utilization, Ruminal Fermentation, Antioxidant Status and Oxidative Stress in Wethers. Anim. Sci. J. 2015, 86, 260–269. [Google Scholar] [CrossRef]
- Sena, L.A.; Chandel, N.S. Physiological Roles of Mitochondrial Reactive Oxygen Species. Mol. Cell 2012, 48, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Ko, K.M.; Leung, H.Y. Enhancement of ATP Generation Capacity, Antioxidant Activity and Immunomodulatory Activities by Chinese Yang and Yin Tonifying Herbs. Chin. Med. 2007, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Fu, A.; van Rooyen, L.; Evans, L.; Armstrong, N.; Avizonis, D.; Kin, T.; Bird, G.H.; Reddy, A.; Chouchani, E.T.; Liesa-Roig, M. Glucose Metabolism and Pyruvate Carboxylase Enhance Glutathione Synthesis and Restrict Oxidative Stress in Pancreatic Islets. Cell Rep. 2021, 37, 110037. [Google Scholar] [CrossRef]
Items (%) | Chinese Cabbage Waste | Rice Straw |
---|---|---|
Dry matter (DM) | 4.13 | 79.52 |
DM basis (%) | ||
Crude protein (CP) | 19.97 | 5.49 |
Ash | 11.55 | 9.97 |
Neutral detergent fiber (NDF) | 19.41 | 66.73 |
Acid detergent fiber (ADF) | 11.97 | 39.42 |
Water Soluble carbohydrates | 7.05 | 4.84 |
The above values are measured values |
Items (%) | Vegetable Waste Silage |
---|---|
Dry matter (DM) | 24.97 |
DM basis (%) | |
Crude protein (CP) | 7.50 |
Ash | 9.84 |
Neutral detergent fiber (NDF) | 51.79 |
Acid detergent fiber (ADF) | 31.56 |
Water Soluble carbohydrates | 4.37 |
The above values are measured values |
Ingredients | Control | VTRS |
---|---|---|
Peanut seedlings | 30.00 | – |
Maize husk | 15.00 | – |
Sorghum hulls | 5.00 | – |
Vegetable waste silage | -- | 50.00 |
Maize grains | 34.00 | 34.00 |
Soybean meal | 7.00 | 5.50 |
Wheat Bran | 7.50 | 8.00 |
Maize gluten | – | 1.00 |
NaHCO3 | 0.50 | 0.50 |
Premix contained | 0.50 | 0.50 |
Salt | 0.50 | 0.50 |
Total | 100.00 | 100.00 |
Metabolizable energy (MJ/Kg) | 13.42 | 14.63 |
CP (%) | 15.08 | 15.11 |
Ash (%) | 4.36 | 12.33 |
NDF (%) | 47.64 | 48.23 |
ADF (%) | 23.71 | 27.17 |
Ca (%) | 0.48 | 0.45 |
Genes | Accession Numbers | Forward Primer (5′–3′) | Reverse Primer (3′–5′) |
---|---|---|---|
1 GLUT2/SLC2A2 | AJ318925.1 | TGTTTCACTGGATGACGGAAT | AGCCCAAGAGACTGGTGTTG |
2 SGLT1/SLC5A1 | NM_001009404 | GTGCAGTCAGCACAAAGTGG | CCCGGTTCCATAGGCAAACT |
3 SLC38A2 | XM_004006421 | TTCATTTGTCTGCCATCC | TCAGGTATCCAAAGAGGG |
4 SLC3A2 | XM_060404045 | AGAACATCACTAAGAGCGTCAG | AACAGGTCCTTGGTGGGT |
5 SLC6A19 | XM_027980192 | TCGGTCATCGTGTCTGTGAT | GGAAGCAGTCGTCGTAGCG |
6 SLC1A5 | XM_027978525 | GGGGCGAGGTTGAGGGTAT | TGAAGGAGTTGAAGAAGCGAAT |
β-actin | NM_001009784.3 | AGCCTTCCTTCCTGGGCATGGA | GGACAGCACCGTGTTGGCGTAGA |
Items | Groups | SEM | p-Value | |
---|---|---|---|---|
Control | VTRS | |||
Aflatoxin (ppb) | 3.7 | 4.1 | 0.14 | 0.17 |
Ochratoxin A (ppb) | 15.8 a | 11 b | 0.45 | <0.01 |
Zearalenon (ppb) | 89.9 a | 28.4 b | 0.4 | <0.01 |
VA (μg/L) | 71.9 b | 75.9 a | 0.85 | 0.032 |
VB2 (μg/L) | 3.5 b | 4.8 a | 0.09 | 0.015 |
VC (μg/L) | 22.9 b | 28.1 a | 0.35 | <0.01 |
VE (μg/L) | 8.1 | 7.6 | 0.2 | 0.11 |
Items | Groups | SEM | p-Value | |
---|---|---|---|---|
Control | VTRS | |||
Average daily feed intake (g) | 1157.5 | 1117.5 | 40.52 | 0.529 |
Average daily weight gain (g) | 220.1 | 247.5 | 27.05 | 0.501 |
Feed/gain ratio | 5.392 | 4.682 | 0.448 | 0.307 |
Items | Groups | SEM | p-Value | |
---|---|---|---|---|
Control | VTRS | |||
Duodenum | ||||
Amylase (U/g prot) | 6.27 b | 16.31 a | 1.308 | 0.003 |
Lipase (U/mg prot) | 6.29 | 7.10 | 1.302 | 0.683 |
Trypsin (U/mg prot) | 34.48 | 32.75 | 2.810 | 0.678 |
Jejunum | ||||
Amylase (U/g prot) | 0.98 | 1.06 | 0.124 | 0.685 |
Lipase (U/mg prot) | 14.44 | 13.88 | 2.145 | 0.860 |
Trypsin (U/mg prot) | 143.7 | 146.2 | 17.39 | 0.922 |
Ileum | ||||
Amylase (U/g prot) | 1.90 b | 5.29 a | 0.506 | 0.010 |
Lipase (U/mg prot) | 11.25 | 11.38 | 1.173 | 0.943 |
Trypsin (U/mg prot) | 71.16 | 73.23 | 6.807 | 0.837 |
Items | Groups | SEM | p-Value | |
---|---|---|---|---|
Control | VTRS | |||
Concentration | ||||
Acetate (mM) | 1.55 | 2.27 | 0.248 | 0.091 |
Propionate (mM) | 0.30 | 0.40 | 0.086 | 0.468 |
Butyrate (mM) | 0.18 b | 1.96 a | 0.046 | <0.001 |
Isobutyrate (mM) | 0.17 | 0.18 | 0.003 | 0.061 |
Valerate (mM) | 0.16 | 0.17 | 0.008 | 0.425 |
Isovalerate (mM) | 0.18 | 0.23 | 0.016 | 0.112 |
1 A:P | 6.75 | 7.17 | 2.422 | 0.907 |
2 TVFA (mmol/L) | 2.54 b | 5.02 a | 0.207 | <0.001 |
Molar proportions (%) | ||||
Acetate | 59.50 | 43.47 | 4.070 | 0.036 |
Propionate | 11.97 | 7.76 | 2.375 | 0.264 |
Butyrate | 7.46 | 37.62 | 1.345 | <0.001 |
Isobutyrate | 7.05 | 3.50 | 0.515 | 0.031 |
Valerate | 6.68 | 3.32 | 0.525 | 0.024 |
Isovalerate | 7.33 | 4.32 | 0.690 | 0.035 |
Items | Groups | SEM | p-Value | |
---|---|---|---|---|
Control | VTRS | |||
Concentration | ||||
Acetate (mM) | 38.22 b | 42.98 a | 0.914 | 0.011 |
Propionate (mM) | 12.86 | 14.03 | 1.054 | 0.462 |
Butyrate (mM) | 4.87 b | 8.14 a | 0.532 | 0.005 |
Isobutyrate (mM) | 1.12 | 1.31 | 0.088 | 0.242 |
Valerate (mM) | 0.63 b | 1.27 a | 0.129 | 0.019 |
Isovalerate (mM) | 0.56 | 0.60 | 0.077 | 0.692 |
1 A:P | 3.02 | 3.11 | 0.195 | 0.761 |
2 TVFA (mM) | 58.81 b | 70.61 a | 3.002 | 0.017 |
Molar proportions (%) | ||||
Acetate | 65.67 | 63.04 | 1.275 | 0.197 |
Propionate | 21.97 | 20.45 | 1.011 | 0.329 |
Butyrate | 8.37 | 11.86 | 0.675 | 0.014 |
Isobutyrate | 1.92 | 1.93 | 0.185 | 0.996 |
Valerate | 1.09 | 1.83 | 0.170 | 0.023 |
Isovalerate | 0.95 | 0.88 | 0.101 | 0.623 |
Items | Groups | SEM | p-Value | |
---|---|---|---|---|
Control | Silage | |||
Duodenum | ||||
1 GLUT2 | 1.00 | 1.17 | 0.304 | 0.673 |
2 SGLT1 | 1.00 | 1.02 | 0.406 | 0.898 |
3 SLC38A2 | 1.00 | 1.83 | 0.418 | 0.093 |
4 SLC3A2 | 1.00 | 0.84 | 0.169 | 0.065 |
5 SLC6A19 | 1.00 | 0.41 | 0.252 | 0.052 |
6 SLC1A5 | 1.00 | 0.62 | 0.203 | 0.135 |
Jejunum | ||||
1 GLUT2 | 1.00 | 1.18 | 0.422 | 0.517 |
2 SGLT1 | 1.00 | 1.85 | 0.382 | 0.064 |
3 SLC38A2 | 1.00 | 0.87 | 0.239 | 0.620 |
4 SLC3A2 | 1.00 | 1.30 | 0.212 | 0.210 |
5 SLC6A19 | 1.00 | 1.02 | 0.348 | 0.936 |
6 SLC1A5 | 1.00 | 0.78 | 0.159 | 0.190 |
Ileum | ||||
1 GLUT2 | 1.00 b | 5.73 a | 0.531 | 0.003 |
2 SGLT1 | 1.00 b | 1.98 a | 0.563 | 0.005 |
3 SLC38A2 | 1.00 | 1.42 | 0.398 | 0.137 |
4 SLC3A2 | 1.00 | 1.16 | 0.166 | 0.369 |
5 SLC6A19 | 1.00 | 1.52 | 0.418 | 0.245 |
6 SLC1A5 | 1.00 | 1.13 | 0.376 | 0.251 |
Items | Groups | p-Value | ||
---|---|---|---|---|
Control | VTRS | SEM | ||
Serum | ||||
TAOC (U/mL) | 0.38 b | 0.41 a | 0.006 | 0.003 |
SOD (U/mL) | 253.0 | 263.5 | 13.05 | 0.720 |
GSH-Px (U/mL) | 202.3 | 168.2 | 9.840 | 0.078 |
CAT (U/mgHb) | 1.96 | 1.96 | 0.144 | 0.992 |
MDA (nmol/mL) | 1.98 a | 1.57 b | 0.105 | 0.038 |
IL-1β (pg/mL) | 483.6 | 490.6 | 24.10 | 0.897 |
IL-6 (pg/mL) | 180.5 | 199.5 | 8.395 | 0.288 |
IL-8 (pg/mL) | 14.89 | 14.58 | 0.834 | 0.869 |
IL-10 (pg/mL) | 239.0 b | 391.0 a | 28.85 | <0.001 |
TNF-α (pg/mL) | 541.5 | 576.7 | 13.21 | 0.203 |
IgA (pg/mL) | 33.74 | 46.49 | 4.427 | 0.163 |
IgM (pg/mL) | 350.1 | 377.6 | 42.30 | 0.314 |
Liver | ||||
TAOC (U/mL) | 0.51 | 0.44 | 0.018 | 0.104 |
SOD (U/mL) | 329.6 | 278.9 | 14.67 | 0.079 |
GSH-Px (U/mL) | 179.8 | 184.8 | 8.203 | 0.788 |
CAT (U/mgHb) | 0.94 | 0.72 | 0.085 | 0.226 |
MDA (nmol/mL) | 1.39 a | 0.85 b | 0.120 | 0.007 |
IL-1β (pg/mL) | 393.9 | 440.3 | 17.38 | 0.202 |
IL-6 (pg/mL) | 398.6 | 404.5 | 17.06 | 0.879 |
IL-8 (pg/mL) | 10.36 | 12.78 | 0.652 | 0.053 |
IL-10 (pg/mL) | 336.5 | 367.8 | 12.17 | 0.222 |
TNF-α (pg/mL) | 511.1 | 544.6 | 26.57 | 0.570 |
IgA (pg/mL) | 40.07 | 48.31 | 3.338 | 0.244 |
IgM (pg/mL) | 350.1 | 377.6 | 42.30 | 0.314 |
Items | Groups | p-Value | ||
---|---|---|---|---|
Control | VTRS | SEM | ||
Duodenum | ||||
TAOC (U/mL) | 0.48 b | 0.51 a | 0.006 | 0.04 |
SOD (U/mL) | 179.5 | 195.3 | 8.90 | 0.417 |
GSH-Px (U/mL) | 181.5 b | 243.1 a | 11.90 | <0.001 |
CAT (U/mgHb) | 0.47 b | 0.56 a | 0.019 | 0.002 |
MDA(nmol/mL) | 1.74 | 1.54 | 0.055 | 0.062 |
IL-1β (pg/mL) | 606.1 | 654.6 | 22.31 | 0.311 |
IL-6 (pg/mL) | 390.1 b | 473.2 a | 18.71 | 0.017 |
IL-8 (pg/mL) | 5.65 | 6.01 | 0.108 | 0.089 |
IL-10 (pg/mL) | 241.6 | 244.9 | 11.52 | 0.897 |
TNF-α (pg/mL) | 422.4 | 356.1 | 25.79 | 0.222 |
IgA (pg/mL) | 66.77 b | 92.73 a | 6.664 | 0.037 |
IgM (pg/mL) | 621.7 | 766.1 | 36.59 | 0.314 |
Caecum | ||||
TAOC (U/mL) | 0.49 b | 0.95 a | 0.093 | 0.004 |
SOD (U/mL) | 176.1 | 194.3 | 12.08 | 0.496 |
GSH-Px (U/mL) | 150.5 b | 179.6 a | 6.393 | 0.006 |
CAT (U/mgHb) | 1.92 | 2.27 | 0.178 | 0.328 |
MDA(nmol/mL) | 2.72 | 2.31 | 0.122 | 0.092 |
IL-1β (pg/mL) | 420.6 | 442.7 | 22.31 | 0.657 |
IL-6 (pg/mL) | 230.8 | 257.2 | 12.09 | 0.314 |
IL-8 (pg/mL) | 4.89 | 3.92 | 0.316 | 0.132 |
IL-10 (pg/mL) | 165.3 b | 243.9 a | 17.77 | 0.018 |
TNF-α (pg/mL) | 510.3 | 535.1 | 6.821 | 0.061 |
IgA (pg/mL) | 60.17 | 68.71 | 3.686 | 0.278 |
IgM (pg/mL) | 610.57 | 607.1 | 36.40 | 0.314 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafar, M.H.; Li, C.; Lu, Z.; Lu, Y.; Zhang, Z.; Qi, R.; Nazir, U.; Yang, K.; Wang, M. Duodenum and Caecum Microbial Shift Modulates Immune and Antioxidant Response Through Energy Homeostasis in Hu Sheep Fed Vegetable Waste and Rice Straw Silage. Antioxidants 2024, 13, 1546. https://doi.org/10.3390/antiox13121546
Zafar MH, Li C, Lu Z, Lu Y, Zhang Z, Qi R, Nazir U, Yang K, Wang M. Duodenum and Caecum Microbial Shift Modulates Immune and Antioxidant Response Through Energy Homeostasis in Hu Sheep Fed Vegetable Waste and Rice Straw Silage. Antioxidants. 2024; 13(12):1546. https://doi.org/10.3390/antiox13121546
Chicago/Turabian StyleZafar, Muhammad Hammad, Chuang Li, Zhiqi Lu, Yue Lu, Zhenbin Zhang, Ruxin Qi, Usman Nazir, Kailun Yang, and Mengzhi Wang. 2024. "Duodenum and Caecum Microbial Shift Modulates Immune and Antioxidant Response Through Energy Homeostasis in Hu Sheep Fed Vegetable Waste and Rice Straw Silage" Antioxidants 13, no. 12: 1546. https://doi.org/10.3390/antiox13121546
APA StyleZafar, M. H., Li, C., Lu, Z., Lu, Y., Zhang, Z., Qi, R., Nazir, U., Yang, K., & Wang, M. (2024). Duodenum and Caecum Microbial Shift Modulates Immune and Antioxidant Response Through Energy Homeostasis in Hu Sheep Fed Vegetable Waste and Rice Straw Silage. Antioxidants, 13(12), 1546. https://doi.org/10.3390/antiox13121546