Chemical Constituents, In Vitro Antioxidant Activity and In Silico Study on NADPH Oxidase of Allium sativum L. (Garlic) Essential Oil
<p>Molecular interaction studies of the most active phytochemical constituents of garlic essential oil with NADPH oxidase (PDB ID: 2CDU). (<b>A</b>): 4H-1,2,3-trithiine, (<b>B</b>): 5-methyl-1,2,3,4-tetrathiane, and (<b>C</b>): α-bisabolol. Surface view (left panel), and 2D (right panel) interactions.</p> "> Figure 1 Cont.
<p>Molecular interaction studies of the most active phytochemical constituents of garlic essential oil with NADPH oxidase (PDB ID: 2CDU). (<b>A</b>): 4H-1,2,3-trithiine, (<b>B</b>): 5-methyl-1,2,3,4-tetrathiane, and (<b>C</b>): α-bisabolol. Surface view (left panel), and 2D (right panel) interactions.</p> "> Figure 2
<p>(<b>A</b>) RMSD plot of Cα atoms of NADPH oxidase displaying deviations from the mean with α-bisabolol (dark cyan) and diallyl trisulfide (orange) over a 100 ns time scale simulation. (<b>B</b>) RMSF plot of amino acids of NADPH oxidase bound to α-bisabolol (dark cyan) and diallyl trisulfide (orange) over a 100 ns time scale simulation.</p> "> Figure 2 Cont.
<p>(<b>A</b>) RMSD plot of Cα atoms of NADPH oxidase displaying deviations from the mean with α-bisabolol (dark cyan) and diallyl trisulfide (orange) over a 100 ns time scale simulation. (<b>B</b>) RMSF plot of amino acids of NADPH oxidase bound to α-bisabolol (dark cyan) and diallyl trisulfide (orange) over a 100 ns time scale simulation.</p> "> Figure 3
<p>(<b>A</b>) Radius of gyration (Rg) plot of Cα atoms of NADPH oxidase complexed with α-bisabolol (dark cyan) and diallyl trisulfide (orange). (<b>B</b>) Number of hydrogen bonds formed between NADPH oxidase and α-bisabolol throughout a simulation time of 100 ns.</p> "> Figure 3 Cont.
<p>(<b>A</b>) Radius of gyration (Rg) plot of Cα atoms of NADPH oxidase complexed with α-bisabolol (dark cyan) and diallyl trisulfide (orange). (<b>B</b>) Number of hydrogen bonds formed between NADPH oxidase and α-bisabolol throughout a simulation time of 100 ns.</p> "> Figure 4
<p>Energy plots of NADPH oxidase complexed with (<b>A</b>) α-bisabolol and (<b>B</b>) diallyl trisulfide.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Identification of Volatile Compounds by Gas Chromatography–Mass Spectrometry (GC–MS)
2.4. Antioxidant Activity
2.4.1. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Assay
2.4.2. β-Carotene Bleaching Assay
2.5. Molecular Docking of the Phytochemical Volatiles of Garlic on the Receptor NADPH Oxidase (PDB ID: 2CDU)
2.6. Molecular Dynamic (MD) Studies
2.7. ADMET Prediction
2.8. Statistical Analysis
3. Results and Discussion
3.1. Chemical Profile of the Essential Oil of A. sativum
3.2. Antioxidant Profile of A. sativum Essential Oil
3.3. Molecular Docking of the Phytochemical Constituents of the Essential Oil from A. sativum
3.4. Molecular Dynamics of the Phytoconstituents of the Essential Oil from A. sativum
3.5. ADMET Profiles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Firenzuoli, F.; Jaitak, V.; Horvath, G.; Bassolé, I.H.N.; Setzer, W.N.; Gori, L. Essential Oils: New Perspectives in Human Health and Wellness. Evid. Based Complementary Altern. Med. Ecam 2014, 2014, 467363. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S. Essential Oils: Extraction, Bioactivities, and Their Uses for Food Preservation. J. Food Sci. 2014, 79, R1231–R1249. [Google Scholar] [CrossRef]
- De Lavor, É.M.; Cavalcante Fernandes, A.W.; de Andrade Teles, R.B.; Pereira Leal, A.E.B.; de Oliveira, R.G.; Gama e Silva, M.; de Oliveira, A.P.; Silva, J.C.; de Moura Fontes Araújo, M.T.; Melo Coutinho, H.D.; et al. Essential Oils and Their Major Compounds in the Treatment of Chronic Inflammation: A Review of Antioxidant Potential in Preclinical Studies and Molecular Mechanisms. Oxidative Med. Cell. Longev. 2018, 2018, 6468593. [Google Scholar] [CrossRef] [Green Version]
- Palmieri, S.; Maggio, F.; Pellegrini, M.; Ricci, A.; Serio, A.; Paparella, A.; Sterzo, C. lo Effect of the Distillation Time on the Chemical Composition, Antioxidant Potential and Antimicrobial Activity of Essential Oils from Different Cannabis sativa L. Cultivars. Molecules 2021, 26, 4770. [Google Scholar] [CrossRef] [PubMed]
- Abd-ElGawad, A.M.; Bonanomi, G.; Al-Rashed, S.A.; Elshamy, A.I. Persicaria Lapathifolia Essential Oil: Chemical Constituents, Antioxidant Activity, and Allelopathic Effect on the Weed Echinochloa Colona. Plants 2021, 10, 1798. [Google Scholar] [CrossRef]
- Silva, J.; Abebe, W.; Sousa, S.M.; Duarte, V.G.; Machado, M.I.L.; Matos, F.J.A. Analgesic and Anti-Inflammatory Effects of Essential Oils of Eucalyptus. J. Ethnopharmacol. 2003, 89, 277–283. [Google Scholar] [CrossRef]
- López, V.; Nielsen, B.; Solas, M.; Ramírez, M.J.; Jäger, A.K. Exploring Pharmacological Mechanisms of Lavender (Lavandula angustifolia) Essential Oil on Central Nervous System Targets. Front. Pharmacol. 2017, 8, 280. [Google Scholar] [CrossRef] [PubMed]
- Camele, I.; Gruľová, D.; Elshafie, H.S. Chemical Composition and Antimicrobial Properties of Mentha × Piperita Cv. ‘Kristinka’ Essential Oil. Plants 2021, 10, 1567. [Google Scholar] [CrossRef]
- Thuy, B.T.P.; My, T.T.A.; Hai, N.T.T.; Hieu, L.T.; Hoa, T.T.; Loan, H.T.P.; Triet, N.T.; van Anh, T.T.; Quy, P.T.; van Tat, P.; et al. Investigation into SARS-CoV-2 Resistance of Compounds in Garlic Essential Oil. ACS Omega 2020, 5, 8312–8320. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Subhan, F.; Ahmed, J. Neuroprotective and Anti-Aging Potentials of Essential Oils from Aromatic and Medicinal Plants. Front. Aging Neurosci. 2017, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.-W.; Chung, M.-S.; Bai, H.-W.; Chung, B.-Y.; Lee, S. Investigation of Antifungal Mechanisms of Thymol in the Human Fungal Pathogen, Cryptococcus Neoformans. Molecules 2021, 26, 3476. [Google Scholar] [CrossRef] [PubMed]
- Amiri, H. Antioxidant Activity of the Essential Oil and Methanolic Extract of Teucrium orientale (L.) Subsp. taylori (Boiss.) Rech. f. Iran. J. Pharm. Res. IJPR 2010, 9, 417–423. [Google Scholar]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant Activity of Essential Oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef]
- Ruberto, G.; Baratta, M.T. Antioxidant Activity of Selected Essential Oil Components in Two Lipid Model Systems. Food Chem. 2000, 69, 167–174. [Google Scholar] [CrossRef]
- Farouk, A.; Mohsen, M.; Ali, H.; Shaaban, H.; Albaridi, N. Antioxidant Activity and Molecular Docking Study of Volatile Constituents from Different Aromatic Lamiaceous Plants Cultivated in Madinah Monawara, Saudi Arabia. Molecules 2021, 26, 4145. [Google Scholar] [CrossRef] [PubMed]
- Takaishi, K.; Kinoshita, H.; Kawashima, S.; Kawahito, S. Human Vascular Smooth Muscle Function and Oxidative Stress Induced by Nadph Oxidase with the Clinical Implications. Cells 2021, 10, 1947. [Google Scholar] [CrossRef]
- Maraldi, T. Natural Compounds as Modulators of NADPH Oxidases. Oxidative Med. Cell. Longev. 2013. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Chen, W.-C.; Wang, W.-P.; Tian, W.-Y.; Zhang, X.-G. Extraction of Essential Oils from Garlic (Allium sativum) Using Ligarine as Solvent and Its Immunity Activity in Gastric Cancer Rat. Med. Chem. Res. 2010, 19, 1092–1105. [Google Scholar] [CrossRef]
- Kodera, Y.; Kurita, M.; Nakamoto, M.; Matsutomo, T. Chemistry of Aged Garlic: Diversity of Constituents in Aged Garlic Extract and Their Production Mechanisms via the Combination of Chemical and Enzymatic Reactions (Review). Exp. Ther. Med. 2020, 19, 1574–1584. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Kumagai, H. Characteristics, Biosynthesis, Decomposition, Metabolism and Functions of the Garlic Odour Precursor, S-Allyl-L-Cysteine Sulfoxide. Exp. Ther. Med. 2020, 19, 1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Sestelo, M.; Carrillo, J.M. Environmental Effects on Yield and Composition of Essential Oil in Wild Populations of Spike Lavender (Lavandula latifolia Medik.). Agriculture 2020, 10, 626. [Google Scholar] [CrossRef]
- Khalil, N.; El-Jalel, L.; Yousif, M.; Gonaid, M. Altitude Impact on the Chemical Profile and Biological Activities of Satureja Thymbra L. Essential Oil. BMC Complementary Med. Ther. 2020, 20, 186. [Google Scholar] [CrossRef]
- Hazrati, S.; Lotfi, K.; Govahi, M.; Ebadi, M.T. A Comparative Study: Influence of Various Drying Methods on Essential Oil Components and Biological Properties of Stachys Lavandulifolia. Food Sci. Nutr. 2021, 9, 2612–2619. [Google Scholar] [CrossRef]
- Riego, M. De A. y El Ajo En El Contexto Mundial y Nacional; Ministerio de Agricultura y Riego: La Molina, Peru, 2020.
- Liz Leslie Cucho-Medrano, J.; Wesley Mendoza-Beingolea, S.; Máximo Fuertes-Ruitón, C.; Elena Salazar-Salvatierra, M.; Herrera-Calderon, O.; Chemical, O. Chemical Profile of the Volatile Constituents and Antimicrobial Activity of the Essential Oils from Croton Adipatus, Croton Thurifer, and Croton Collinus. Antibiotics 2021, 10, 1387. [Google Scholar] [CrossRef]
- NIST20: Updates to the NIST Tandem and Electron Ionization Spectral Libraries|NIST. Available online: https://www.nist.gov/programs-projects/nist20-updates-nist-tandem-and-electron-ionization-spectral-libraries (accessed on 12 September 2021).
- Rojas-Armas, J.P.; Arroyo-Acevedo, J.L.; Palomino-Pacheco, M.; Herrera-Calderón, O.; Ortiz-Sánchez, J.M.; Rojas-Armas, A.; Calva, J.; Castro-Luna, A.; Hilario-Vargas, J. The Essential Oil of Cymbopogon Citratus Stapt and Carvacrol: An Approach of the Antitumor Effect on 7,12-Dimethylbenz-[α]-anthracene (DMBA)-Induced Breast Cancer in Female Rats. Molecules 2020, 25, 3284. [Google Scholar] [CrossRef]
- Tepe, B.; Sokmen, M.; Akpulat, H.A.; Sokmen, A. Screening of the Antioxidant Potentials of Six Salvia Species from Turkey. Food Chem. 2006, 95, 200–204. [Google Scholar] [CrossRef]
- Wairata, J.; Sukandar, E.R.; Fadlan, A.; Purnomo, A.S.; Taher, M.; Ersam, T. Evaluation of the Antioxidant, Antidiabetic, and Antiplasmodial Activities of Xanthones Isolated from Garcinia Forbesii and Their In Silico Studies. Biomedicines 2021, 9, 1380. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boubechiche, Z. Comparison of Volatile Compounds Profile and Antioxydant Activity of Allium Sativum Essential Oils Extracted Using Hydrodistillation, Ultrasound- Assisted and Sono-Hydrodistillation Processes. Indian J. Pharm. Educ. Res. 2017, 51, S281–S285. [Google Scholar] [CrossRef]
- Ndoye Foe, F.M.-C.; Tchinang, T.F.K.; Nyegue, A.M.; Abdou, J.-P.; Yaya, A.J.G.; Tchinda, A.T.; Essame, J.-L.O.; Etoa, F.-X. Chemical Composition, in Vitro Antioxidant and Anti-Inflammatory Properties of Essential Oils of Four Dietary and Medicinal Plants from Cameroon. BMC Complementary Altern. Med. 2016, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ncir, M.; ben Ali, M.; Sellami, H.; Allagui, M.S.; Lahyani, A.; Makni Ayadi, F.; Boudawara, T.; Allouche, N.; el Feki, A.; Saoudi, M. Protective Effects of Allium Sativum Essential Oil Rich in Disulfides against Deltamethrin Induced Oxidative Stress and Hepatotoxicity in Rats. J. Food Meas. Charact. 2020, 14, 2667–2675. [Google Scholar] [CrossRef]
- Ashraf, S.A.; Khan, M.A.; Awadelkareem, A.M.; Tajuddin, S.; Ahmad, M.F.; Hussain, T. GC-MS Analysis of Commercially Available Allium Sativum and Trigonella Foenum-Graecum Essential Oils and Their Antimicrobial Activities. J. Pure Appl. Microbiol. 2019, 13, 2545–2552. [Google Scholar] [CrossRef] [Green Version]
- Torpol, K.; Wiriyacharee, P.; Sriwattana, S.; Sangsuwan, J.; Prinyawiwatkul, W. Antimicrobia Activity of Garlic (Allium sativum L.) and Holy Basil (Ocimum sanctum L.) Essential Oils Applied by Liquid vs. Vapour Phases. Int. J. Food Sci. Technol. 2018, 53, 2119–2128. [Google Scholar] [CrossRef]
- Dziri, S.; Casabianca, H.; Hanchi, B.; Hosni, K. Composition of Garlic Essential Oil (Allium Sativum L.) as Influenced by Drying Method. J. Essent. Oil Res. 2014, 26, 91–96. [Google Scholar] [CrossRef]
- Delazar, A.; Bahmani, M.; Shoar, H.H.; Tabatabaei-Raisi, A.; Asnaashari, S.; Nahar, L.; Sarker, S.D. Effect of Altitude, Temperature and Soil on Essential Oil Production in Thymus Fedtschenkoi Flowers in Osko and Surrounding Areas in Iran. J. Essent. Oil Bear. Plants 2013, 14, 23–29. [Google Scholar] [CrossRef]
- Lawrence, R.; Lawrence, K. Antioxidant Activity of Garlic Essential Oil (Allium Sativum) Grown in North Indian Plains. Asian Pac. J. Trop. Biomed. 2011, 1, S51–S54. [Google Scholar] [CrossRef]
- Mnayer, D.; Fabiano-Tixier, A.-S.; Petitcolas, E.; Hamieh, T.; Nehme, N.; Ferrant, C.; Fernandez, X.; Chemat, F. Chemical Composition, Antibacterial and Antioxidant Activities of Six Essentials Oils from the Alliaceae Family. Molecules 2014, 19, 20034. [Google Scholar] [CrossRef] [Green Version]
- Bajpai, V.K.; Sharma, A.; Kim, S.H.; Baek, K.-H. Chemical Composition, Antioxidant, Lipid Peroxidation Inhibition and Free Radical Scavenging Activities of Microwave Extracted Essential Oil from Allium Sativum. J. Essent. Oil Bear. Plants 2015, 18, 300–313. [Google Scholar] [CrossRef]
- Chen, C.; Cai, J.; Liu, S.; Qiu, G.; Wu, X.; Zhang, W.; Chen, C.; Qi, W.; Wu, Y.; Liu, Z. Comparative Study on the Composition of Four Different Varieties of Garlic. PeerJ 2019, 7, e6442. [Google Scholar] [CrossRef] [PubMed]
- Schepetkin, I.A.; Kirpotina, L.N.; Khlebnikov, A.I.; Balasubramanian, N.; Quinn, M.T. Neutrophil Immunomodulatory Activity of Natural Organosulfur Compounds. Molecules 2019, 24, 1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colín-González, A.L.; Santana, R.A.; Silva-Islas, C.A.; Chánez-Cárdenas, M.E.; Santamaría, A.; Maldonado, P.D. The Antioxidant Mechanisms Underlying the Aged Garlic Extract- and S-Allylcysteine-Induced Protection. Oxidative Med. Cell. Longev. 2012, 2012, 907162. [Google Scholar] [CrossRef] [PubMed]
- Martínez, L. Automatic Identification of Mobile and Rigid Substructures in Molecular Dynamics Simulations and Fractional Structural Fluctuation Analysis. PLoS ONE 2015, 10, e0119264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horky, P.; Skalickova, S.; Smerkova, K.; Skladanka, J. Essential Oils as a Feed Additives: Pharmacokinetics and Potential Toxicity in Monogastric Animals. Animals 2019, 9, 352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
N° | Compound Name (NIST08.L) | Rt (min) | Molecular Formula/ Molecular Mass | % In Sample (Relative Areas) | Chemical Structure |
---|---|---|---|---|---|
1 | Allyl methyl disulfide | 12.75 | C4H8S2 (120.36) | 0.47 ± 0.01 | |
2 | 3H-1,2-Dithiole | 14.18 | C3H4S2 (104.19) | 2.41 ± 0.02 | |
3 | Diallyl disulfide | 18.11 | C6H10S2 (146.3) | 22.08 ± 0.11 | |
4 | 1-Propenyl 2-propenyl-(E)-disulfide | 18.69 | C6H10S2 (146.27) | 0.92 ± 0.01 | |
5 | Allyl methyl trisulfide | 20.06 | C4H8S3 (152.29) | 9.72 ± 0.05 | |
6 | Unknown | 20.92 | C6H10S2 (146.27) | 1.08 ± 0.01 | n.d. |
7 | 3-Vinyl-1,2-dithiacyclohex-4-ene | 21.71 | C6H8S2 (144.25) | 2.56 ± 0.01 | |
8 | 4H-1,2,3-Trithiine | 22.18 | C3H4S3 (136.25) | 3.07 ± 0.01 | |
9 | 2-Vinyl-4H-1,3-dithiine | 22.46 | C6H8S2 (144.25) | 4.78 ± 0.01 | |
10 | Unknown | 24.66 | C9H16O2S (188.29) | 0.50 ± 0.01 | n.d. |
11 | Diallyl trisulfide | 24.97 | C6H10S3 (178.33) | 44.21 ± 0.08 | |
12 | 1-Allyl-3-propyltrisulfane | 25.22 | C6H12S3 (180.34) | 1.37 ± 0.01 | |
13 | 5-Methyl-1,2,3,4-tetrathiane | 27.20 | C3H6S4 (170.32) | 1.55 ± 0.01 | |
14 | Unknown | 31.50 | C9H16S3 (220.42) | 0.85 ± 0.01 | n.d. |
15 | Diallyl tetrasulfide | 31.55 | C6H10S4 (210.39) | 0.68 ± 0.01 | |
16 | α-Bisabolol | 35.42 | C15H26O (222.37) | 3.32 ± 0.03 | |
17 | Unknown | 45.26 | C22H42O4 (370.57) | 0.43 ± 0.01 | n.d. |
Samples | Antioxidant Activity | |
---|---|---|
DPPH IC50 (μg/mL) | β-Carotene IC50 (μg/mL) | |
Essential oil of Allium sativum | 124.60 ± 2.3 ** | 328.51 ± 2.0 * |
Trolox | 0.54 ± 0.02 | - |
Rutin | - | 3.5 ± 0.05 |
No. | Ligand Name | ΔG (kcal/mol) | Ki (µM) | Residues Involved in Polar Bonds |
---|---|---|---|---|
1 | Allyl methyl disulfide | −6.85 | 15.0 | VAL214 |
2 | 3H-1,2-Dithiole | −7.45 | 5.45 | CYS133 |
3 | Diallyl disulfide | −7.19 | 8.48 | ILE243, GLY244 |
4 | 1-Propenyl 2-propenyl-(E)-disulfide | −6.59 | 23.2 | LYS187 |
5 | Allyl methyl trisulfide | −6.65 | 21.1 | MET33 |
6 | 3-Vinyl-1,2-dithiacyclohex-4-ene | −8.87 | 2.78 | VAL81 |
7 | 4H-1,2,3-Trithiine | −9.05 | 1.90 | CYS133 |
8 | 2-Vinyl-4H-1,3-dithiine | −7.69 | 3.64 | VAL81 |
9 | Diallyl trisulfide | −7.36 | 6.37 | GLY244 |
10 | 1-Allyl-3-propyltrisulfan | −7.76 | 3.32 | GLY244 |
11 | 5-Methyl-1,2,3,4-tetrathiane | −9.33 | 1.24 | CYS133, GLY244 |
12 | Diallyl tetrasulfide | −6.21 | 44.4 | - |
13 | α-Bisabolol | –10.62 | 0.140 | LYS187, TYR188 |
N° | Absorption | Distribution | Excretion | Toxicity | |||||
---|---|---|---|---|---|---|---|---|---|
Caco-2 (Log Papp in 10−6 cm/s) | Intestinal Absorption (% Absorbed) | Skin Permeability (Log Kp) | VDss (Log L/kg) | BBB Permeability (Log BB) | CNS Permeability (Log PS) | Total Clearance (Log mL/min/kg) | Oral Rat Acute Toxicity (LD50 = mol/kg) | Oral Rat Chronic Toxicity (LOAEL = Log mg/kg_bw/day) | |
1 | 1.394 | 94.604 | −1.761 | 0.098 | 0.332 | −2.336 | 0.444 | 2.512 | 1.726 |
2 | 1.384 | 95.015 | −2.232 | 0.159 | 0.183 | −2.599 | 0.287 | 2.674 | 1.733 |
3 | 1.406 | 94.007 | −1.374 | 0.197 | 0.743 | −2.157 | 0.366 | 2.433 | 2.026 |
4 | 1.397 | 92.885 | −1.652 | 0.112 | 0.437 | −2.435 | 0.347 | 2.845 | 1.728 |
5 | 1.398 | 94.877 | −1.865 | 0.241 | 0.377 | −2.439 | 0.496 | 2.447 | 1.777 |
6 | 1.394 | 93.326 | −2.088 | 0.148 | 0.27 | −2.644 | 0.161 | 2.956 | 1.756 |
7 | 1.398 | 94.908 | −1.865 | 0.241 | 0.378 | −2.439 | 0.467 | 2.442 | 1.752 |
8 | 1.403 | 92.573 | −1.449 | 0.216 | 0.767 | −2.309 | 0.446 | 2.711 | 1.857 |
9 | 1.403 | 92.573 | −1.449 | 0.216 | 0.767 | −2.309 | 0.446 | 2.711 | 1.857 |
10 | 1.403 | 92.097 | −1.425 | 0.225 | 0.757 | −2.309 | 0.389 | 2.75 | 1.931 |
11 | 1.427 | 91.045 | −1.29 | 0.165 | 0.693 | −1.649 | 0.103 | 2.863 | 1.812 |
12 | 1.406 | 90.609 | −1.552 | 0.224 | 0.759 | −2.402 | 0.336 | 3.035 | 1.843 |
13 | 1.505 | 93.014 | –1.761 | 0.42 | 0.605 | –2.541 | 1.363 | 1.739 | 1.178 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera-Calderon, O.; Chacaltana-Ramos, L.J.; Huayanca-Gutiérrez, I.C.; Algarni, M.A.; Alqarni, M.; Batiha, G.E.-S. Chemical Constituents, In Vitro Antioxidant Activity and In Silico Study on NADPH Oxidase of Allium sativum L. (Garlic) Essential Oil. Antioxidants 2021, 10, 1844. https://doi.org/10.3390/antiox10111844
Herrera-Calderon O, Chacaltana-Ramos LJ, Huayanca-Gutiérrez IC, Algarni MA, Alqarni M, Batiha GE-S. Chemical Constituents, In Vitro Antioxidant Activity and In Silico Study on NADPH Oxidase of Allium sativum L. (Garlic) Essential Oil. Antioxidants. 2021; 10(11):1844. https://doi.org/10.3390/antiox10111844
Chicago/Turabian StyleHerrera-Calderon, Oscar, Luz Josefina Chacaltana-Ramos, Irma Carmen Huayanca-Gutiérrez, Majed A. Algarni, Mohammed Alqarni, and Gaber El-Saber Batiha. 2021. "Chemical Constituents, In Vitro Antioxidant Activity and In Silico Study on NADPH Oxidase of Allium sativum L. (Garlic) Essential Oil" Antioxidants 10, no. 11: 1844. https://doi.org/10.3390/antiox10111844
APA StyleHerrera-Calderon, O., Chacaltana-Ramos, L. J., Huayanca-Gutiérrez, I. C., Algarni, M. A., Alqarni, M., & Batiha, G. E.-S. (2021). Chemical Constituents, In Vitro Antioxidant Activity and In Silico Study on NADPH Oxidase of Allium sativum L. (Garlic) Essential Oil. Antioxidants, 10(11), 1844. https://doi.org/10.3390/antiox10111844