Distinct Urinary Metabolite Signatures Mirror In Vivo Oxidative Stress-Related Radiation Responses in Mice
<p>An overview of the study design, depicting the experimental workflow. Mice were subjected to different radiation exposures (WBI HDR, WBI LDR, PBI BM2.5), followed by urine collection at multiple time points (Days 0, 2, 30, and 90). The schematic outlines sample collection, metabolomics analysis, pathway identification, and predictive modeling to determine oxidative stress-related metabolic changes and identify biomarkers of radiation damage.</p> "> Figure 2
<p>Radiation exposure induces robust and dose-dependent urinary metabolite alterations. Untargeted metabolomics analysis reveals significant metabolite alterations following radiation exposure. (<b>A</b>): Volcano plots indicate downregulation of most metabolites on Day 2. (<b>B</b>,<b>C</b>): Principal component analysis (PCA) demonstrates group separation on Day 2, with WBI HDR showing greatest separation from controls. By Day 30, WBI LDR and PBI BM2.5 groups exhibit metabolic recovery, while WBI HDR remains distinct. At Day 90, metabolic profiles converge with controls across all groups, indicating resolution of radiation-induced perturbations.</p> "> Figure 3
<p>Pathway analysis identified radiation-specific metabolic perturbations, including oxidative stress-related pathways. Metabolic pathway analysis revealed radiation-specific changes across exposure groups. (<b>A–C</b>): Upregulated pathways included retinol metabolism (PBI BM2.5), sialic acid metabolism (WBI LDR), and vitamin B5 metabolism (WBI HDR), indicative of antioxidant responses to oxidative stress. (<b>D–F</b>): Downregulated pathways encompassed energy metabolism, redox balance, and amino acid metabolism in WBI HDR group, reflecting sustained metabolic dysregulation.</p> "> Figure 4
<p>MOFA identifies factors linked to radiation-induced organ damage and oxidative stress. MOFA highlights key factors driving metabolic and phenotypic variance post-radiation. (<b>A</b>): Scatter plots confirm minimal skewness across factors, supporting robustness of dataset. (<b>B</b>): Correlation heatmap identifies significant associations between Factors 2, 3, 5, and 7 and radiation-induced outcomes, such as kidney inflammation and spleen degeneration. (<b>C</b>,<b>D</b>): Violin plots show distribution of Factors 5 and 7, highlighting metabolites positively (red) and negatively (blue) correlated with radiation effects. Oxidative stress-related metabolites including cis-aconitate, glucosamine-6-phosphate are enriched in these factors.</p> "> Figure 5
<p>Inter-factor analysis reveals oxidative stress-associated metabolic features. Inter-factor plots between MOFA Factors 5 and 7 display relationships among key metabolic features. Top-weighted features include cis-aconitate, alpha-tocopherol, and glucosamine-6-phosphate, indicative of oxidative stress and antioxidant responses. These features distinguish radiation exposure types and provide insights into persistent metabolic alterations.</p> "> Figure 6
<p>Correlations of top metabolites with MOFA Factor 7 highlight radiation-specific metabolic responses. Scatter plots show correlations between Factor 7 and normalized intensities of key metabolites. Points are color-coded by treatment group (Control, PBI BM2.5, WBI HDR, and WBI LDR). Positive correlations including phenyllactate and glucosamine-6-phosphate and negative correlations including methyladenosine reflect group-specific metabolic shifts linked to oxidative stress. These metabolites serve as indicators of radiation exposure and oxidative imbalance.</p> "> Figure 7
<p>Machine learning models predict radiation exposure types based on urinary metabolite profiles. Performance of machine learning models (N-net and XGBoost) in classifying radiation exposure types. (<b>A</b>,<b>B</b>): Area under the receiver operating characteristic curves demonstrate high predictive accuracy, especially for PBI BM2.5 and WBI HDR groups at Days 2 and 30. (<b>C</b>,<b>D</b>): Confusion matrix summarizes classification outcomes, showing robust performance of XGBoost. (<b>E</b>,<b>F</b>): Model performance metrics (Sensitivity, Specificity, Precision, Recall, F1 Score, Balanced Accuracy) showing XGBoost’s high predictive capability.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Animal Procedures
2.2. Chemicals
2.3. Targeted Metabolomics Analysis
2.4. Untargeted Metabolomics Analysis
2.5. Data Processing and Statistical Analysis
2.6. Predictive Modeling
3. Results
3.1. Metabolomic Analyses Yield a Robust Radiation Signature
3.2. Pathway Analysis Identifies Radiation-Induced Pathway Perturbations
3.3. Multi-Modal Evaluation of Radiation-Induced Organ Damage
3.4. Predictive Modeling of Radiation Exposure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WBI HDR | Whole-Body Irradiation at High Dose Rate |
WBI LDR | Whole-Body Irradiation at Low Dose Rate |
PBI BM2.5 | Partial-Body Irradiation with 2.5% Bone Marrow Shielding |
ROS | Reactive Oxygen Species |
LC-MS | Liquid Chromatography–Mass Spectrometry |
TIC | Total Ion Chromatogram |
MRM | Multiple Reaction Monitoring |
QC | Quality Control |
MS | Mass Spectrometry |
H-ARS | Hematopoietic Acute Radiation Syndrome |
MOFA | Multi-Omics Factor Analysis |
PCA | Principal Component Analysis |
AUC-ROC | Area Under the Receiver Operating Characteristic Curve |
N-Net | Neural Network |
XG-Boost | Gradient Boosting Algorithm |
LOOCV | Leave-One-Out Cross-Validation |
HU | Hounsfield Unit |
PBS | Phosphate-Buffered Saline |
FDR | False Discovery Rate |
NIST | National Institute of Standards and Technology |
HPLC | High-Performance Liquid Chromatography |
SST | Serum Separator Tube |
CEs | Cholesterol Esters |
DAGs | Diacylglycerols |
TAGs | Triacylglycerols |
SMs | Sphingomyelins |
PCs | Phosphatidylcholines |
PEs | Phosphatidylethanolamines |
LPCs | Lysophosphatidylcholines |
LPEs | Lysophosphatidylethanolamines |
PIs | Phosphatidylinositols |
LPIs | Lysophosphatidylinositols |
PSs | Phosphatidylserines |
PAs | Phosphatidic Acids |
LPAs | Lysophosphatidic Acids |
MAGs | Monoacylglycerols |
ACs | Acylcarnitines |
CERs | Ceramides |
DCERs | Dihydroceramides |
HCERs | Hexosylceramides |
LCERs | Lactosylceramides |
FSD | Focus-to-Surface Distance |
HVL | Half-Value Layer |
m/z | Mass-to-Charge Ratio |
LN | Liquid Nitrogen |
References
- Strigari, L.; Konijnenberg, M.; Chiesa, C.; Bardies, M.; Du, Y.; Gleisner, K.S.; Lassmann, M.; Flux, G. The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1976–1988. [Google Scholar] [CrossRef] [PubMed]
- Pannkuk, E.L.; Laiakis, E.C.; Authier, S.; Wong, K.; Fornace, A.J., Jr. Gas Chromatography/Mass Spectrometry Metabolomics of Urine and Serum from Nonhuman Primates Exposed to Ionizing Radiation: Impacts on the Tricarboxylic Acid Cycle and Protein Metabolism. J. Proteome Res. 2017, 16, 2091–2100. [Google Scholar] [CrossRef] [PubMed]
- Menon, S.S.; Uppal, M.; Randhawa, S.; Cheema, M.S.; Aghdam, N.; Usala, R.L.; Ghosh, S.P.; Cheema, A.K.; Dritschilo, A. Radiation Metabolomics: Current Status and Future Directions. Front. Oncol. 2016, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Jelonek, K.; Mrowiec, K.; Gabrys, D.; Widlak, P. The Metabolic Footprint of Systemic Effects in the Blood Caused by Radiotherapy and Inflammatory Conditions: A Systematic Review. Metabolites 2023, 13, 1000. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, A.D.; Li, Y.; Fatanmi, O.O.; Wise, S.Y.; Petrus, S.A.; Janocha, B.L.; Cheema, A.K.; Singh, V.K. Metabolomic Profiles in Tissues of Nonhuman Primates Exposed to Either Total- or Partial-Body Irradiation. Radiat. Res. 2024, 201, 371–383. [Google Scholar] [CrossRef]
- Zhou, R.; Si, J.; Zhang, H.; Wang, Z.; Li, J.; Zhou, X.; Gan, L.; Liu, Y. The effects of x-ray radiation on the eye development of zebrafish. Hum. Exp. Toxicol. 2014, 33, 1040–1050. [Google Scholar] [CrossRef]
- Li, Y.; Singh, J.; Varghese, R.; Zhang, Y.; Fatanmi, O.O.; Cheema, A.K.; Singh, V.K. Transcriptome of rhesus macaque (Macaca mulatta) exposed to total-body irradiation. Sci. Rep. 2021, 11, 6295. [Google Scholar] [CrossRef]
- Helm, J.S.; Rudel, R.A. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch. Toxicol. 2020, 94, 1511–1549. [Google Scholar] [CrossRef]
- Andreassen, C.N.; Alsner, J. Genetic variants and normal tissue toxicity after radiotherapy: A systematic review. Radiother. Oncol. 2009, 92, 299–309. [Google Scholar] [CrossRef]
- Cheema, A.K.; Li, Y.; Ventimiglia, M.; Kowalczyk, K.; Hankins, R.; Bandi, G.; Janowski, E.M.; Grindrod, S.; Villagra, A.; Dritschilo, A. Radiotherapy Induces Innate Immune Responses in Patients Treated for Prostate Cancers. Clin. Cancer Res. 2023, 29, 921–929. [Google Scholar] [CrossRef]
- Cheema, A.K.; Li, Y.; Moulton, J.; Girgis, M.; Wise, S.Y.; Carpenter, A.; Fatanmi, O.O.; Singh, V.K. Identification of Novel Biomarkers for Acute Radiation Injury Using Multiomics Approach and Nonhuman Primate Model. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Azzam, E.I.; Jay-Gerin, J.P.; Pain, D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012, 327, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Vicente, E.; Vujaskovic, Z.; Jackson, I.L. A Systematic Review of Metabolomic and Lipidomic Candidates for Biomarkers in Radiation Injury. Metabolites 2020, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bansal, S.; Sridharan, V.; Bansal, S.; Jayatilake, M.M.; Fernandez, J.A.; Griffin, J.H.; Boerma, M.; Cheema, A.K. Urinary Metabolomics for the Prediction of Radiation-Induced Cardiac Dysfunction. Metabolites 2023, 13, 525. [Google Scholar] [CrossRef]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef]
- Viswanathan, C.T.; Bansal, S.; Booth, B.; DeStefano, A.J.; Rose, M.J.; Sailstad, J.; Shah, V.P.; Skelly, J.P.; Swann, P.G.; Weiner, R. Quantitative bioanalytical methods validation and implementation: Best practices for chromatographic and ligand binding assays. Pharm. Res. 2007, 24, 1962–1973. [Google Scholar] [CrossRef]
- Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J.D.; Halsall, A.; Haselden, J.N.; et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2011, 6, 1060–1083. [Google Scholar] [CrossRef]
- Argelaguet, R.; Velten, B.; Arnol, D.; Dietrich, S.; Zenz, T.; Marioni, J.C.; Buettner, F.; Huber, W.; Stegle, O. Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets. Mol. Syst. Biol. 2018, 14, e8124. [Google Scholar] [CrossRef]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Kursa, M.B.; Rudnicki, W.R. Feature Selection with the Boruta Package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Li, S.; Park, Y.; Duraisingham, S.; Strobel, F.H.; Khan, N.; Soltow, Q.A.; Jones, D.P.; Pulendran, B. Predicting network activity from high throughput metabolomics. PLoS Comput. Biol. 2013, 9, e1003123. [Google Scholar] [CrossRef] [PubMed]
- Parkhitko, A.A.; Ramesh, D.; Wang, L.; Leshchiner, D.; Filine, E.; Binari, R.; Olsen, A.L.; Asara, J.M.; Cracan, V.; Rabinowitz, J.D.; et al. Downregulation of the tyrosine degradation pathway extends Drosophila lifespan. eLife 2020, 9, e58053. [Google Scholar] [CrossRef] [PubMed]
- Hase, A.; Jung, S.E.; aan het Rot, M. Behavioral and cognitive effects of tyrosine intake in healthy human adults. Pharmacol. Biochem. Behav. 2015, 133, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Li, H.; Xu, D.; Zhu, H. Upregulation of Tyrosine Kinase FYN in Human Thyroid Carcinoma: Role in Modulating Tumor Cell Proliferation, Invasion, and Migration. Cancer Biother. Radiopharm. 2017, 32, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Homolak, J.; Babic Perhoc, A.; Virag, D.; Knezovic, A.; Osmanovic Barilar, J.; Salkovic-Petrisic, M. D-galactose might protect against ionizing radiation by stimulating oxidative metabolism and modulating redox homeostasis. J. Radiat. Res. 2023, 64, 743–745. [Google Scholar] [CrossRef]
- Hu, A.; Qiu, R.; Li, W.B.; Zhou, W.; Wu, Z.; Zhang, H.; Li, J. Radical recombination and antioxidants: A hypothesis on the FLASH effect mechanism. Int. J. Radiat. Biol. 2023, 99, 620–628. [Google Scholar] [CrossRef]
- Cooper, C.R.; Jones, D.; Jones, G.D.; Petersson, K. FLASH irradiation induces lower levels of DNA damage ex vivo, an effect modulated by oxygen tension, dose, and dose rate. Br. J. Radiol. 2022, 95, 20211150. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Bansal, S.; Singh, B.; Jayatilake, M.M.; Klotzbier, W.; Boerma, M.; Lee, M.-H.; Hack, J.; Iwamoto, K.S.; Schaue, D.; et al. Distinct Urinary Metabolite Signatures Mirror In Vivo Oxidative Stress-Related Radiation Responses in Mice. Antioxidants 2025, 14, 24. https://doi.org/10.3390/antiox14010024
Li Y, Bansal S, Singh B, Jayatilake MM, Klotzbier W, Boerma M, Lee M-H, Hack J, Iwamoto KS, Schaue D, et al. Distinct Urinary Metabolite Signatures Mirror In Vivo Oxidative Stress-Related Radiation Responses in Mice. Antioxidants. 2025; 14(1):24. https://doi.org/10.3390/antiox14010024
Chicago/Turabian StyleLi, Yaoxiang, Shivani Bansal, Baldev Singh, Meth M. Jayatilake, William Klotzbier, Marjan Boerma, Mi-Heon Lee, Jacob Hack, Keisuke S. Iwamoto, Dörthe Schaue, and et al. 2025. "Distinct Urinary Metabolite Signatures Mirror In Vivo Oxidative Stress-Related Radiation Responses in Mice" Antioxidants 14, no. 1: 24. https://doi.org/10.3390/antiox14010024
APA StyleLi, Y., Bansal, S., Singh, B., Jayatilake, M. M., Klotzbier, W., Boerma, M., Lee, M. -H., Hack, J., Iwamoto, K. S., Schaue, D., & Cheema, A. K. (2025). Distinct Urinary Metabolite Signatures Mirror In Vivo Oxidative Stress-Related Radiation Responses in Mice. Antioxidants, 14(1), 24. https://doi.org/10.3390/antiox14010024