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Abstract: Background: Spinal cord injury (SCI) affects approximately 250,000 to 500,000 individuals
annually. Current therapeutic interventions predominantly focus on mitigating the impact of physical
and neurological impairments, with limited functional recovery observed in many patients. Electroen-
cephalogram (EEG) oscillations have been investigated in this context of rehabilitation to identify
effective markers for optimizing rehabilitation treatments. Methods: We performed an exploratory
cross-sectional study assessing the baseline EEG resting state of 86 participants with SCI as part of the
Deficit of Inhibitory as a Marker of Neuroplasticity in Rehabilitation Cohort Study (DEFINE). Results:
Our multivariate models demonstrated a positive correlation between frontal delta asymmetry and
depression symptoms, while the frontal alpha asymmetry band and anxiety symptoms were nega-
tively correlated. Theta oscillations were negatively associated with motor-evoked potential (MEP),
whereas alpha oscillations were positively associated with MEP in all regions of interest and with
CPM response as a negative correlation. Based on the potential role of lower-frequency oscillations
in exerting a salutogenic compensatory effect, detrimental clinical and neurophysiological markers,
such as depression and lower ME, likely induce slow oscillatory rhythms. Alpha oscillations may
indicate a more salutogenic state, often associated with various cognitive functions, such as attention
and memory processing. Conclusions: These results show an attempt by the CNS to reorganize and
restore function despite the disruption caused by SCI. Indeed, this finding also challenges the notion
that low-frequency EEG rhythms are associated with cortical lesions. These results may contribute to
the development of rehabilitation strategies and potentially improve the clinical outcomes of patients
with SCI.

Keywords: spinal cord injury; electroencephalogram; biomarkers; neuroplasticity

1. Introduction

Spinal cord injury (SCI) affects approximately 250,000 to 500,000 individuals every
year, with violence and motor vehicular crashes (MVCs) as the main causes of this condi-
tion; however, nontraumatic etiologies are still relevant, such as neurodegenerative and
malignant conditions [1]. Recovering and assessing SCI patients is challenging, owing to
the heterogeneity of etiology, severity (level lesion, partial or complete), and population

Brain Sci. 2024, 14, 1229. https://doi.org/10.3390/brainsci14121229 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci14121229
https://doi.org/10.3390/brainsci14121229
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0009-0006-1449-6539
https://orcid.org/0000-0002-4112-6473
https://orcid.org/0000-0003-0355-9697
https://orcid.org/0000-0003-2999-2448
https://orcid.org/0000-0001-5275-0733
https://orcid.org/0000-0002-1703-7526
https://doi.org/10.3390/brainsci14121229
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci14121229?type=check_update&version=1


Brain Sci. 2024, 14, 1229 2 of 15

affected [2,3]. SCI affects young adults (less than 30 years old) the most and has a strong
lifetime economic impact of between $2 and 4 billion [4]. Current treatments focus on re-
ducing the impact of physical and neurological disabilities with limited functional recovery
in most patients [5]. This condition not only causes physical disability but also negatively
affects patients’ self-esteem, increasing the risk of psychiatric conditions, mortality rate,
and the costs of health care for family members and the public system [6,7]. For this reason,
understanding the neurophysiological mechanisms and neuroplasticity changes after SCI
could help the development of more accurate neurological tests and improve the treatment
options in the physical medicine and rehabilitation field.

After an injury to the central or peripheral nervous system, the brain is naturally
designed to adapt by strengthening or weakening connections between certain groups of
neurons. This adaptive process helps preserve functionality and maintain homeostasis
within the nervous system [8]. However, traumatic and nontraumatic injuries can affect
these compensatory mechanisms by disrupting the motor and somatosensory systems [9].
SCI triggers inflammatory responses, including apoptosis and necrosis, acute axonal de-
generation, axonal remodeling, demyelination, and glial scar formation [6]. Owing to the
complexity of this condition, previous researchers have investigated the use of neurophys-
iological tests, such as electroencephalogram (EEG), transcranial magnetic stimulation
(TMS), and conditioned pain modulation (CPM), to identify potential biomarkers for neu-
roplasticity and imbalanced cerebral activities in patients with functional disabilities [10].

EEG is extensively used in medicine to diagnose epilepsy and sleep disturbances, and
its applications have been explored to help patients with many other neuropsychiatric
conditions and disabilities [11]. Vuckovic et al. [12] observed significant differences in alpha
power between different groups of patients with spinal cord injury and neuropathic pain,
with patients who developed pain presenting a reduced alpha power resting state in the
parietal region compared to those who did not develop pain. Moreover, Wang et al. [13]
demonstrated lower alpha power in SCI patients with neuropathic pain than in a group
with only numbness, but this difference was identified across multiple brain regions, such
as the frontal, motor, and parietal regions. Furthermore, Wang et al. [13] demonstrated that
SCI could lead to functional sensory and metabolic changes in the frontal, premotor, and
thalamic regions.

Some authors hypothesize that SCI induces a shift in spectral oscillations towards
low-frequency bands (such as theta oscillations) caused by a thalamocortical dysrhyth-
mia (TDC) [14–16]. Additional findings included the observation of reduced alpha and
increased beta power in SCI patients [17,18]. In our studies involving patients with SCI,
we observed a reduction in alpha and theta activity in patients with neuropathic pain
and SCI compared to healthy controls during the EEG resting state, and the alpha/theta
ratio is a potential surrogate of functional recovery during rehabilitation [19,20]. In our
EEG studies in stroke, knee osteoarthritis, and fibromyalgia patients, we observed higher
theta activity as a potential compensatory mechanism of pain and functional recovery,
which brings attention to TDC in those populations as well [21–24]. In addition, frontal
asymmetry in alpha and low-frequency bands, such as delta and theta bands, has been
studied as a metric of emotion, motivation, and psychiatric conditions in both resting-state
and task conditions [25,26].

However, other investigations showed an increase in EEG resting-state theta and
alpha power in SCI patients [27,28]. The role of EEG oscillations in SCI recovery and the
mechanism of neuroplasticity after the lesion is not completely clear. Given these mixed
results regarding neural oscillations and their relationship with SCI, our cohort combined
EEG measures with assessments of clinical improvement to investigate potential biomarkers
of neuroplasticity. Additionally, while CPM assesses pain processing and the descending
pain inhibitory system, TMS provides critical parameters of cortical excitability, including
motor threshold (MT), motor-evoked potential (MEP), intracortical inhibition (ICI), and
intracortical facilitation (ICF), thereby enhancing neurophysiological test interpretation
when combined with EEG signals [21].
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Based on the evidence in the literature and the nature of this exploratory cross-sectional
study, we hypothesized that EEG oscillations such as delta, theta, and alpha bands are
associated with clinical and other neurophysiological variables in patients with SCI. Low-
frequency EEG oscillations are potential biomarkers of motor recovery and psychological
status, indicating a potential salutogenic compensatory mechanism in the central nervous
system. These associations involve factors such as cognitive–emotional status, neurological
impairment, lesion duration and level, conditioning pain tests, and cortical excitability
parameters. Unfortunately, there is a lack of neurophysiological tests available to assess
motor recovery in SCI in clinical practice, but EEG has potential applications that need to
be explored in the physical rehabilitation field.

2. Materials and Methods
2.1. Study Design and Participants

We performed a cross-sectional study assessing only the baseline data of 102 partic-
ipants with SCI admitted to the “Instituto de Medicina Física e Reabilitação” (IMREA),
Brazil, as part of the Deficit of Inhibitory as a Marker of Neuroplasticity (DEFINE study) in
Rehabilitation: A Longitudinal Cohort Study Protocol project [29]. This project is approved
by Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo Ethics
Committee. All participants signed an informed consent form according to the Declaration
of Helsinki [30].

The inclusion criteria were as follows: (i) subjects between 18 and 65 years old, (ii) clin-
ical and radiological diagnosis of traumatic SCI, (iii) a duration between 1 and 36 months
after the lesion, (iv) American Spinal Injury Association Impairment Scale (AIS) between
the “A” and “D” classification, and (v) statable clinical and cognitive status. The exclu-
sion criteria were as follows: (i) previous history or concomitant neurological conditions
related to SCI, (ii) history of orthopedic conditions or unhealed lower limb fractures, and
(iii) presence of tracheostomy.

2.2. Demographic, Clinical, and Neurophysiological Variables

We collected demographic information from participants, such as age, biological
sex, body mass index (BMI), clinical variables such as level and time of lesion, validated
scales such as the emotional (Hospital Anxiety and Depression Scale) Montreal Cognitive
Assessment (MOCA) and AIS, and other neurophysiological tests such as transcranial
magnetic stimulation (TMS) and conditioned pain modulation (CPM). The assessment
methodology and data collection can be found in the study protocol [10].

2.3. EEG Resting-State Preprocessing

From the 102 participants in this study, we collected EEG baseline data from 86 subjects
using an ANT Neuro 64-channel EEG system (ANT Neuro, Enschede, The Netherlands)
describing results from the resting-state period: 5 min with eyes opened and 5 min with
eyes closed. However, we considered only the period with eyes closed in this analysis to
minimize external visual stimuli and eye movements.

We followed the pre-processing method described in our cohort study protocol [10].
We preprocessed the original data using EEGLab in MATLAB (MATLAB R2023a, Math-
Works Inc., Natick, MA, USA, 2023) to remove any potential artifacts. We followed the
preprocessing pipeline proposed by Makoto [31] using the Darbeliai EEGLAB plugin follow-
ing these steps: (i) bandpass of 1 Hz (High Pass) and 50 Hz (Low Pass), (ii) downsampling
from 1000 Hz to 250 Hz, (iii) re-referencing the channels using the electrode average, and
(iv) 60 Hz power line noise correction (frequency in the United States).

The data were visually inspected, and channels containing artifacts were rejected before
performing the independent component analysis (ICA), eliminating channels that (i) were flat
for longer than three seconds, (ii) showed high-frequency noise greater than two standard
deviations, and (iii) showed correlation with neighboring channels lower than 0.8 using the
Clean_rawdata EEGLAB plugin (v2.2). The remaining channels were fed into the Infomax ICA



Brain Sci. 2024, 14, 1229 4 of 15

calculation using the Darbeliai plugin to identify artifacts effectively [32,33]. With the ICLabel
toolbox, we could remove components associated with heart rate, muscle noise, blinking, and
eye movement [34].

Finally, we used the pop_spectopo EEGLab function with fast Fourier transformation
with 2s windows and 50% overlap. The relative power was calculated for the following
bands: delta (1–3.9 Hz), theta (4–7.9 Hz), alpha (8–12.9 Hz), and beta (13–30 Hz), as well
as for the sub-bands low alpha (8–9.9 Hz), high alpha (10–12.9 Hz), low beta (13–19.9 Hz),
and high beta (20–30 Hz), from the following regions of interest (ROIs): the frontal, central,
and parietal areas. More details can be found in our cohort study protocol [10].

2.4. Statistical Analysis

We performed a descriptive analysis of demographic, clinical, and neurophysiological
data using the mean and standard deviation (SD) for continuous variables, as well as the
sample size and percentage for binary or categorical variables. We used STATA® 17.0 for
all statistical analyses. More details are described in Appendix A.

3. Results
3.1. Demographic and Clinical Variables

One hundred and two patients with SCI were included in this study, with a mean
age of 41 years (SD: 16), eighty males (87.9%) and eleven females (12.1%), forty-one were
white (45.1%), ten were black (11%), thirty-nine were of mixed race (42.9%), and one
was indigenous (1.0%). Participants who self-reported as “pardo” in Portuguese were
included in the “mixed race” category. In addition, we observed that the lesion levels
of our participants were forty-eight cervical (47.06%), forty-one thoracic (40.21%), twelve
lumbar (11.76), and one sacral (1.0%); forty-five had tetraplegia (44.12%), and fifty-seven
paraplegia (55.88%).

Additional demographic and clinical data are shown in Table 1. Continuous variables
are presented with their mean and SD, while categorical or binary variables are presented
with their n and percentage.

Table 1. Demographic and clinical characteristics. n = 102.

Variables Mean or n (sd or %)

Age (years) 41 (16)
Biological sex (%)

Male 80 (87.9%)
Female 11 (12.1%)

Race
White 41 (45.1%)
Black 10 (11%)
Mixed race 39 (42.9%)
Indigenous 1 (1.0%)

BMI (kg/m2) 24.52 (5.01)
Years of education 10.83 (4.49)
Handedness

Right 85 (93.4%)
Left 6 (6.6%)

Smoking
No 81 (89%)
Yes 10 (11%)

Alcohol consumption
No 60 (65.9%)
Casually 25 (27.5%)
Yes 6 (6.6%)

Time of lesion (months) 19.1 (23.1)
Type of incapacity

Tetraplegia 45 (44.12%)
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Table 1. Cont.

Variables Mean or n (sd or %)

Paraplegia 57 (55.88%)
Level of lesion

Cervical 48 (47.06%)
Thoracic 41 (40.21%)
Lumbar 12 (11.76)
Sacral 1 (1.0%)

Walking index for spinal cord injury 4.98 (7.25)
Hospital anxiety scale 4.95 (3.97)
Hospital depression scale 3.98 (3.19)
MOCA 22.84 (4.45)
AIS grade, n = 88

A 36 (40.9%)
B 14 (15.91%)
C 12 (13.64%
D 26 (29.55%)
E none

CPM, kPa, n = 80
Left tenar region 2.18 (0.04)
Right tenar region 2.07 (0.14)

TMS, n = 64
MT of both hemispheres—mean 56.07 (12.04)
MEP 130% of MT both hemispheres—mean 0.97 (0.50)
ICI of both hemispheres—mean 2.59 (1.97)
ICF of both hemispheres—mean 1.91 (0.67)

BMI: body mass index, MOCA: Montreal cognitive assessment, AIS: ASIA impairment scale, kPa: kilopascal MT:
motor threshold, MEP: motor-evoked potential, ICI: intracortical facilitation, ICF: intracortical inhibition. Continu-
ous variables are presented with their mean (SD). Categorical variables are presented with their n (percentage).

3.2. Neurophysiological Findings

EEG data were recorded from 86 subjects, and the average of their relative power
was represented as the mean and SD in each ROI and separated in the right and left brain
hemispheres, as displayed in Tables 2 and 3. Figure 1 shows the topographic distribution
of scalp plots in the resting-state EEG.
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sion symptoms (β-coef.: −0.11, p-value: 0.033, 95% CI: 0.00 to 0.02), demonstrating a reduc-
tion of delta frontal activity and a shift towards the right hemisphere as the depression 
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Figure 1. Topographic distribution of scalp plots of EEG bands in resting state: (A) delta power,
(B) theta power (range: 34.5 to 40.0 dB) (10 Ã–log10 P), (C) alpha power (range: 35.0 to 42.0 dB)
(10 Ã–log10 P), and (D) beta power (range: 28.0 to 33.0 dB) (10 Ã–log10 P).
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Table 2. Resting-state EEG relative power (%), n = 86.

Band Frontal (Mean + SD) Central (Mean + SD) Parietal (Mean + SD)

Delta 16.3 (6.2) 16.2 (6.0) 14.1 (5.1)
Theta 18.6 (7.7) 19.1 (7.4) 16.8 (7.5)
Alpha 46.7 (13.3) 43.2 (12.3) 50.9 (13.3)

Low alpha 25.9 (13.5) 22.3 (10.5) 27.3 (13.9)
High alpha 19.5 (12.4) 19.6 (11.0) 22.2 (13.8)

Beta 16.7 (7.2) 20.0 (8.1) 16.6 (7.1)
Low beta 10.4 (4.8) 12.5 (5.3) 10.4 (4.8)
High beta 6.4 (3.2) 7.3 (3.7) 6.1 (2.8)

Table 3. Resting state EEG—Hemisphere relative power (%), n = 86.

Band Frontal (Mean + SD) Central (Mean + SD) Parietal (Mean + SD)

Left Right Left Right Left Right

Delta 16.7 (6.7) 16.6 (6.4) 15.9 (6.0) 15.7 (6.1) 13.7 (6.2) 13.8 (6.2)
Theta 18.1 (7.4) 18.2 (7.4) 18.9 (7.4) 18.5 (7.5) 16.6 (7.6) 16.4 (7.6)
Alpha 46.9 (12.3) 46.5 (13.5) 43.0 (12.3) 44.2 (13.2) 51.0 (13.6) 51.8 (14.1)

Low alpha 25.8 (13.7) 25.2 (13.4) 21.8 (10.2) 22.8 (11.3) 27.2 (13.9) 28.0 (14.7)
High alpha 19.8 (12.8) 20.0 (12.6) 19.9 (11.0) 20.2 (11.7) 22.4 (14.0) 22.3 (14.2)

Beta 16.7 (7.4) 17.2 (0.7) 20.7 (8.6) 20.0 (8.6) 17.0 (7.5) 16.5 (7.4)
Low beta 10.2 (4.7) 10.5 (4.6) 12.9 (5.5) 12.7 (5.7) 10.7 (5.2) 10.4 (5.2)
High beta 6.4 (3.4) 6.6 (3.2) 7.6 (4.1) 7.2 (3.7) 6.2 (3.0) 6.1 (2.9)

3.3. Univariate Analysis

Delta oscillations in the frontal regions demonstrated a negative association with
depression symptoms (β-coef.: −0.05, p-value: 0.032, 95% CI: −0.01 to 0.00) and a frontal
delta asymmetry showed a negative association (towards the right hemisphere) with
depression symptoms (β-coef.: −0.11, p-value: 0.033, 95% CI: 0.00 to 0.02), demonstrating a
reduction of delta frontal activity and a shift towards the right hemisphere as the depression
symptoms worsen. A scatter plot of the regression lines is shown in Figure 2.
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Theta oscillations demonstrated significant or almost significant negative association
with MEP in all ROIs: (i) frontal: β-coef.: −0.04, p-value: 0.068, 95% CI: −0.08 to 0.00;
(ii) central: β-coef.: −0.03, p-value: 0.083, 95% CI: −0.07 to 0.00; (iii) parietal: β-coef.: −0.05,
p-value: 0.027, 95% CI: −0.09 to −0.01. In contrast, alpha oscillations showed a positive
correlation with MEP in all ROIs: (i) frontal: β-coef.: 0.102, p-value: 0.002, 95% CI: 0.04 to
0.16; (ii) central: β-coef.: 0.08, p-value: 0.008, 95% CI: 0.02 to 0.15; (iii) parietal: β-coef.: 0.106,
p-value: 0.002, 95% CI: 0.04 to 0.17. These results show an interesting behavior of more
activity towards higher frequency bands as the MEP also increases, indicating a potential
compensatory mechanism involving theta and alpha oscillations and cortical excitability in
patients with SCI.

In addition, we observed a negative association between frontal alpha and sleepiness
(Î2-coef.: −0.01, p-value: 0.048, 95% CI: −0.01 to 0.00), as the alpha band is often associated
with relaxed wakefulness and inhibitory control in the CNS. Frontal alpha asymmetry
demonstrated a negative correlation (towards the left hemisphere) with anxiety symptoms
(β-coef.: −0.01, p-value: 0.014, 95% CI: −0.01 to −0.00), showing an association between
greater alpha activity in the left frontal hemisphere and more severe depression symptoms.
Scatter plots are shown in Figure 3.
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depression symptoms scale (X-axis), and (B) frontal alpha asymmetry index (Y-axis) and anxiety
symptoms (X-axis).
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High alpha oscillations showed a negative relationship with CPM in the right hand in
the frontal and parietal regions, with (i) β-coef.: −0.01, p = 0.087, 95% CI: −0.02, 0.00 and
(ii) β-coef.: −0.01, p = 0.044, 95% CI: −0.03, 0.00, respectively, indicating that high alpha
oscillations in those regions could be linked to a reduced ability to modulate pain. No
significant results were observed for beta oscillations.

3.4. Multivariate Analysis

Delta-oscillation models reveal distinct regional effects influenced by various factors.
The corresponding model explained the variance with an R-square of 0.25 in the frontal
region, with depression showing a negative association with delta-band activity (β-coef.:
0.01, p-value: 0.036) and age having a positive and significant relationship (β-coef.: 0.001,
p-value: 0.035). Other variables, such as the level of lesion, MOCA scores, and years of edu-
cation, were included to control for their potential impacts on cognition and mental health.
In the parietal region, where the model presented an R-square of 0.205, the ICI mean was
a significant positive predictor of delta-band activity (β-coefficient: 0.010, p-value: 0.022),
while age, sex, level of lesion, and lesion time were included to control for their potential
impact on neurological impairment. Table 4 presents the delta multivariate models.

Table 4. Baseline delta-band multivariate models according to ROI.

Variables Beta Coefficient p-Value 95% CI R-Square

Frontal region 0.250
Depression −0.01 0.036 −0.012 to 0.000

Age 0.001 0.035 0.000 to 0.002
Level of lesion 0.016 0.168 −0.007 to 0.040

MOCA −0.002 0.853 −0.027 to 0.022
Years of education 0.007 0.503 −0.014 to 0.028

Parietal region 0.205
ICI mean 0.010 0.022 0.001 to 0.019

Age 0.001 0.086 0.000 to 0.002
Biological sex 0.022 0.383 −0.028 to 0.071
Level of lesion 0.016 0.366 −0.019 to 0.052

Lesion time −0.001 0.139 −0.002 to 0.000

Theta-oscillation models showed a significant negative correlation with MEP and
an R-square of 0.32, 0.29, and 0.40, respectively, in the frontal (β-coef.: −0.062, p-value:
0.034), central (β-coef.: −0.057, p-value: 0.049), and parietal (β-coef.: −0.063, p-value: 0.021)
regions. Age also had a significant negative relationship in the frontal and central areas
(β-coef.: −0.105, p-value: 0.008). Variables such as biological sex, lesion level, and AIS score
were included to control for their potential influence on neurological impairment. Table 5
presents the theta multivariate models.

Alpha-oscillation models showed a significant positive correlation with MEP and
R-squares of 0.21, 0.14, and 0.23, respectively, in the frontal (β-coef.: 0.111, p = 0.008), central
(β-coef.: 0.087, p = 0.040), and parietal (β-coef.: 0.110, p = 0.010) regions, with age showing
a trend toward a negative association in the parietal area (β-coef.: −0.106, p = 0.075).
Variables such as biological sex, age, lesion level, and lesion time were included to control
for their potential influence on neurological impairment. Additionally, the SEPW total
scale had a significant negative association with alpha-band activity in the parietal region
(β-coefficient: −0.008, p = 0.017), and age was a significant negative predictor (β-coefficient:
−0.136, p-value: 0.012) in this context. Multivariate alpha models are presented in Table 6.
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Table 5. Baseline delta-band multivariate models according to ROI.

Variables Beta Coefficient p-Value 95% CI R-Square

Frontal region 0.322
MEP −0.062 0.034 −0.118 to −0.005

Biological sex −0.024 0.456 −0.090 to 0.041
Age −0.105 0.008 −0.182 to −0.029

Level of lesion 0.020 0.267 −0.017 to 0.056
AIS −0.036 0.132 −0.083 to 0.011

Central region 0.293
MEP −0.057 0.049 −0.114 to 0.000

Biological sex −0.025 0.452 −0.090 to 0.041
Age −0.105 0.008 −0.182 to −0.029

Level of lesion 0.020 0.267 −0.017 to 0.056
AIS −0.047 0.054 −0.094 to 0.001

Parietal region 0.405
MEP −0.063 0.021 −0.116 to −0.010

Biological sex −0.016 0.607 −0.078 to 0.046
Age −0.062 0.077 −0.131 to 0.007

Level of lesion 0.018 0.313 −0.018 to 0.054
AIS −0.038 0.093 −0.081 to 0.006

Table 6. Baseline alpha-band multivariate models according to ROI.

Variables Beta Coefficient p-Value 95% CI R-Square

Frontal region 0.210
MEP 0.111 0.008 0.030 to 0.192

Biological sex −0.008 0.869 −0.102 to 0.087
Age −0.082 0.167 −0.195 to 0.032

Level of lesion −0.038 0.184 −0.093 to 0.018

Central region 0.136
MEP 0.087 0.040 0.004 to 0.170

Biological sex −0.005 0.915 −0.101 to 0.091
Age −0.056 0.342 −0.173 to 0.061

Level of lesion −0.018 0.530 −0.074 to 0.039

Parietal region 0.231
MEP 0.110 0.010 0.027 to 0.193

Biological sex −0.023 0.633 −0.120 to 0.073
Age −0.106 0.075 −0.223 to 0.012

Level of lesion −0.016 0.549 −0.068 to 0.037

SEPW total −0.008 0.017 −0.015 to −0.001 0.157
Biological sex −0.061 0.161 −0.147 to 0.024

Age −0.136 0.012 −0.242 to −0.030

High alpha-oscillation models showed a significant negative correlation with CPM in
the right hand, with R-squares of 0.13 and 0.18, respectively, in the frontal (β-coef.: −0.012,
p-value: 0.049) and parietal (β-coef.: −0.016, p = 0.018) regions, and with age also showing
a significant negative relationship in the parietal area (β-coef.: −0.148, p-value: 0.033).
Variables such as sex and lesion level were included to control for their potential influence
on brain function. The high alpha multivariate models are presented in Table 7.

Frontal-asymmetry models showed a significant association in the delta band with
depression symptoms and lesion time, with an R-square of 0.13, with depression show-
ing a positive relationship with the right hemisphere (β-coef.: 0.010, p = 0.036) and le-
sion time showing a negative relationship (β-coef.: −0.002, p = 0.040). The frontal alpha-
asymmetry model, with an R-square of 0.13, was negatively correlated with anxiety symptoms
(β-coefficient: −0.006, p = 0.034) and asymmetry towards the left hemisphere. Variables, such
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as age, lesion time, and lesion level, were included to control for their potential influence on
brain function. Multivariate frontal asymmetry models are presented in Table 8.

Table 7. Baseline high alpha-band multivariate models according to ROI.

Variables Beta Coefficient p-Value 95% CI R-Square

Frontal region 0.134
CPM right hand −0.012 0.049 −0.024 to −0.000

Biological sex −0.056 0.208 −0.145 to 0.032
Age −0.108 0.074 −0.227 to 0.011

Level of lesion 0.023 0.2 −0.020 to 0.066

Parietal region 0.181
CPM right hand −0.016 0.018 −0.028 to −0.004

Biological sex 0.067 0.161 −0.027 to 0.161
Age −0.148 0.033 −0.283 to −0.034

Level of lesion 0.025 0.284 −0.020 to 0.070

Table 8. Baseline frontal-asymmetry multivariate models.

Variables Beta Coefficient p-Value 95% CI R-Square

Delta band 0.134
Depression 0.010 0.036 0.001 to 0.020

Age 0.056 0.287 −0.048 to 0.160
Lesion time −0.002 0.040 −0.004 to 0.000

Alpha band 0.132
Anxiety −0.006 0.034 −0.011 to 0.000

Age −0.025 0.497 −0.097 to 0.047
Lesion time 0.018 0.227 −0.011 to 0.046

Level of lesion 0.017 0.267 −0.013 to 0.047

A summary of the main results and correlation directions is presented in Table 9. No
model was found to be significantly related to beta oscillations.

Table 9. Summary of multivariate models by EEG bands and ROI.

Relative Power Frontal Central Parietal

↑ Delta
↓ Depression ↑ ICI

↑ Age

↑ Delta asymmetry ↑ Depression
↓ Lesion time

↑ Theta
↓ MEP ↓ MEP ↓ MEP
↑ Age ↑ Age ↑ Age

↑ Alpha
↑ MEP ↑ MEP ↑ MEP

↓ Sleepiness
↓ Age

↑Alpha asymmetry ↓ Anxiety

↑ High Alpha ↓ CPM right hand ↓ CPM right hand
↓ Age ↓ Age

Only variables with statistical significance (p < 0.05) were included in this table.

4. Discussion

Our multivariate model results are consistent with those of previous studies, reinforc-
ing the association between EEG oscillations and psychological and other neurophysiologi-
cal variables. Frontal delta oscillations and asymmetry in the delta and alpha bands are
linked to the severity of depression and anxiety symptoms. A reduction in alpha bands and
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an increase in low-frequency bands in the right hemisphere are often associated with worse
psychiatric symptoms. Another interpretation of our results is that the reduction in MEP
correlates with higher theta and lower alpha activity across all ROIs. Patients with SCI often
present a reduction in their MEP metrics due to impaired motor pathways; therefore, a shift
of higher frequency bands to lower frequency bands could result in intrinsic compensatory
mechanisms in the cortical–spinal pathway [21]. These results converge with previous
findings in the literature that found that the shift towards theta could indicate TDC in this
population [14–16]. Finally, increased alpha activity in the frontal and parietal regions was
associated with a less effective descending inhibitory pain process, as measured in the right
hand. However, this relationship was not statistically significant when compared with the
left hand.

Anxiety and depression symptoms are prevalent among patients with spinal cord
injury (SCI) due to significant functional limitations and a profound impact on quality of
life. Beyond these factors, the presence of spinal cord lesions can disrupt compensatory
mechanisms in the brain, which may increase the risk of developing mental health issues [9].
The increase in delta activity in the frontal region may be explained by a compensatory
mechanism in patients with more depressive symptoms. Low-frequency bands, such as
delta oscillations, are associated with homeostatic processes in the cortical and subcortical
circuits [35,36]. A recent investigation demonstrated that reduced delta baseline activity
is correlated with enhanced efficacy of cognitive behavioral therapy in depression [37].
Moreover, we observed a pattern of frontal delta asymmetry in depression and frontal
alpha asymmetry in anxiety (Figure 2). Delta oscillations shift from the left toward the
right hemisphere, while alpha oscillations shift from the right toward the left hemisphere
as the symptoms worsen, crossing the “x” axis approximately at score five. A closer
examination of the behavior of both frequency bands suggests that the reorganization of
frontal circuits towards lower frequency bands in the right hemisphere is associated with a
greater prevalence of mental health issues.

Other neuroimaging studies have also investigated the use of frontal asymmetry as
a biomarker for cognition and psychiatric conditions [38–40]. EEG frontal asymmetry
scores hold significant potential as tools for understanding cortical activity across various
neuropsychiatric conditions in mental health and rehabilitation; however, further research
is essential to fully elucidate their role and effectiveness in these contexts. Expanding
the evidence will help clarify how these asymmetry scores can be used for diagnosis and
treatment in clinical settings, contributing to more targeted and effective interventions.

The reduction of MEP in patients with SCI is expected, as MEP reflects the integrity
of descending corticospinal-tract fibers, which are often impaired in patients with SCI [41].
While conditions such as stroke and traumatic brain injury directly affect the cortical substrate,
the cortical and subcortical regions remain intact in SCI. Therefore, an injury to the spinal cord
triggers cortical reorganization in the brain areas associated with the affected limbs, activating
mechanisms of cortical plasticity to promote functional recovery [42]. Cortical reorganization
can be attributed to intrinsic connections and inhibitory GABAergic activation, resulting in
the plasticity of cortical networks and ICI [43]. The observed negative association between
theta oscillations and MEPs and the positive correlation between alpha oscillations and MEP
support the theory presented in the literature [21,42–44]. This indicates a compensatory
mechanism within the CNS, such as changes in theta and alpha oscillations, in an attempt to
reorganize and restore function despite the disruption caused by SCI.

Theta oscillations appear to play a compensatory role in response to motor injuries,
as demonstrated in previous studies [23,45]. In contrast, alpha oscillations may reflect a
more relaxed and salutogenic state, particularly in relation to cognitive functions, such
as attention and memory. These distinct patterns of neural activity suggest that different
oscillations may indicate various aspects of recovery and brain function post-injury [46].
These associations with MEP are linked to the modulation of the cortical–spinal pathway,
while the negative correlation between delta and ICI is explained by an increase in cortical
inhibition in the parietal regions, which are involved in cognitive tasks [47,48].
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Interestingly, our findings indicate that high alpha oscillations are linked to a lower CPM
response, with statistical significance only on the right-hand side. This relationship can be
explained by the role of alpha oscillations in modulating cortical excitability and sensory
processing, which are essential for the brain’s ability to regulate and inhibit pain; as shown in
our CPM metric, a reduced CPM means a worse response to pain [10,49,50]. Additionally, the
negative association between the alpha band in the parietal region and sleepiness illustrates the
role of alpha activity in cognitive function, fatigue, and attention levels, as described previously
in our study [24]. EEG signals and CPM are potential biomarkers for understanding the
neurophysiological mechanisms underlying pain modulation, particularly in the spinal
cord injury (SCI) population where CPM is frequently impaired.

The strengths of this study are the sample size, the standardized recruitment and
data collection protocols, and the use of well-known validated tools. The limitations are
related to the cross-sectional design, which restricts the possibility of establishing causality
between variables. Also, the absence of a control group limits the capacity to compare
our findings with those of healthy subjects, reducing the generalizability of the results.
However, our findings could identify associations and contribute to hypothesis generation
for future studies. To address these limitations, longitudinal studies with a control group are
necessary to provide more robust evidence regarding the temporal relationships between
variables and to establish causality over time.

5. Conclusions

Our findings provide valuable insights into the neurophysiological mechanisms un-
derlying SCI, contributing to the identification of associations and hypotheses for future
research despite the limitations of a cross-sectional design and the lack of a control group.
By integrating EEG biomarkers, we identified potential compensatory mechanisms that
could inform personalized rehabilitation strategies. These insights lay the groundwork for
longitudinal studies to explore temporal relationships and improve clinical outcomes in
patients with SCI.
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Appendix A

EEG variables were treated as dependent variables, and other neurophysiological,
clinical, and demographic data were treated as independent variables. First, to ensure
the integrity of our regression analysis, we followed the four assumptions of linearity, ho-
moscedasticity, independence, and normally defended by Osborne and Waters (2002) [51]:
(i) normality: we used Histogram and Shapiro–Wilk tests to assess data distribution; (ii)
independence: we used the Durbin–Watson statistic to ensure the absence of autocorrela-
tion in the residuals of the regression models; (iii) linearity: we assessed the assumption
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by visually comparing the scatterplot of each independent variable and a superimposed
regression line; (iv) homoscedasticity: plots of residuals against predicted values were
inspected; (v) independence: this helped us ensure that there was no autocorrelation in the
residuals of the regression models. Also, values greater than 3 SDs away from the mean
scores of the dependent or independent variables were labeled as outliers.

Second, we conducted a linear univariate analysis to identify the independent variables
associated with EEG-dependent variables. The independent variables considered in our
analysis are related to (i) demographic variables: age, biological sex, race, years of study,
and handedness; (ii) clinical variables: BMI, level of injury, time of lesion, depression and
anxiety scales, AIS, and MOCA; and (iii) other neurophysiological variables: CPM and
TMS parameters. In the univariate analysis, we selected the variables with a p-value < 0.20
to be included in the multivariate analysis. Statistical significance was set at p < 0.05.

Finally, we employed a multicriteria approach to search for confounders to select our
final multivariate modes: (i) based on the literature supporting physiological plausibility,
(ii) considering changes in β coefficients greater than 10% when a variable was added
or removed, and (iii) selecting the variables that would provide the best fit based on the
previous the four assumptions presented by Osborne and Waters (2002) [51]. In addition, we
examined the relationship between the primary predictor variables and demographic and
clinical factors incorporated into the final models. Besides, to determine frontal asymmetry,
the delta and alpha relative powers of the frontal left and right hemispheres were natural
log-transformed, and the asymmetry score was estimated by subtracting the value of the
left from the right hemisphere (for instance, frontal delta asymmetry score = natural log-
transformed relative power of frontal delta right—natural log-transformed relative power
of frontal delta left), as suggested by Tomarken et al. [52].

We used STATA® 17.0 for all statistical analyses. Hence, considering the nature of
this exploratory analysis, our regression analysis was limited to testing for associations
between the dependent and independent variables and did not predict the impact of the
independent variables on EEG power values. Therefore, our findings can be interpreted as
statistical tests of correlation where the EEG variables were initially tested for associations
with clinical, demographic, and other neurophysiological variables.
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