Shipborne Acquisition, Tracking, and Pointing Experimental Verifications towards Satellite-to-Sea Laser Communication
<p>Schematic of acquisition and tracking. (<b>a</b>) The shipborne acquisition, tracking, and pointing (ATP) system initiates the acquisition process. The shipborne ATP and satellite activate their beacon lasers and point at each other using the predicted ephemeris. (<b>b</b>) The satellite detects the uplink beacon laser and initiates precise tracking. (<b>c</b>) The shipborne ATP detects the downlink beacon laser and initiates precise tracking. (<b>d</b>) Bidirectional tracking and locking between the satellite and shipborne ATP is established until the laser communication is terminated.</p> "> Figure 2
<p>Schematic diagram of coordinate system and attitude angle. (<b>a</b>) The Northeast celestial coordinate system O-XYZ. (<b>b</b>) The deck coordinate system <math display="inline"><semantics> <mrow> <msub> <mrow> <mrow> <mi mathvariant="normal">O</mi> <mo>-</mo> <mi mathvariant="normal">X</mi> </mrow> </mrow> <mi mathvariant="normal">c</mi> </msub> <msub> <mi mathvariant="normal">Y</mi> <mi mathvariant="normal">c</mi> </msub> <msub> <mi mathvariant="normal">Z</mi> <mi mathvariant="normal">c</mi> </msub> </mrow> </semantics></math>. (<b>c</b>) Definition of attitude angle.</p> "> Figure 3
<p>Attitude pre-compensation unit.</p> "> Figure 4
<p>Error relation between the shipborne ATP and the GPS/INS unit.</p> "> Figure 5
<p>Installation and systematic error model calculation and application process. (<b>a</b>) Installation and system error model calculation flow chart. (<b>b</b>) Flow chart of actual use.</p> "> Figure 6
<p>The shipborne ATP system. The shipborne ATP system shows the uplink beacon, coarse camera, and the attitude pre-compensation unit.</p> "> Figure 7
<p>Residual error after installation error calibration. The azimuth residual error is 654.2μrad while the elevation residual error is 195.6μrad.</p> "> Figure 8
<p>Residual error after systematic error correction. The azimuth residual error was obtained as 76.1μrad while the elevation residual error was110μrad.</p> "> Figure 9
<p>Pointing error of azimuth and elevation. Azimuth pointing error is 117.8μrad and elevation pointing error is 128.1μrad.</p> "> Figure 10
<p>The shipborne ATP acquired and tracked the performance of a satellite. (<b>a</b>) The tracking error for the entire process and the initial error just appear in the field of view. The azimuth initial acquisition error was 310μrad whereas the elevation initial acquisition error was 160μrad. When the spot was in the tracking field, the azimuth tracking error was about 19.5μrad (RMS) while the elevation tracking error was about 14.6μrad (RMS). The tracking error in the stabilized time lasted from 10:15:58 to 10:21:28, about 330 seconds. (<b>b</b>) Ship attitude measurement. The yaw, pitch, and roll curves of the ship measured by the GPS/INS unit.</p> ">
Abstract
:1. Introduction
2. Strategies for Establishing Optical Links
3. Method for Improving the Pointing Error
3.1. Pre-compensation for Ship Platform Attitude
3.2. Installation Error Model
3.3. Systematic Errors Model
3.4. Installation and Systematic Error Model Calculation and Application Process
4. Experiment and Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chan, V.W.S. Free-space optical communications. J. Light. Technol. 2007, 24, 4750–4762. [Google Scholar] [CrossRef]
- Das, S.; Henniger, H.; Epple, B.; Moore, C.I.; Rabinovich, W.; Sova, R.; Young, D. Requirements and challenges for tactical free-space Lasercomm. In Proceedings of the MILCOM 2008-2008 IEEE Military Communications Conference, San Diego, CA, USA, 16–19 November 2008; IEEE: Piscataway, NJ, USA, 2009. [Google Scholar]
- Kim, I.I. Wireless optical transmission of fast ethernet, FDDI, ATM, and ESCON protocol data using the Terra Link laser communication system. Opt. Eng. 1998, 37, 3143. [Google Scholar] [CrossRef]
- Kim, I.I. Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. Proc. SPIE 2001, 4214, 26–37. [Google Scholar]
- Maynard, J.A.; Begley, D. Airborne laser communications: Past, present and future. Proc. SPIE Int. Soc. Opt. Eng. 2005, 5892. [Google Scholar] [CrossRef]
- Fletcher, T.M.; Cunningham, J.; Baber, D.; Wickholm, D.; Goode, T.; Gaughan, B.; Burgan, S.; Deck, A.; Young, D.W.; Juarez, J.; et al. Observations of atmospheric effects for FALCON laser communication system flight test. Proc. SPIE 2011, 8038, 80380F-1–80380F-12. [Google Scholar]
- Moll, F.; Horwath, J.; Shrestha, A.; Brechtelsbauer, M.; Fuchs, C.; Navajas, L.A.M.; Souto, A.M.L.; González, D.D. Demonstration of high-rate laser communications from a fast airborne platform. IEEE J. Sel. Areas Commun. 2015, 33, 1985–1995. [Google Scholar] [CrossRef]
- Guelman, M.; Kogan, A.; Kazarian, A.; Livne, A.; Orenstein, M.; Michalik, H. Acquisition and pointing control for inter-satellite laser communications. IEEE Trans. Aerosp. Electron. Syst. 2004, 40, 1239–1248. [Google Scholar] [CrossRef]
- Sodnik, Z.; Furch, B.; Lutz, H. Optical inter satellite communication. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 1051–1057. [Google Scholar] [CrossRef]
- Toyoshima, M.; Takayama, Y.; Takahashi, T.; Suzuki, K.; Kimura, S.; Takizawa, K.; Kuri, T.; Klaus, W.; Toyoda, M.; Kunimori, H.; et al. Ground-to-satellite laser communication experiments. IEEE Aerosp. Electron. Syst. Mag. 2008, 23, 10–18. [Google Scholar] [CrossRef]
- Boroson, D.M.; Robinson, B.S. The lunar laser communication demonstration: NASA’s first step toward very high data rate support of science and exploration missions. Space Sci. Rev. 2014, 185, 115–128. [Google Scholar] [CrossRef]
- Robinson, B.S.; Boroson, D.M.; Burianek, D.A.; Murphy, D.V. The lunar laser communications demonstration. In Proceedings of the 2011 International Conference on Space Optical Systems and Applications (ICSOS), Santa Monica, CA, USA, 11–13 May 2011; IEEE: Piscataway, NJ, USA, 2011. [Google Scholar]
- Wang, J.; Lv, J.; Zhao, G.; Wang, G. Free-space laser communication system with rapid acquisition based on astronomical telescopes. Opt. Express 2015, 23, 20655–20667. [Google Scholar] [CrossRef] [PubMed]
- Wuchenich, D.M.R.; Mahrdt, C.; Sheard, B.S.; Francis, S.P.; Spero, R.E.; Miller, J.; Mow-Lowry, C.M.; Ward, R.L.; Klipstein, W.M.; Heinzel, G.; et al. Laser link acquisition demonstration for the GRACE Follow-On mission. Opt. Express 2014, 22, 11351–11366. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Cao, Y.; Li, Y.H.; Liao, S.; Zhang, L.; Ren, J.; Cai, W.; Liu, W.; Li, B.; Dai, H.; et al. Satellite-based entanglement distribution over 1200 kilometers. Science 2017, 356, 1140–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, S.K.; Cai, W.Q.; Liu, W.Y.; Zhang, L.; Li, Y.; Ren, J.; Yin, J.; Shen, Q.; Cao, Y.; Li, Z.; et al. Satellite-to-ground quantum key distribution. Nature 2017, 549, 43–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabinovich, W.S.; Moore, C.I.; Mahon, R.; Goetz, P.G.; Burris, H.R.; Ferraro, M.S.; Murphy, J.L.; Thomas, L.M.; Gilbreath, G.C.; Vilcheck, M.; et al. Free-space optical communications research and demonstrations at the US Naval Research Laboratory. Appl. Opt. 2015, 54, F189–F200. [Google Scholar] [CrossRef] [PubMed]
- Gilbreath, G.C.; Rabinovich, W.S.; Moore, C.I.; Burris, H.R.; Mahon, R.; Grant, K.J.; Goetz, P.G.; Murphy, J.L.; Voelz, D.G.; Ricklin, J.C.; et al. Progress in laser propagation in a maritime environment at the Naval Research Laboratory. In Proceedings of the Free-Space Laser Communications V, SPIE Optics & Photonics 2005, San Diego, CA, USA, 31 July 2005; SPIE: Bellingham, WA, USA, 2005; Volume 5892, pp. 605–613. [Google Scholar]
- Wu, R.; Zhao, X.; Liu, Y.; Song, Y. Initial pointing technology of line of sight and its experimental testing in dynamic laser communication system. IEEE Photonics J. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y.Q.; Song, Y. Line of sight pointing technology for laser communication system between aircrafts. Opt. Eng. 2017, 56, 126107. [Google Scholar] [CrossRef]
- Klein, M.B.; Sipman, R.H. Large aperture Stark modulated retroreflector at 10.8 microns. J. Appl. Phys. 1980, 51, 6101–6104. [Google Scholar] [CrossRef]
- Rabinovich, W.S.; Mahon, R.; Gilbreath, G.C.; Burris, R.; Goetz, P.G.; Moore, C.I.; Ferraro-Stell, M.; Witkowsky, J.L.; Swingen, L.; Oh, E.; et al. Free-space optical communication link at 1550 nm using multiple quantum well modulating retro-reflectors over a 1-kilometer range. In Proceedings of the Conference on Lasers and Electro-Optics, 2003, CLEO ’03, Baltimore, MD, USA, 6 June 2003; IEEE: Piscataway, NJ, USA, 2004. [Google Scholar]
- Rabinovich, W.S.; Goetz, P.G.; Mahon, R.; Swingen, L.A.; Murphy, J.L.; Ferraro, M.; Burris, H.R.; Moore, C.I.; Suite, M.R.; Gilbreath, G.C.; et al. 45-Mbit/s cat’s-eye modulating retroreflectors. Opt. Eng. 2007, 46, 104001. [Google Scholar] [CrossRef]
- Peter, G.G.; Mahon, R.; James, L.M.; Mike, S.F.; Michele, R.S.; Walter, R.S.; Ben, B.X.; Harris, R.B.; Christopher, I.M.; William, S.R.; et al. Modulating retro-reflector lasercom systems at the Naval Research Laboratory. In Proceedings of the Military Communications Conference, 2010-MILCOM, San Jose, CA, USA, 31 October–3 November 2010; IEEE: Piscataway, NJ, USA, 2010. [Google Scholar]
- Majumdar, A.K. Modulating retroreflector-based free-space optical (FSO) communications. In Advanced Free Space Optics (FSO); Springer: New York, NY, USA, 2015. [Google Scholar]
- Mutilba, U.; Kortaberria, G.; Egaña, F.; Yagüe-Fabra, J.A. 3D Measurement Simulation and Relative Pointing Error Verification of the Telescope Mount Assembly Subsystem for the Large Synoptic Survey Telescope. Sensors 2018, 18, 3023. [Google Scholar] [CrossRef]
- Huang, L.; Ma, W.; Huang, J. Modeling and calibration of pointing errors with alt-az telescope. New Astron. 2016, 47, 105–110. [Google Scholar] [CrossRef]
- Tiziani, D.; Garczarczyk, M.; Oakes, L.; Schwanke, U.; van Eldik, C. A Pointing Solution for the Medium Size Telescopes for the Cherenkov Telescope Array. AIP Conf. Proc. 2017. [Google Scholar] [CrossRef]
- Cheng, J. The Principles of Astronomical Telescope Design; Springer: New York, NY, USA, 2009. [Google Scholar]
- Donato, C.D.; Prouza, M.; Sanchez, F.; Santander, M.; Camin, D.; Garcia, B.; Grassi, V.; Grygar, J.; Hrabovský, M.; Řídký, J.; et al. Using stars to determine the absolute pointing of the fluorescence detector telescopes of the Pierre Auger Observatory. Astropart. Phys. 2007, 28, 216–231. [Google Scholar] [CrossRef]
- Luck, J. Mount Model Stability. In Proceedings of the 14th International Workshop on Laser Ranging Instrumentation, San Fernando, Spain, 7–11 June 2004. [Google Scholar]
Attitudeangle | Accuracy |
---|---|
Yaw | ≤0.18mrad (RMS) |
Roll and pitch | ≤0.09mrad (RMS) |
Term | Description | Azimuth Function | Elevation Function |
---|---|---|---|
1. | Azimuth encoder offset | 1 | - |
2. | Elevation encoder offset | - | 1 |
3. | Azimuth axis tilt about fore-and-aft line | ||
4. | Azimuth axis tilt about axis Yc | ||
5. | optical axis misalign | - | |
6. | Non-orthogonality of Azimuth and Elevation axes | - | |
7. | Azimuth bearing ellipticity (sin) | - | |
8. | Azimuth bearing ellipticity (cos) | - | |
9. | Azimuth bearing ellipticity (sin) | - | |
10. | Azimuth bearing ellipticity (cos) | - | |
11. | Telescope tube flexure | - | |
12. | Azimuth encoder scale error | - | |
13. | Elevation encoder scale error | - | |
14. | Bi-periodic in azimuth | - | |
15. | Elevation encoder stiction | - | |
16. | Elevation bearing stiction | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, D.; Wang, Q.; Liu, X.; Song, Z.; Zhou, J.; Wang, Z.; Gao, C.; Zhang, T.; Qi, X.; Tan, Y.; et al. Shipborne Acquisition, Tracking, and Pointing Experimental Verifications towards Satellite-to-Sea Laser Communication. Appl. Sci. 2019, 9, 3940. https://doi.org/10.3390/app9183940
He D, Wang Q, Liu X, Song Z, Zhou J, Wang Z, Gao C, Zhang T, Qi X, Tan Y, et al. Shipborne Acquisition, Tracking, and Pointing Experimental Verifications towards Satellite-to-Sea Laser Communication. Applied Sciences. 2019; 9(18):3940. https://doi.org/10.3390/app9183940
Chicago/Turabian StyleHe, Dong, Qiang Wang, Xiang Liu, Zhijun Song, Jianwei Zhou, Zhongke Wang, Chunyang Gao, Tong Zhang, Xiaoping Qi, Yi Tan, and et al. 2019. "Shipborne Acquisition, Tracking, and Pointing Experimental Verifications towards Satellite-to-Sea Laser Communication" Applied Sciences 9, no. 18: 3940. https://doi.org/10.3390/app9183940
APA StyleHe, D., Wang, Q., Liu, X., Song, Z., Zhou, J., Wang, Z., Gao, C., Zhang, T., Qi, X., Tan, Y., Ren, G., Qi, B., Ren, J., Cao, Y., & Huang, Y. (2019). Shipborne Acquisition, Tracking, and Pointing Experimental Verifications towards Satellite-to-Sea Laser Communication. Applied Sciences, 9(18), 3940. https://doi.org/10.3390/app9183940