New Implant Macrogeometry to Improve and Accelerate the Osseointegration: An In Vivo Experimental Study
<p>Schematic image of the space created after drilling to generate the healing chamber inside of the threads to facilitate the osseointegration.</p> "> Figure 2
<p>Representative image of the implants and thread closed: (<b>a</b>) Traditional conical implant macrogeometry and (<b>b</b>) new conical implant macrogeometry.</p> "> Figure 3
<p>Representative SEM images of the two surface models used in both implant macrogeometry: (<b>a</b>) Without treatment (machined surface) and (<b>b</b>) with surface treatment.</p> "> Figure 3 Cont.
<p>Representative SEM images of the two surface models used in both implant macrogeometry: (<b>a</b>) Without treatment (machined surface) and (<b>b</b>) with surface treatment.</p> "> Figure 4
<p>Representative schematic image of the drill sequence used for the osteotomy in all groups.</p> "> Figure 5
<p>Representative image of both tibias after the soft tissue was retrieved and removed.</p> "> Figure 6
<p>Implant stability measurement in two directions: (<b>a</b>) Proximo-distal and (<b>b</b>) in antero-posterior.</p> "> Figure 7
<p>Image of the torque machine used for the torque removal measurements.</p> "> Figure 8
<p>Line graph showing the ISQ evolution on the different times in each group. Time 1 = immediately at the installation; Time 2 = 15 days after the installation; Time 3 = 30 days after the installation.</p> "> Figure 9
<p>Bar graph showing the RTv values on the two times in each group.</p> "> Figure 10
<p>Representative images of the groups 15 days after the implantations. (<b>a</b>) G1 group, (<b>b</b>) G2 group, (<b>c</b>) G3 group, (<b>d</b>) G4 group. Images obtained by light microscopy with magnification of 10×.</p> "> Figure 11
<p>Representative images of the groups 30 days after the implantations. (<b>a</b>) G1 group, (<b>b</b>) G2 group, (<b>c</b>) G3 group, (<b>d</b>) G4 group. Images obtained by light microscopy with magnification of 10×.</p> "> Figure 12
<p>Bar graph of the BIC% mean and standard deviation in the two times proposed.</p> "> Figure 13
<p>Bar graph of the BAFO% mean and standard deviation in the two times proposed.</p> "> Figure 14
<p>Schematic image to show the bone compression during the implant installation (red arrows) and decompression (green arrows) on the healing chambers. (<b>a</b>) Conventional threads design and (<b>b</b>) new threads design with healing chambers.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Clinical Oservations
3.2. Implant Stability Measurement
3.3. Removal Torque Measurement
3.4. Histomorphological Analysis and Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- American Association of Oral and Maxillofacial Surgeons. Oral and maxillofacial surgeons: the experts in face, mouth and jaw surgery. Available online: https://myoms.org/procedures/dental-implant-surgery (accessed on 13 July 2019).
- Grand View Research, Inc. Dental Implants Market Size, Share & Trends Analysis Report by Product (Titanium Implants, Zirconium Implants), by Region (North America, Europe, Asia Pacific, Latin America, MEA), And Segment Forecasts, 2018–2024. Available online: https://www.grandviewresearch.com/industry-analysis/dental-implants-market (accessed on 13 July 2019).
- McGlumphy, E.A.; Hashemzadeh, S.; Yilmaz, B.; Purcell, B.A.; Leach, D.; Larsen, P.E. Treatment of Edentulous Mandible with Metal-Resin Fixed Complete Dentures: A 15- to 20-Year Retrospective Study. Clin. Oral Implants Res. 2019, 27. [Google Scholar] [CrossRef] [PubMed]
- Donati, M.; Ekestubbe, A.; Lindhe, J.; Wennström, J.L. Marginal bone loss at implants with different surface characteristics - A 20-year follow-up of a randomized controlled clinical trial. Clin. Oral Implants Res. 2018, 29, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Howe, M.S.; Keys, W.; Richards, D. Long-term (10-year) dental implant survival: A systematic review and sensitivity meta-analysis. J Dent. 2019, 84, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Lukaszewska-Kuska, M.; Wirstlein, P.; Majchrowski, R.; Dorocka-Bobkowska, B. Osteoblastic cell behaviour on modified titanium surfaces. Micron 2018, 105, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, G.; Francetti, L.; Barbaro, B.; Del Fabbro, M. Novel surfaces and osseointegration in implant dentistry. J. Investig. Clin. Dent. 2018, 9, e12349. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, S.; Bianchi, S.; Botticelli, G.; Rastelli, E.; Tomei, A.R.; Palmerini, M.G.; Continenza, M.A.; Macchiarelli, G. Scanning electron microscopy and microbiological approaches for the evaluation of salivary microorganisms behaviour on anatase titanium surfaces: In vitro study. Morphologie 2018, 102, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ganbold, B.; Kim, S.K.; Heo, S.J.; Koak, J.Y.; Lee, Z.H.; Cho, J. Osteoclastogenesis Behavior of Zirconia for Dental Implant. Materials 2019, 12, 732. [Google Scholar] [CrossRef]
- Gehrke, S.A.; Dedavid, B.A.; Aramburú, J.S., Jr.; Pérez-Díaz, L.; Calvo Guirado, J.L.; Canales, P.M.; De Aza, P.N. Effect of Different Morphology of Titanium Surface on the Bone Healing in Defects Filled Only with Blood Clot: A New Animal Study Design. Biomed. Res. Int. 2018. [Google Scholar] [CrossRef]
- Gehrke, S.A.; Maté Sánchez de Val, J.E.; Fernández Domínguez, M.; de Aza Moya, P.N.; Gómez Moreno, G.; Calvo Guirado, J.L. Effects on the osseointegration of titanium implants incorporating calcium-magnesium: a resonance frequency and histomorphometric analysis in rabbit tibia. Clin. Oral Implants Res. 2018, 29, 785–791. [Google Scholar] [CrossRef]
- de Lima Cavalcanti, J.H.; Matos, P.C.; Depes de Gouvêa, C.V.; Carvalho, W.; Calvo-Guirado, J.L.; Aragoneses, J.M.; Pérez-Díaz, L.; Gehrke, S.A. In Vitro Assessment of the Functional Dynamics of Titanium with Surface Coating of Hydroxyapatite Nanoparticles. Materials 2019, 12, 840. [Google Scholar] [CrossRef]
- Matys, J.; Świder, K.; Flieger, R.; Dominiak, M. Assessment of the primary stability of root analog zirconia implants designed using cone beam computed tomography software by means of the Periotest® device: An ex vivo study. A preliminary report. Adv. Clin. Exp. Med. 2017, 26, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.G.; Jeong, Y.S.; Huh, Y.H.; Park, C.J.; Cho, L.R. Impact of Surface Chemistry Modifications on Speed and Strength of Osseointegration. Int. J. Oral Maxillofac. Implants 2018, 33, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Smeets, R.; Stadlinger, B.; Schwarz, F.; Beck-Broichsitter, B.; Jung, O.; Precht, C.; Kloss, F.; Gröbe, A.; Heiland, M.; Ebker, T. Impact of Dental Implant Surface Modifications on Osseointegration. Biomed. Res. Int. 2016, 2016, 6285620. [Google Scholar] [CrossRef] [PubMed]
- Ogle, O.E. Implant surface material, design, and osseointegration. Dent. Clin. North Am. 2015, 59, 505–520. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, A.; Meijer, G.J.; Wolke, J.G.; Jansen, J.A. Influence of the surgical technique and surface roughness on the primary stability of an implant in artificial bone with a density equivalent to maxillary bone: A laboratory study. Clin. Oral Implants Res. 2009, 20, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Marin, C.; Bonfante, E.; Granato, R.; Neiva, R.; Gil, L.F.; Marão, H.F.; Suzuki, M.; Coelho, P.G. The Effect of Osteotomy Dimension on Implant Insertion Torque, Healing Mode, and Osseointegration Indicators: A Study in Dogs. Implant Dent. 2016, 25, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.Y.; Pereira, M.D.; Smith, A.A.; Houschyar, K.S.; Yin, X.; Mouraret, S.; Brunski, J.B.; Helms, J.A. Multiscale Analyses of the Bone-implant Interface. J. Dent. Res. 2015, 94, 482–490. [Google Scholar] [CrossRef] [Green Version]
- Bashutski, J.D.; D’Silva, N.J.; Wang, H.L. Implant compression necrosis: current understanding and case report. J. Periodontol. 2009, 80, 700–704. [Google Scholar] [CrossRef]
- Tabassum, A.; Meijer, G.J.; Walboomers, X.F.; Jansen, J.A. Evaluation of primary and secondary stability of titanium implants using different surgical techniques. Clin. Oral Implants Res. 2014, 25, 487–492. [Google Scholar] [CrossRef]
- Campos, F.E.; Gomes, J.B.; Marin, C.; Teixeira, H.S.; Suzuki, M.; Witek, L.; Zanetta-Barbosa, D.; Coelho, P.G. Effect of drilling dimension on implant placement torque and early osseointegration stages: An experimental study in dogs. J. Oral Maxillofac. Surg. 2012, 70, e43–e50. [Google Scholar] [CrossRef]
- Jimbo, R.; Tovar, N.; Anchieta, R.B.; Machado, L.S.; Marin, C.; Teixeira, H.S.; Coelho, P.G. The combined effects of undersized drilling and implant macrogeometry on bone healing around dental implants: An experimental study. Int. J. Oral Maxillofac. Surg. 2014, 43, 1269–1275. [Google Scholar] [CrossRef] [PubMed]
- Salatti, D.B.; Pelegrine, A.A.; Gehrke, S.; Teixeira, M.L.; Moshaverinia, A.; Moy, P.K. Is there a need for standardization of tightening force used to connect the transducer for resonance frequency analysis in determining implant stability? Int. J. Oral Maxillofac. Implants 2019, 34, 886–890. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, M.V.; Elias, C.N.; Cavalcanti Lima, J.H. The effects of superficial roughness and design on the primary stability of dental implants. Clin. Implant Dent. Relat Res. 2011, 13, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Javed, F.; Ahmed, H.B.; Crespi, R.; Romanos, G.E. Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation. Interv. Med. Appl. Sci. 2013, 5, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Orsini, E.; Giavaresi, G.; Trirè, A.; Ottani, V.; Salgarello, S. Dental implant thread pitch and its influence on the osseointegration process: an in vivo comparison study. Int. J. Oral Maxillofac. Implants 2012, 27, 383–392. [Google Scholar] [PubMed]
- Misch, C.E. Implant design considerations for the posterior regions of the mouth. Implant Dent. 1999, 8, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Anil, S.; Aldosari, A.A. Impact of bone quality and implant type on the primary stability: an experimental study using bovine bone. J. Oral Implantol. 2015, 41, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Salles, M.B.; Allegrini, S.; Yoshimoto, M.; Pérez-Díaz, L.; Calvo-Guirado, J.L.; Gehrke, S.A. Analysis of Trauma Intensity during Surgical Bone Procedures Using NF-κB Expression Levels as a Stress Sensor: An Experimental Study in a Wistar Rat Model. Materials 2018, 12, 2532. [Google Scholar] [CrossRef]
- de Souza Carvalho, A.C.G.; Queiroz, T.P.; Okamoto, R.; Margonar, R.; Garcia, I.R.; Filho, O.M. Evaluation of bone heating, immediate bone cell viability, and wear of high-resistance drills after the creation of implant osteotomies in rabbit tibias. Int J. Oral Maxillofac Implants 2011, 26, 1193–1201. [Google Scholar]
- Chuang, S.K.; Wei, L.J.; Douglass, C.W.; Dodson, T.B. Risk factors for dental implant failure: A strategy for the analysis of clustered failure-time observations. J. Dent. Res. 2002, 81, 572–577. [Google Scholar] [CrossRef]
- Halldin, A.; Jimbo, R.; Johansson, C.B.; Wennerberg, A.; Jacobsson, M.; Albrektsson, T.; Hansson, S. Implant stability and bone remodeling after 3 and 13 days of implantation with an initial static strain. Clin. Implant Dent. Relat. Res. 2014, 16, 383–393. [Google Scholar] [CrossRef]
- Shah, F.A.; Thomsen, P.; Palmquist, A. A Review of the Impact of Implant Biomaterials on Osteocytes. J. Dent. Res. 2018, 97, 977–986. [Google Scholar] [CrossRef]
- Pearce, A.I.; Richards, R.G.; Milz, S.; Schneider, E.; Pearce, S.G. Animal models for implant biomaterial research in bone: a review. Eur. Cell Mater. 2007, 2, 1–10. [Google Scholar] [CrossRef]
- Steigenga, J.; Al-Shammari, K.; Misch, C.; Nociti, F.H., Jr.; Wang, H.-L. Effects of implant thread geometry on percentage of osseointegration and resistance to reverse torque in the tibia of rabbits. J. Periodontol. 2004, 75, 1233–1241. [Google Scholar] [CrossRef]
- Sykaras, N.; Iacopino, A.M.; Marker, V.A.; Triplett, R.G.; Woody, R.D. Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review. Int. J. Oral Maxillofac. Implants 2000, 15, 675–690. [Google Scholar]
- Gehrke, S.A.; Eliers Treichel, T.L.; Pérez-Díaz, L.; Calvo-Guirado, J.L.; Aramburú Júnior, J.; Mazón, P.; de Aza, P.N. Impact of Different Titanium Implant Thread Designs on Bone Healing: A Biomechanical and Histometric Study with an Animal Model. J. Clin. Med. 2019, 31, 777. [Google Scholar] [CrossRef]
- Barros, R.R.; Degidi, M.; Novaes, A.B.; Piattelli, A.; Shibli, J.A.; Iezzi, G. Osteocyte density in the peri-implant bone of immediately loaded and submerged dental implants. J. Periodontol. 2009, 80, 499–504. [Google Scholar] [CrossRef]
9 | Time 1 | Time 2 | Time 3 |
---|---|---|---|
G1 | 39.7 ± 3.54 | 40.9 ± 4.39 | 49.7 ± 4.89 |
G2 | 38.6 ± 4.02 | 39.4 ± 4.12 | 46.9 ± 4.65 |
G3 | 39.9 ± 3.46 | 49.1 ± 4.52 | 61.1 ± 4.72 |
G4 | 39.9 ± 3.10 | 46.6 ± 4.58 | 58.8 ± 4.58 |
Time 2 | Time 3 | |||||
---|---|---|---|---|---|---|
Group Comparison | Mean of Diff. | p-Value | 95% CI | Mean of Diff. | p-Value | 95% CI |
G1 vs G2 | 1.500 | 0.3559 | −2.599 to 5.599 | 2.722 | 0.0946 | −1.389 to 6.833 |
G1 vs G3 | −8.111 | <0.0001 * | −12.21 to −4.012 | −11.39 | <0.0001 * | −15.50 to −7.278 |
G1 vs G4 | −5.667 | 0.0026 * | −9.766 to −1.567 | −9.167 | <0.0001 * | −13.28 to −5.056 |
G2 vs G3 | −9.611 | <0.0001 * | −13.71 to −5.512 | −14.11 | <0.0001 * | −18.22 to −10.00 |
G2 vs G4 | −7.167 | 0.0002 * | −11.27 to −3.067 | −11.89 | <0.0001 * | −16.00 to −7.778 |
G3 vs G4 | 2.444 | 0.1714 | −1.655 to 6.544 | 2.222 | 0.1764 | −1.889 to 6.333 |
Group | 15 days | 30 days |
---|---|---|
G1 | 36.8 ± 4.02 | 44.8 ± 3.63 |
G2 | 33.4 ± 3.91 | 40.7 ± 3.57 |
G3 | 44.0 ± 4.50 | 65.2 ± 3.63 |
G4 | 42.3 ± 4.21 | 61.0 ± 3.81 |
15 days | 30 days | |||||
---|---|---|---|---|---|---|
Group Comparison | Mean of Diff. | p-Value | 95% CI | Mean of Diff. | p-Value | 95% CI |
G1 vs G2 | 3.333 | 0.1020 | −2.192 to 8.858 | 4.111 | 0.0372 * | −0.7437 to 8.966 |
G1 vs G3 | −7.222 | 0.0022 * | −12.75 to −1.697 | −20.44 | 0.0004 * | −25.30 to −15.59 |
G1 vs G4 | −5.556 | 0.0230 * | −11.08 to −0.030 | −16.22 | 0.0004 * | −21.08 to −11.37 |
G2 vs G3 | −10.56 | 0.0007 * | −16.08 to −5.030 | −24.56 | 0.0004 * | −29.41 to −19.70 |
G2 vs G4 | −8.889 | 0.0014 * | −14.41 to −3.364 | −20.33 | 0.0004 * | −25.19 to −15.48 |
G3 vs G4 | 1.667 | 0.1840 | −3.858 to 7.192 | 4.222 | 0.0147 * | −0.6326 to 9.077 |
Group | 15 days | 30 days |
---|---|---|
G1 | 34.0 ± 3.88 | 39.5 ± 4.97 |
G2 | 33.1 ± 4.83 | 36.4 ± 4.36 |
G3 | 38.6 ± 4.23 | 53.4 ± 5.39 |
G4 | 36.8 ± 3.99 | 50.3 ± 5.74 |
15 days | 30 days | |||||
---|---|---|---|---|---|---|
Group Comparison | Mean of Diff. | p-Value | 95% CI | Mean of Diff. | p-Value | 95% CI |
G1 vs G2 | 0.9333 | 1.000 | −4.699 to 6.566 | 3.100 | 0.3086 | −3.716 to 9.916 |
G1 vs G3 | −4.589 | 0.0417 * | −10.22 to 1.043 | −13.90 | 0.0003 * | −20.72 to −7.084 |
G1 vs G4 | −2.744 | 0.1702 | −8.377 to 2.888 | −10.83 | 0.0008 * | −17.65 to −4.017 |
G2 vs G3 | −5.522 | 0.0133 * | −11.15 to 0.1101 | −17.00 | 0.0004 * | −23.82 to −10.18 |
G2 vs G4 | −3.678 | 0.1323 | −9.310 to 1.955 | −13.93 | 0.0004 * | −20.75 to −7.117 |
G3 vs G4 | 1.844 | 0.3059 | −3.788 to 7.477 | 3.067 | 0.5067 | −3.750 to 9.883 |
Group | 15 days | 30 days |
---|---|---|
G1 | 47.5 ± 5.92 | 58.2 ± 6.77 |
G2 | 46.7 ± 6.23 | 56.8 ± 7.51 |
G3 | 65.0 ± 6.93 | 71.1 ± 7.21 |
G4 | 56.2 ± 6.62 | 63.7 ± 7.29 |
(1) |
15 days | 30 days | |||||
---|---|---|---|---|---|---|
Group Comparison | Mean of Diff. | p-Value | 95% CI | Mean of Diff. | p-Value | 95% CI |
G1 vs G2 | 0.8222 | 0.8252 | −7.711 to 9.356 | 1.378 | 0.8636 | −8.167 to 10.92 |
G1 vs G3 | −17.49 | 0.0005 * | −26.02 to −8.955 | −12.86 | 0.0040 * | −22.40 to −3.310 |
G1 vs G4 | −8.622 | 0.0191 * | −17.16 to −0.089 | −5.522 | 0.1709 | −15.07 to 4.023 |
G2 vs G3 | −18.31 | 0.0013 * | −26.84 to −9.778 | −14.23 | 0.0012 * | −23.78 to −4.688 |
G2 vs G4 | −9.444 | 0.0151 * | −17.98 to −0.911 | −6.900 | 0.1116 | −16.45 to 2.645 |
G3 vs G4 | 8.867 | 0.0142 * | 0.3332 to 17.40 | 7.333 | 0.0503 | −2.212 to 16.88 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gehrke, S.A.; Aramburú Júnior, J.; Pérez-Díaz, L.; Treichel, T.L.E.; Dedavid, B.A.; De Aza, P.N.; Prados-Frutos, J.C. New Implant Macrogeometry to Improve and Accelerate the Osseointegration: An In Vivo Experimental Study. Appl. Sci. 2019, 9, 3181. https://doi.org/10.3390/app9153181
Gehrke SA, Aramburú Júnior J, Pérez-Díaz L, Treichel TLE, Dedavid BA, De Aza PN, Prados-Frutos JC. New Implant Macrogeometry to Improve and Accelerate the Osseointegration: An In Vivo Experimental Study. Applied Sciences. 2019; 9(15):3181. https://doi.org/10.3390/app9153181
Chicago/Turabian StyleGehrke, Sergio Alexandre, Jaime Aramburú Júnior, Leticia Pérez-Díaz, Tiago Luis Eirles Treichel, Berenice Anina Dedavid, Piedad N. De Aza, and Juan Carlos Prados-Frutos. 2019. "New Implant Macrogeometry to Improve and Accelerate the Osseointegration: An In Vivo Experimental Study" Applied Sciences 9, no. 15: 3181. https://doi.org/10.3390/app9153181
APA StyleGehrke, S. A., Aramburú Júnior, J., Pérez-Díaz, L., Treichel, T. L. E., Dedavid, B. A., De Aza, P. N., & Prados-Frutos, J. C. (2019). New Implant Macrogeometry to Improve and Accelerate the Osseointegration: An In Vivo Experimental Study. Applied Sciences, 9(15), 3181. https://doi.org/10.3390/app9153181