Reactive Black 5 Degradation on Manganese Oxides Supported on Sodium Hydroxide Modified Graphene Oxide
<p>XRD patterns of: (<b>a</b>) graphene oxide (GO), modified graphene oxide (NGO), manganese oxide (Mn<sub>3</sub>O<sub>4</sub>) and NGO–Mn<sub>3</sub>O<sub>4</sub> nanocomposite; (<b>b</b>) GO, modified graphene oxide (NGO), manganese oxide (MnO<sub>2</sub>) and NGO–MnO<sub>2</sub> nanocomposite.</p> "> Figure 2
<p>N<sub>2</sub> adsorption isotherms and pore diameter distribution (inset) for NGO–Mn<sub>3</sub>O<sub>4</sub> and NGO–MnO<sub>2</sub> modified composites.</p> "> Figure 3
<p>(<b>a</b>) Effect of initial pH on RB5 adsorption/degradation onto NGO, MnO<sub>2</sub>, Mn<sub>3</sub>O<sub>4</sub>, NGO–Mn<sub>3</sub>O<sub>4</sub> and NGO–MnO<sub>2</sub> nanocomposites (Co = 100 mg/L, m = 0.01 g, V = 0.02 L); (<b>b</b>) potentiometric titration results for the nanocomposite catalysts.</p> "> Figure 4
<p>Effect of initial concentration of RB5 (pH = 3, m = 0.01 g, V = 0.02 L).</p> "> Figure 5
<p>(<b>a</b>,<b>b</b>) Effect of contact time on the degradation of RB5 on NGO, MnO<sub>2</sub>, Mn<sub>3</sub>O<sub>4</sub>, NGO–Mn<sub>3</sub>O<sub>4</sub> and NGO–MnO<sub>2</sub> nanocomposites for initial RB5 concentration of 100 mg/L (<b>a</b>) in presence and (<b>b</b>) absence of H<sub>2</sub>O<sub>2</sub> (Co = 100 mg/L, pH = 3, m = 0.01 g, V = 0.02 L). (inset: decolorization after 60 min for Mn<sub>3</sub>O<sub>4</sub> in the first row and NGO–MnO<sub>2</sub> in the second row).</p> "> Figure 6
<p>Effect of contact time on the degradation of RB5 on NGO–Mn<sub>3</sub>O<sub>4</sub> and NGO–MnO<sub>2</sub> nanocomposites for initial RB5 concentration of 40 mg/L and 100 mg/L in presence (radical) and absence (non-radical) of H<sub>2</sub>O<sub>2</sub> (pH = 3, m = 0.01 g, V = 0.02 L).</p> "> Figure 7
<p>Effect of (<b>a</b>) H<sub>2</sub>O<sub>2</sub> concentration and (<b>b</b>) methanol/H<sub>2</sub>O<sub>2</sub> ratio on RB5 degradation by NGO–Mn<sub>3</sub>O<sub>4</sub> and NGO–MnO<sub>2</sub> nanocomposites (Co = 100 mg/L, pH = 3, m = 0.01 g, V = 0.02 L).</p> "> Figure 8
<p>Elution experiments by (<b>a</b>) deionized water (<b>b</b>) ethanol, methanol and acetonitrile of the loaded the NGO–MnO<sub>2</sub> and NGO–Mn<sub>3</sub>O<sub>4</sub> nanocomposites (Co = 100 mg/L, m = 0.01 g, V = 0.02 L).</p> "> Figure 9
<p>Recovery efficiency of the NGO—MnO<sub>2</sub> and NGO—Mn<sub>3</sub>O<sub>4</sub> after 5 cycles of adsorption—desorption (Co = 100 mg/L, pH = 3, m = 0.01 g, V = 0.02 L).</p> "> Figure 10
<p>FTIR patterns of raw (black line) and after the RB5 degradation (red line) of NGO (<b>a</b>); NGO–Mn<sub>3</sub>O<sub>4</sub> (<b>b</b>) and NGO–MnO<sub>2</sub> (<b>c</b>) in presence of H<sub>2</sub>O<sub>2</sub>.</p> "> Figure 11
<p>DTG curves for (<b>a</b>) NGO–Mn<sub>3</sub>O<sub>4</sub> and (<b>b</b>) NGO–MnO<sub>2</sub> modified composites in absence and presence of RB5.</p> "> Figure 12
<p>UV-Vis curves for RB5 on NGO–Mn<sub>3</sub>O<sub>4</sub> in 3 different RB5 concentrations (pH = 3, m = 0.01 g, V = 0.02 L).</p> "> Figure 13
<p>UV-Vis curves for RB5 (<b>a</b>,<b>b</b>) after degradation on NGO, MnO<sub>2</sub>, Mn<sub>3</sub>O<sub>4</sub>, NGO–Mn<sub>3</sub>O<sub>4</sub> and NGO–MnO<sub>2</sub> nanocomposites for Co = 50 mg/L (pH = 3, m = 0.01 g, V = 0.02 L).</p> ">
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Reagents
2.2. Preparation of Graphite Oxide (GO)
2.3. Preparation of Modified Graphene Oxide
2.4. Preparation of MnO2 and Mn3O4
2.5. Synthesis of NGO–Mn3O4, and NGO–MnO2 Nanocomposites
2.6. Materials Characterization
2.7. Degradation Experiments
3. Results and Discussion
3.1. Materials Characterization
3.2. Degradation of Reactive Black 5
3.2.1. Effect of pH
3.2.2. Effect of Initial Concentration of RB5
3.2.3. Effect of Contact Time
Mechanism of RB5 Degradation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Novotný, Č.; Dias, N.; Kapanen, A.; Malachová, K.; Vándrovcová, M.; Itävaara, M.; Lima, N. Comparative use of bacterial, algal and protozoan tests to study toxicity of azo-and anthraquinone dyes. Chemosphere 2006, 63, 1436–1442. [Google Scholar] [CrossRef]
- Liang, J.; Ning, X.A.; Sun, J.; Song, J.; Lu, J.; Cai, H.; Hong, Y. Toxicity evaluation of textile dyeing effluent and its possible relationship with chemical oxygen demand. Ecotoxicol. Environ. Saf. 2018, 166, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Iqbal, M.; Hu, H.; Zhang, X. Mutagenicity and cytotoxicity assessment of biodegraded textile effluent by Ca-alginate encapsulated manganese peroxidase. Biochem. Eng. J. 2016, 109, 153–161. [Google Scholar] [CrossRef]
- Seralathan, J.; Salam, A.A.A.; Mohan, H.S.; Balaraman, D.; Pitchai, S.; Sadasivam, S.K. Evaluation of toxicity reduction in textile effluent by different treatment protocols involving marine diatom Odontella aurita on freshwater fish Labeo rohita. J. Water Process. Eng. 2017, 20, 232–242. [Google Scholar] [CrossRef]
- Lademann, J.; Patzelt, A.; Worm, M.; Richter, H.; Sterry, W.; Meinke, M. Analysis of in vivo penetration of textile dyes causing allergic reactions. Laser Phys. Lett. 2009, 6, 759–763. [Google Scholar]
- Rovira, J.; Domingo, J.L. Human health risks due to exposure to inorganic and organic chemicals from textiles: A review. Environ. Res. 2019, 168, 62–69. [Google Scholar] [CrossRef]
- Hatch, K.L.; Maibach, H.I. Textile dye dermatitis. J. Am. Acad. Dermatol. 1995, 32, 631–639. [Google Scholar] [CrossRef]
- Kiriakidou, F.; Kondarides, D.I.; Verykios, X.E. The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes. Catal. Today 1999, 54, 119–130. [Google Scholar] [CrossRef]
- Pagga, U.; Brown, D. The degradation of dyestuffs: Part II. Behaviour of dyestuffs in aerobic biodegradation tests. Chemosphere 1986, 15, 479–491. [Google Scholar] [CrossRef]
- Brown, D.; Laboureur, P. The aerobic biodegradability of primary aromatic amines. Chemosphere 1983, 12, 405–414. [Google Scholar] [CrossRef]
- Ziarani, G.M.; Moradi, R.; Lashgari, N.; Kruger, H.G. Chapter 4—Azo Dyes; Ziarani, G.M., Moradi, R., Lashgari, N., Kruger, H.G.B.T.-M.-F.S.O.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 47–93. [Google Scholar]
- Leme, D.M.; de Oliveira, G.A.R.; Meireles, G.; de Santos, T.C.; Zanoni, M.V.B.; de Oliveira, D.P. Genotoxicological assessment of two reactive dyes extracted from cotton fibres using artificial sweat. Toxicol. Vitr. 2014, 28, 31–38. [Google Scholar] [CrossRef]
- Venturini, S.; Tamaro, M. Mutagenicity of anthraquinone and azo dyes in Ames’ Salmonella typhimurium test. Mutat. Res. Toxicol. 1979, 68, 307–312. [Google Scholar] [CrossRef]
- Akhtar, M.F.; Ashraf, M.; Anjum, A.A.; Javeed, A.; Sharif, A.; Saleem, A.; Akhtar, B. Textile industrial effluent induces mutagenicity and oxidative DNA damage and exploits oxidative stress biomarkers in rats. Environ. Toxicol. Pharmacol. 2016, 41, 180–186. [Google Scholar] [CrossRef]
- Kabra, A.N.; Khandare, R.V.; Govindwar, P.S. Development of a bioreactor for remediation of textile effluent and dye mixture: A plant–bacterial synergistic strategy. Water Res. 2013, 47, 1035–1048. [Google Scholar] [CrossRef]
- Bumpus, J.A. Microbial degradation of azo dyes. In Biotransformations; Singh, V.P.B.T.-P.i.I.M., Ed.; Elsevier: Amsterdam, The Netherlands, 1995; Volume 32, pp. 157–176. [Google Scholar]
- Yang, P.; Shi, W.; Wang, H.; Liu, H. Screening of freshwater fungi for decolorizing multiple synthetic dyes. Braz. J. Microbiol. 2016, 47, 828–834. [Google Scholar] [CrossRef] [Green Version]
- Jinqi, L.; Houtian, L. Degradation of azo dyes by algae. Environ. Pollut. 1992, 75, 273–278. [Google Scholar] [CrossRef]
- Shu, H.-Y.; Chang, M.-C. Decolorization effects of six azo dyes by O3, UV/O3 and UV/H2O2 processes. Dye. Pigment. 2005, 65, 25–31. [Google Scholar] [CrossRef]
- Fernandes, N.C.; Brito, L.B.; Costa, G.G.; Taveira, S.F.; Cunha-Filho, M.S.S.; Oliveira, G.A.R.; Marreto, R.N. Removal of azo dye using Fenton and Fenton-like processes: Evaluation of process factors by Box–Behnken design and ecotoxicity tests. Chem. Biol. Interact. 2018, 291, 47–54. [Google Scholar] [CrossRef]
- Duarte, F.; Morais, V.; Maldonado-Hódar, F.J.; Madeira, L.M. Treatment of textile effluents by the heterogeneous Fenton process in a continuous packed-bed reactor using Fe/activated carbon as catalyst. Chem. Eng. J. 2013, 232, 34–41. [Google Scholar] [CrossRef]
- Chun, H.; Yizhong, W. Decolorization and biodegradability of photocatalytic treated azo dyes and wool textile wastewater. Chemosphere 1999, 39, 2107–2115. [Google Scholar] [CrossRef]
- Wang, H.-D.; Yang, Q.; Niu, C.H.; Badea, I. Adsorption of azo dye onto nanodiamond surface. Diam. Relat. Mater. 2012, 26, 1–6. [Google Scholar] [CrossRef]
- Konicki, W.; Aleksandrzak, M.; Moszyński, D.; Mijowska, E. Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: Equilibrium, kinetic and thermodynamic studies. J. Colloid Interface Sci. 2017, 496, 188–200. [Google Scholar] [CrossRef]
- Hassan, M.M.; Carr, C.M. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 2018, 209, 201–219. [Google Scholar] [CrossRef]
- Ouyang, J.; Zhao, Z.; Suib, S.L.; Yang, H. Degradation of Congo Red dye by a Fe2O3@CeO2-ZrO2/Palygorskite composite catalyst: Synergetic effects of Fe2O3. J. Colloid Interface Sci. 2019, 539, 135–145. [Google Scholar] [CrossRef]
- Natarajan, S.; Bajaj, H.C.; Tayade, R.J. Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J. Environ. Sci. 2018, 65, 201–222. [Google Scholar] [CrossRef]
- Rong, X.; Qiu, F.; Zhang, C.; Fu, L.; Wang, Y.; Yang, D. Adsorption–photodegradation synergetic removal of methylene blue from aqueous solution by NiO/graphene oxide nanocomposite. Powder Technol. 2015, 275, 322–328. [Google Scholar] [CrossRef]
- Nagpal, M.; Kakkar, R. Use of metal oxides for the adsorptive removal of toxic organic pollutants. Sep. Purif. Technol. 2019, 211, 522–539. [Google Scholar] [CrossRef]
- Islam, M.A.; Morton, D.W.; Johnson, B.B.; Mainali, B.; Angove, M.J. Manganese oxides and their application to metal ion and contaminant removal from wastewater. J. Water Process. Eng. 2018, 26, 264–280. [Google Scholar] [CrossRef]
- Salam, M.A. Synthesis and characterization of novel manganese oxide nanocorals and their application for the removal of methylene blue from aqueous solution. Chem. Eng. J. 2015, 270, 50–57. [Google Scholar] [CrossRef]
- Peng, H.H.; Chen, J.; Jiang, D.Y.; Li, M.; Feng, L.; Losic, D.; Zhang, Y.X. Synergistic effect of manganese dioxide and diatomite for fast decolorization and high removal capacity of methyl orange. J. Colloid Interface Sci. 2016, 484, 1–9. [Google Scholar] [CrossRef]
- Dang, T.-D.; Banerjee, A.N.; Tran, Q.-T.; Roy, S. Fast degradation of dyes in water using manganese-oxide-coated diatomite for environmental remediation. J. Phys. Chem. Solids 2016, 98, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Saroyan, H.S.; Giannakoudakis, D.A.; Sarafidis, C.S.; Lazaridis, N.K.; Deliyanni, E.A. Effective impregnation for the preparation of magnetic mesoporous carbon: Application to dye adsorption. J. Chem. Technol. Biotechnol. 2017, 92, 1899–1911. [Google Scholar] [CrossRef]
- Gupta, K.; Khatri, O.P. Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: Plausible adsorption pathways. J. Colloid Interface Sci. 2017, 501, 11–21. [Google Scholar] [CrossRef]
- Minitha, C.R.; Lalitha, M.; Jeyachandran, Y.L.; Senthilkumar, L. Adsorption behaviour of reduced graphene oxide towards cationic and anionic dyes: Co-action of electrostatic and π–π interactions. Mater. Chem. Phys. 2017, 194, 243–252. [Google Scholar]
- Saroyan, H.S.; Arampatzidou, A.; Voutsa, D.; Lazaridis, N.K.; Deliyanni, E.A. Activated carbon supported MnO2 for catalytic degradation of reactive black 5. Colloids Surf. A Physicochem. Eng. Asp. 2019, 566, 166–175. [Google Scholar] [CrossRef]
- Saroyan, H.; Kyzas, Z.G.; Deliyanni, A.E. Effective Dye Degradation by Graphene Oxide Supported Manganese Oxide. Processes 2019, 7, 40. [Google Scholar] [CrossRef]
- Saroyan, H.S.; Bele, S.; Giannakoudakis, D.A.; Samanidou, V.F.; Bandosz, T.J.; Deliyanni, E.A. Degradation of endocrine disruptor, bisphenol-A, on an mixed oxidation state manganese oxide/modified graphite oxide composite: A role of carbonaceous phase. J. Colloid Interface Sci. 2019, 539, 516–524. [Google Scholar] [CrossRef]
- Saroyan, H.; Ntagiou, D.; Samanidou, V.; Deliyanni, E. Modified graphene oxide as manganese oxide support for bisphenol A degradation. Chemosphere 2019, 225, 524–534. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Y.; Zhang, W.; Wang, X.; Qian, Y.; Wen, X.; Yang, S. Nanorods of manganese oxides: Synthesis, characterization and catalytic application. J. Solid State Chem. 2006, 179, 679–684. [Google Scholar] [CrossRef]
- Cao, D.; Li, H.; Wang, Z.; Wei, J.; Wang, J.; Liu, Q. Synthesis, nanostructure and magnetic properties of FeCo-reduced graphene oxide composite films by one-step electrodeposition. Thin Solid Films 2015, 597, 1–6. [Google Scholar] [CrossRef]
- Xu, R.; Wang, X.; Wang, D.; Zhou, K.; Li, Y. Surface structure effects in nanocrystal MnO2 and Ag/MnO2 catalytic oxidation of CO. J. Catal. 2006, 237, 426–430. [Google Scholar] [CrossRef]
- Ren, Y.; Yan, N.; Wen, Q.; Fan, Z.; Wei, T.; Zhang, M.; Ma, J. Graphene/δ-MnO2 composite as adsorbent for the removal of nickel ions from wastewater. Chem. Eng. J. 2011, 175, 1–7. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Laffont, L.; Gibot, P. High resolution electron energy loss spectroscopy of manganese oxides: Application to Mn3O4 nanoparticles. Mater. Charact. 2010, 61, 1268–1273. [Google Scholar] [CrossRef]
- Lee, C.H.; Lee, S.; Yeo, J.S.; Kang, G.S.; Noh, Y.J.; Park, S.M.; Lee, D.C.; Na, S.I.; Joh, H.I. Hybrid materials of upcycled Mn3O4 and reduced graphene oxide for a buffer layer in organic solar cells. J. Ind. Eng. Chem. 2018, 61, 106–111. [Google Scholar] [CrossRef]
- Yang, Y.J. One-pot synthesis of reduced graphene oxide/zinc sulfide nanocomposite at room temperature for simultaneous determination of ascorbic acid, dopamine and uric acid. Sens. Actuators B Chem. 2015, 221, 750–759. [Google Scholar] [CrossRef]
- Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. J. Am. Chem. Soc. 2008, 130, 5856–5857. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Sun, H.; Ao, Z.; Zhou, L.; Wang, G.; Wang, S. Unveiling the active sites of graphene-catalyzed peroxymonosulfate activation. Carbon 2016, 107, 371–378. [Google Scholar] [CrossRef]
- Xu, L.; Xu, C.; Zhao, M.; Qiu, Y.; Sheng, G.D. Oxidative removal of aqueous steroid estrogens by manganese oxides. Water Res. 2008, 42, 5038–5044. [Google Scholar] [CrossRef]
- Khaled, A.; Nemr, A.E.; El-Sikaily, A.; Abdelwahab, O. Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: Adsorption isotherm and kinetic studies. J. Hazard. Mater. 2009, 165, 100–110. [Google Scholar] [CrossRef]
- Pfaffeneder-Kmen, M.; Casas, I.F.; Naghilou, A.; Trettenhahn, G.; Kautek, W. A Multivariate curve resolution evaluation of an in-situ ATR-FTIR spectroscopy investigation of the electrochemical reduction of graphene oxide. Electrochim. Acta 2017, 255, 160–167. [Google Scholar] [CrossRef]
- Mbarek, W.B.; Azabou, M.; Pineda, E.; Fiol, N.; Escoda, L.; Suñol, J.J.; Khitouni, M. Rapid degradation of azo-dye using Mn–Al powders produced by ball-milling. RSC Adv. 2017, 7, 12620–12628. [Google Scholar] [CrossRef]
- Méndez-Martínez, A.J.; Dávila-Jiménez, M.M.; Ornelas-Dávila, O.; Elizalde-González, M.P.; Arroyo-Abad, U.; Sirés, I.; Brillas, E. Electrochemical reduction and oxidation pathways for Reactive Black 5 dye using nickel electrodes in divided and undivided cells. Electrochim. Acta 2012, 59, 140–149. [Google Scholar] [CrossRef]
- Feng, Q.; Kanoh, H.; Miyai, Y.; Ooi, K. Metal ion extraction/insertion reactions with todorokite-type manganese oxide in the aqueous phase. Chem. Mater. 1995, 7, 1722–1727. [Google Scholar] [CrossRef]
- Kapteijn, F.; Singoredjo, L.; Andreini, A.; Moulijn, J.A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Appl. Catal. B Environ. 1994, 3, 173–189. [Google Scholar] [CrossRef]
- Singu, B.S.; Yoon, K.R. Exfoliated graphene-manganese oxide nanocomposite electrode materials for supercapacitor. J. Alloys Compd. 2019, 770, 1189–1199. [Google Scholar] [CrossRef]
- Ferreira, L.C.; Lucas, M.S.; Fernandes, J.R.; Tavares, P.B. Photocatalytic oxidation of Reactive Black 5 with UV-A LEDs. J. Environ. Chem. Eng. 2016, 4, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Santos, P.B.; Santos, J.J.; Corrêa, C.C.; Corio, P.; Andrade, G.F.S. Plasmonic photodegradation of textile dye Reactive Black 5 under visible light: A vibrational and electronic study. J. Photochem. Photobiol. A Chem. 2019, 371, 159–165. [Google Scholar] [CrossRef]
- Wanyonyi, W.C.; Onyari, J.M.; Shiundu, P.M.; Mulaa, F.J. Effective biotransformation of Reactive Black 5 Dye Using Crude Protease from Bacillus Cereus Strain KM201428. Energy Procedia 2019, 157, 815–824. [Google Scholar] [CrossRef]
- Ramesh, M.; Nagaraja, H.S.; Rao, M.P.; Anandan, S.; Huang, N.M. Fabrication, characterization and catalytic activity of α-MnO2 nanowires for dye degradation of reactive black 5. Mater. Lett. 2016, 172, 85–89. [Google Scholar] [CrossRef]
Samples | SBET (m2/g) | Vt (cm3/g) | Vmeso (cm3/g) | Vmic (cm3/g) |
---|---|---|---|---|
NGO | 9.10 | 0.080 | 0.080 | 0 |
Mn3O4 | 2.38 | 0.014 | 0.014 | 0 |
MnO2 | 38.50 | 0.336 | 0.336 | 0 |
NGO–Mn3O4 | 7.52 | 0.056 | 0.056 | 0 |
NGO–MnO2 | 118.12 | 0.231 | 0.231 | 0 |
Samples | Co | Pseudo-First Order | Pseudo-Second Order | ||
---|---|---|---|---|---|
K1 | R2 | K2 | R2 | ||
NGO | 100 | 1.92 × 10−2 | 0 | 3.60 × 10−4 | 0.393 |
100 + H2O2 | 1.85 × 10−1 | 0.857 | 3.63 × 10−3 | 0.961 | |
MnO2 | 100 | 1.91 × 10−2 | 0.371 | 2.10 × 10−4 | 0.691 |
100 + H2O2 | 3.73 × 10−1 | 0.998 | 3.09 × 10−2 | 0.999 | |
Mn3O4 | 100 | 4.30 × 10−3 | 0.504 | 5.00 × 10−5 | 0.66 |
100 + H2O2 | 8.97 × 10−2 | 0.972 | 2.10 × 10−3 | 0.924 | |
NGO–MnO2 | 100 | 7.60 × 10−2 | 0.982 | 1.60 × 10−3 | 0.999 |
100+ H2O2 | 2.80 × 10−1 | 0.999 | 2.08 × 10−2 | 0.999 | |
40 | 4.78 × 10−1 | 0.939 | 2.58 × 10−2 | 0.991 | |
40 + H2O2 | 1.47 × 10−1 | 0.984 | 0.61 × 10−2 | 0.983 | |
NGO–Mn3O4 | 100 | 1.79 × 10−2 | 0.977 | 2.70 × 10−4 | 0.999 |
100 + H2O2 | 3.20 × 10−1 | 0.998 | 2.66 × 10−2 | 0.999 | |
40 | 1.14 × 10−1 | 0.950 | 0.52 × 10−2 | 0.993 | |
40 + H2O2 | 0.67 × 10−1 | 0.590 | 0.29 × 10−2 | 0.898 |
Mn % Leaching in the Solution | ||
---|---|---|
+ H2O2 | ||
Mn3O4 | 8.5 | 6.6 |
NGO–Mn3O4 | 1.6 | 3.3 |
MnO2 | 8.4 | 9.5 |
NGO–MnO2 | 1.0 | 4.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saroyan, H.; Ntagiou, D.; Rekos, K.; Deliyanni, E. Reactive Black 5 Degradation on Manganese Oxides Supported on Sodium Hydroxide Modified Graphene Oxide. Appl. Sci. 2019, 9, 2167. https://doi.org/10.3390/app9102167
Saroyan H, Ntagiou D, Rekos K, Deliyanni E. Reactive Black 5 Degradation on Manganese Oxides Supported on Sodium Hydroxide Modified Graphene Oxide. Applied Sciences. 2019; 9(10):2167. https://doi.org/10.3390/app9102167
Chicago/Turabian StyleSaroyan, Hayarpi, Dimitra Ntagiou, Kyriazis Rekos, and Eleni Deliyanni. 2019. "Reactive Black 5 Degradation on Manganese Oxides Supported on Sodium Hydroxide Modified Graphene Oxide" Applied Sciences 9, no. 10: 2167. https://doi.org/10.3390/app9102167
APA StyleSaroyan, H., Ntagiou, D., Rekos, K., & Deliyanni, E. (2019). Reactive Black 5 Degradation on Manganese Oxides Supported on Sodium Hydroxide Modified Graphene Oxide. Applied Sciences, 9(10), 2167. https://doi.org/10.3390/app9102167