Simple Degree-of-Freedom Modeling of the Random Fluctuation Arising in Human–Bicycle Balance
<p>Photograph of our experimental device, a human participant, and an experimenter.</p> "> Figure 2
<p>Schematic front view of the bicycle during the experiment.</p> "> Figure 3
<p>The measured time series of the human–bicycle balance for <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 4
<p>The measured joint probability density functions (PDFs) from all participants (<math display="inline"><semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mn>8</mn> </mrow> </semantics></math>).</p> "> Figure 5
<p>Difference of our simulated <math display="inline"><semantics> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>s</mi> <mi>i</mi> <mi>m</mi> </mrow> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> from the measured <math display="inline"><semantics> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>h</mi> <mi>u</mi> <mi>m</mi> </mrow> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> (left column) and that of the equivalent Gaussian PDF <math display="inline"><semantics> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>G</mi> <mi>a</mi> <mi>u</mi> <mi>s</mi> <mi>s</mi> </mrow> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> (right column), for all <span class="html-italic">s</span>.</p> "> Figure 6
<p>Kolmogorov–Smirnov (KS) testing results. The solid curve plots <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math>, the KS statistic cumulative distribution function (CDF). The small circles indicate the <span class="html-italic">p</span>-values between measured <math display="inline"><semantics> <msubsup> <mi>P</mi> <mrow> <mi>h</mi> <mi>u</mi> <mi>m</mi> </mrow> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </msubsup> </semantics></math> and our proposed <math display="inline"><semantics> <msubsup> <mi>P</mi> <mrow> <mi>s</mi> <mi>i</mi> <mi>m</mi> </mrow> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </msubsup> </semantics></math>, and the cross marks indicate those between <math display="inline"><semantics> <msubsup> <mi>P</mi> <mrow> <mi>h</mi> <mi>u</mi> <mi>m</mi> </mrow> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </msubsup> </semantics></math> and Gaussian <math display="inline"><semantics> <msubsup> <mi>P</mi> <mrow> <mi>G</mi> <mi>a</mi> <mi>u</mi> <mi>s</mi> <mi>s</mi> </mrow> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </msubsup> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Human–Bicycle Balance Experiment
2.1. Experimental Setup and Procedure
2.2. Experimental Data
2.3. Construction of Measured PDFs
3. Fluctuation Model of the Human–Bicycle Balance
3.1. A Human–Bicycle Fluctuation Model
3.2. Calculation of Simulated PDFs
4. Method of Parameter Identification
4.1. Parameter Identification Problem
4.2. Particle Swarm Optimization (PSO)
5. Identification Results
5.1. Identification Condition
5.2. Identification Results
5.3. KS Test
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Japan Ministry of the Environment. Building a Low Carbon Society. 2007. Available online: https://www.env.go.jp/earth/info/pc071211/en.pdf (accessed on 11 March 2019).
- Japan National Police Agency. Traffic Accident Statistics Annual Report. 2019. Available online: https://www.e-stat.go.jp/en/stat-search/files?lid=000001223644 (accessed on 11 March 2019).
- Google Self-Driving Car Project Monthly Report. 2016. Available online: https://www.google.com/selfdrivingcar/files/reports/report-1016.pdf (accessed on 11 March 2019).
- Collins, J.J.; De luca, C.J. Random Walking during Quiet Standing. Phys. Rev. Lett. 1994, 73, 764–767. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A.; Patla, A.E.; Prince, F.; Ishac, M.; Gielo-Perczak, K. Stiffness Control of Balance in Quiet Standing. J. Neurophysiol. 1998, 80, 1211–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhea, C.K.; Silver, T.A.; Hong, S.L.; Ryu, J.H.; Studenka, B.E.; Hughes, C.M.L.; Haddad, J.M. Noise and complexity in human postural control: interpreting the different estimations of entropy. PLoS ONE 2011, 6, e17696. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, J.L.; Militon, J.G. On-Off Intermittency in a Human Balancing Task. Phys. Rev. Lett. 2002, 89, 158702. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, J.L.; Milton, J.G. Human stick balancing: Tuning Lévy flights to improve balance control. Chaos 2004, 14, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Bormann, R.; Cabrera, J.L.; Milton, J.G.; Eurich, C.W. Visuomotor tracking on a computer screen—An experimental paradigm to study the dynamics of motor control. Neurocomputing 2004, 58, 517–523. [Google Scholar] [CrossRef]
- Yoshida, K.; Higeta, A. Toward Stochastic Explanation of a Neutrally Stable Delayed Feedback Model of Human Balance Control. Int. J. Innov. Comput. Inf. Control 2012, 8, 2249–2259. [Google Scholar] [CrossRef]
- Matsumoto, S.; Yoshida, K.; Sekikawa, M. Stochastic dynamic modeling of human visuomotor tracking task of an unstable virtual object. Trans. Inst. Syst. Control Inf. Eng. 2018, 31, 209–219. [Google Scholar] [CrossRef]
- Peacock, J.A. Two-dimensional goodness-of-fit testing in astronomy. Mon. Not. R. Astron. Soc. 1983, 202, 615–627. [Google Scholar] [CrossRef] [Green Version]
- Fasano, G.; Franceschini, A. A multidimensional version of the Kolmogorov–Smirnov test. Mon. Not. R. Astron. Soc. 1987, 225, 155–170. [Google Scholar] [CrossRef]
- Getz, N.H. Control of balance for a nonlinear nonholonomic non-minimum phase model of a bicycle. In Proceedings of the 1994 American Control Conference—ACC ’94, Baltimore, MD, USA, 29 June–1 July 1994; Volume 1, pp. 148–151. [Google Scholar] [CrossRef]
- Getz, N.H.; Marsden, J.E. Control for an autonomous bicycle. In Proceedings of the 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan, 21–27 May 1995; Volume 2, pp. 1397–1402. [Google Scholar] [CrossRef]
- Lee, S. Self Stabilizing Strategy in Tracking Control of Unmanned Electric Bicycle with Mass Balance. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 30 September–4 October 2002. [Google Scholar]
- Chen, C.K.; Dao, T.S. Fuzzy Control for Equilibrium and Roll-Angle Tracking of an Unmanned Bicycle. Multibody Syst. Dyn. 2006, 15, 321–346. [Google Scholar] [CrossRef]
- Meijaard, J.; Papadopoulos, J.M.; Ruina, A.; Schwab, A. Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review. Proc. R. Soc. A Math. Phys. Eng. Sci. 2007, 463, 1955–1982. [Google Scholar] [CrossRef]
- Hwang, C.; Wu, H.; Shih, C. Fuzzy Sliding-Mode Underactuated Control for Autonomous Dynamic Balance of an Electrical Bicycle. IEEE Trans. Control Syst. Technol. 2009, 17, 658–670. [Google Scholar] [CrossRef]
- Kooijman, J.D.G.; Meijaard, J.P.; Papadopoulos, J.M.; Ruina, A.; Schwab, A.L. A Bicycle Can Be Self-Stable Without Gyroscopic or Caster Effects. Science 2011, 332, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Gu, Y.; Liu, C.K.; Turk, G. Learning Bicycle Stunts. ACM Trans. Graph. 2014, 33, 50. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, H.; Lee, J. Stable control of the bicycle robot on a curved path by using a reaction wheel. J. Mech. Sci. Technol. 2015, 29, 2219–2226. [Google Scholar] [CrossRef]
- Randløv, J.; Alstrøm, P. Learning to Drive a Bicycle Using Reinforcement Learning and Shaping. In Proceedings of the Fifteenth International Conference on Machine Learning, Madison, WI, USA, 24–27 July 1988; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1998; pp. 463–471. [Google Scholar]
- Matsumoto, M.; Nishimura, T. Mersenne Twister: A 623-dimensionally Equidistributed Uniform Pseudo-random Number Generator. ACM Trans. Model. Comput. Simul. 1998, 8, 3–30. [Google Scholar] [CrossRef]
- Higham, D.J. An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations. SIAM Rev. 2012, 43, 525–546. [Google Scholar] [CrossRef]
- Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73. [Google Scholar] [CrossRef]
s | 1 | 2 | 3 | 4 |
5 | 6 | 7 | 8 | |
Our Proposed Fitting | Gaussian Fitting | |||||||
---|---|---|---|---|---|---|---|---|
Fitness | Fitness | |||||||
1 | % | % | ||||||
2 | % | % | ||||||
3 | % | % | ||||||
4 | % | % | ||||||
5 | % * | % | ||||||
6 | % ** | % | ||||||
7 | % | % | ||||||
8 | % | % |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, K.; Sato, K.; Yamanaka, Y. Simple Degree-of-Freedom Modeling of the Random Fluctuation Arising in Human–Bicycle Balance. Appl. Sci. 2019, 9, 2154. https://doi.org/10.3390/app9102154
Yoshida K, Sato K, Yamanaka Y. Simple Degree-of-Freedom Modeling of the Random Fluctuation Arising in Human–Bicycle Balance. Applied Sciences. 2019; 9(10):2154. https://doi.org/10.3390/app9102154
Chicago/Turabian StyleYoshida, Katsutoshi, Keishi Sato, and Yoshikazu Yamanaka. 2019. "Simple Degree-of-Freedom Modeling of the Random Fluctuation Arising in Human–Bicycle Balance" Applied Sciences 9, no. 10: 2154. https://doi.org/10.3390/app9102154
APA StyleYoshida, K., Sato, K., & Yamanaka, Y. (2019). Simple Degree-of-Freedom Modeling of the Random Fluctuation Arising in Human–Bicycle Balance. Applied Sciences, 9(10), 2154. https://doi.org/10.3390/app9102154