A Study on Stability Control of Grid Connected DC Distribution System Based on Second Order Generalized Integrator-Frequency Locked Loop (SOGI-FLL)
<p>Configuration of 3-phase alternating current/direct current (AC/DC) pulse width modulation (PWM) converter.</p> "> Figure 2
<p>Equivalent circuit of 3-phase AC/DC PWM converter.</p> "> Figure 3
<p>Equivalent circuit of a 3-phase AC/DC PWM converter.</p> "> Figure 4
<p>Phasor diagram of a 3-phase AC/DC PWM converter.</p> "> Figure 5
<p>Control block diagram of positive sequence voltage and phase detector.</p> "> Figure 6
<p>Control block diagram of phase detector using first order low pass filter and proportional integral (PI) controller.</p> "> Figure 7
<p>Control block diagram of second order generalized integrator (SOGI)-based adaptive filter (AF) (= SOGI-quadrature signal generator (QSG)).</p> "> Figure 8
<p>Comparison of transfer function <math display="inline"><semantics> <mrow> <mi>D</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p> "> Figure 9
<p>Characteristics of SOGI-based AF various gain <math display="inline"><semantics> <mi>k</mi> </semantics></math>.</p> "> Figure 10
<p>Control block diagram of SOGI-frequency locked loop (FLL) for phase synchronization.</p> "> Figure 11
<p>Comparison of transfer functions <math display="inline"><semantics> <mrow> <mi>E</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p> "> Figure 12
<p>3-phase SOGI-FLL (= DSOGI-FLL).</p> "> Figure 13
<p>Positive sequence voltage extractor using 3-phase SOGI-FLL.</p> "> Figure 14
<p>Control block diagram of 3-phase AC/DC PWM converter with SOGI-FLL.</p> "> Figure 15
<p>3-phase AD/DC PWM converter schematic of DC distribution system used in simulation.</p> "> Figure 16
<p>Input and output waveforms of DC distribution system (<b>a</b>) the dc-link voltage; (<b>b</b>) the current of the DC load; and, (<b>c</b>) the current of the grid.</p> "> Figure 17
<p>Waveform of voltage when harmonics is included in input side; (<b>a</b>) the 3-phase input voltage with harmonic components; and, (<b>b</b>) the 3-phase input voltage detected by the SOGI-FLL.</p> "> Figure 18
<p>Waveforms of simulation results when <math display="inline"><semantics> <mi>b</mi> </semantics></math> phase has a voltage drop; (<b>a</b>) the dc-link voltage; (<b>b</b>) the 3-phase input voltage with voltage unbalance; (<b>c</b>) the 3-phase input positive voltage detected by SOGI-FLL; (<b>d</b>) the 3-phase input current; and, (<b>e</b>) the center frequency extracted from SOGI-FLL.</p> "> Figure 18 Cont.
<p>Waveforms of simulation results when <math display="inline"><semantics> <mi>b</mi> </semantics></math> phase has a voltage drop; (<b>a</b>) the dc-link voltage; (<b>b</b>) the 3-phase input voltage with voltage unbalance; (<b>c</b>) the 3-phase input positive voltage detected by SOGI-FLL; (<b>d</b>) the 3-phase input current; and, (<b>e</b>) the center frequency extracted from SOGI-FLL.</p> "> Figure 19
<p>Waveforms of simulation results when voltage drop is occurred; (<b>a</b>) the positive and negative sequence voltage; and, (<b>b</b>) the phase angle of the positive and negative sequence voltage.</p> "> Figure 20
<p>Waveforms of simulation results when grid frequency decreased from 60 Hz to 45 Hz drop; (<b>a</b>) the dc-link voltage; (<b>b</b>) the 3-phase input voltage; (<b>c</b>) the 3-phase input positive voltage detected by SOGI-FLL; (<b>d</b>) the 3-phase input current; and, (<b>e</b>) the center frequency that was extracted from SOGI-FLL.</p> "> Figure 20 Cont.
<p>Waveforms of simulation results when grid frequency decreased from 60 Hz to 45 Hz drop; (<b>a</b>) the dc-link voltage; (<b>b</b>) the 3-phase input voltage; (<b>c</b>) the 3-phase input positive voltage detected by SOGI-FLL; (<b>d</b>) the 3-phase input current; and, (<b>e</b>) the center frequency that was extracted from SOGI-FLL.</p> "> Figure 21
<p>Waveforms of simulation results when frequency suddenly change (<b>a</b>) the DC-link voltage, <span class="html-italic">d</span> and <span class="html-italic">q</span>-axis voltage in synchronous reference frame with conventional synchronous reference frame-phase locked loop (SRF-PLL) (<b>b</b>) the DC-link voltage, <span class="html-italic">d</span> and <span class="html-italic">q</span>-axis voltage in synchronous reference frame with proposed control method.</p> "> Figure 22
<p>Configuration of the experiment system. MC: Magnetic Contactor.</p> "> Figure 23
<p>Experiment setup 1 of the 3-phase AC/DC PWM converter.</p> "> Figure 24
<p>Experiment setup 2 of the 3-phase AC/DC PWM converter. SMPS: switched-mode power supply; DSP: digital signal processor; MCCB: molded case circuit breaker.</p> "> Figure 25
<p>Waveform of 3-phase AC/DC PWM converter operation.</p> "> Figure 26
<p>Waveform of input phase current of 3-phase AC/DC PWM converter.</p> "> Figure 27
<p>Waveform of input phase <math display="inline"><semantics> <mi>a</mi> </semantics></math> voltage and current.</p> "> Figure 28
<p>Waveforms of extracted 3-phase positive sequence input voltage using SOGI-FLL when the <math display="inline"><semantics> <mi>b</mi> </semantics></math> phase has voltage drop.</p> "> Figure 29
<p>Waveform of detected positive/negative sequence <math display="inline"><semantics> <mrow> <mi>α</mi> <mi>β</mi> </mrow> </semantics></math> voltage and phase angle <math display="inline"><semantics> <mi>θ</mi> </semantics></math> (before and after <math display="inline"><semantics> <mi>b</mi> </semantics></math> phase voltage drop).</p> ">
Abstract
:1. Introduction
2. 3-Phase AC/DC PWM Converter Used in DC Distribution System
2.1. 3-Phase AC/DC PWM Converter [12,13,14]
2.2. Positive Sequence Voltage and Phase Detector [15,16]
3. Proposed Control Scheme of 3-Phase AC/DC PWM Converter Using SOGI-FLL
3.1. Second Order Generalized Integrator
3.2. SOGI-FLL
3.3. Positive Sequence Voltage Extraction and Phase Detection Using 3-Phase SOGI-FLL
3.4. Control Block Diagram of Overall System with SOGI-FLL
4. Simulation Results
5. Experiment Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, H.S.; Ryu, M.H.; Baek, J.W.; Jung, J.H. High-Efficiency Isolated Bidirectional AC–DC Converter for a DC Distribution System. IEEE Trans. Power Electron. 2013, 28, 1642–1654. [Google Scholar] [CrossRef]
- Bosich, D.; Mastromauro, R.A.; Sulligoi, G. AC-DC interface converters for MW-scale MVDC distribution systems: A survey. In Proceedings of the 2017 IEEE Electric Ship Technologies Symposium (ESTS), Arlington, VA, USA, 15–17 August 2017; pp. 44–49. [Google Scholar]
- Rodríguez, P.; Teodorescu, R.; Candela, I.; Timbus, A.V.; Liserre, M.; Blaabjerg, F. New positive-sequence voltage detector for grid synchronization of power converters under faulty grid conditions. In Proceedings of the 37th IEEE Power Electronics Specialists Conference, Jeju, Korea, 18–22 June 2006; pp. 1–7. [Google Scholar]
- Bacon, V.D.; Oliveira da Silva, S.A. Performance improvement of a three-phase phase-locked-loop algorithm under utility voltage disturbances using non-autonomous adaptive filters. IET Power Electron. 2015, 8, 2237–2250. [Google Scholar] [CrossRef]
- Karimi-Ghartemani, M.; Iravani, M.R. A method for synchronization of power electronic converters in polluted and variable-frequency environments. IEEE Trans. Power Syst. 2004, 19, 1263–1270. [Google Scholar] [CrossRef]
- Jung, J.; Kim, H.; Ryu, M.; Kim, J.; Baek, J. Single-phase bidirectional AC-DC boost rectifier for DC distribution system. In Proceedings of the IEEE ECCE Asia Downunder, Melbourne, Australia, 3–6 June 2013; pp. 544–549. [Google Scholar]
- Jung, T.; Gwon, G.; Kim, C.; Han, J.; Oh, Y.; Noh, C. Voltage Regulation Method for Voltage Drop Compensation and Unbalance Reduction in Bipolar Low-Voltage DC Distribution System. IEEE Trans. Power Deliv. 2018, 33, 141–149. [Google Scholar] [CrossRef]
- Kim, H.; Ryu, M.; Baek, J.; Jung, J. High-Efficiency Isolated Bidirectional AC–DC Converter for a DC Distribution System. IEEE Trans. Power Electron. 2013, 28, 1642–1654. [Google Scholar] [CrossRef]
- Rodríguez, P.; Luna, A.; Muñoz-Aguilar, R.S.; Etxeberria-Otadui, I.; Teodorescu, R.; Blaabjerg, F. A Stationary Reference Frame Grid Synchronization System for Three-Phase Grid-Connected Power Converters under Adverse Grid Conditions. IEEE Trans. Power Electron. 2012, 27, 99–112. [Google Scholar] [CrossRef]
- Kang, J.; Hyun, S.; Hong, S.; Won, C. Advanced control method of 3-phase AC/DC PWM converter for DC distribution using the SOGI-FLL. In Proceedings of the IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China, 22–26 May 2016; pp. 2120–2124. [Google Scholar]
- Kang, J.W.; Lee, H.; Hyun, S.W.; Kim, J.; Won, C.Y. An Enhanced Control Scheme Based on New Adaptive Filters for Cascaded NPC/H-Bridge System. Energies 2018, 11, 1034. [Google Scholar] [CrossRef]
- Jung, C.H. Control Method for Reducing Circulating Current in Parallel Operation of DC Distribution System for Building Applications. Master’s Thesis, Sungkyunkwan University, Suwon, Korea, February 2013. [Google Scholar]
- Han, D.W. Integrated Parallel Operation of Power Conversion Module for DC Distribution System. Master’s Thesis, Sungkyunkwan University, Suwon, Korea, February 2014. [Google Scholar]
- Park, Y.W. Parallel Control Using Current Droop Control of Cubic Equation for DC-grid Distribution Systems. Master’s Thesis, Sungkyunkwan University, Suwon, Korea, August 2014. [Google Scholar]
- Hadjidemetriou, L.; Kyriakides, E.; Blaabjerg, F. A New Hybrid PLL for Interconnecting Renewable Energy Systems to the Grid. IEEE Trans. Ind. Appl. 2013, 49, 2709–2719. [Google Scholar] [CrossRef]
- Rodriguez, P.; Luna, A.; Ciobotaru, M.; Teodorescu, R.; Blaabjerg, F. Advanced Grid Synchronization System for Power Converters under Unbalanced and Distorted Operating Conditions. In Proceedings of the IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, Paris, France, 6–10 November 2006; pp. 5173–5178. [Google Scholar]
- Mnider, A.M.; Atkinson, D.J.; Dahidah, M.; Zbede, Y.B.; Armstrong, M. A programmable cascaded LPF based PLL scheme for single-phase grid-connected inverters. In Proceedings of the 7th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 22–24 March 2016; pp. 1–6. [Google Scholar]
- Yuan, X.M.; Merk, W.; Stemmler, H.; Allmeling, J. Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions. IEEE Trans. Ind. Appl. 2002, 38, 523–532. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, P.; Luna, A.; Candela, I.; Teodorescu, R.; Blaabjerg, F. Grid synchronization of power converters using multiple second order generalized integrators. In Proceedings of the 34th Annual Conference of IEEE Industrial Electronics, Orlando, FL, USA, 10–13 November 2008; pp. 755–760. [Google Scholar]
- Rodriguez, P.; Luna, A.; Etxeberria, I.; Hermoso, J.R.; Teodorescu, R. Multiple. Second order generalized integrators for harmonic synchronization of power converters. In Proceedings of the IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009; pp. 2239–2246. [Google Scholar]
- Xin, Z.; Qin, Z.; Lu, M.; Loh, P.C.; Blaabjerg, F. A new second-order generalized integrator based quadrature signal generator with enhanced performance. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–7. [Google Scholar]
- Ciobotaru, M.; Teodorescu, R.; Blaabjergc, F. A new single-phase PLL structure based on second order generalized integrator. In Proceedings of the 37th IEEE Power Electronics Specialists Conference, Jeju, Korea, 18–22 June 2006; pp. 1–6. [Google Scholar]
- Rocha, C.X.; Camacho, J.R.; Viajante, G.P. Fault detection in a three-phase system grid connected using SOGI structure to calculate vector components. In Proceedings of the International Conference on Renewable Energies and Power Quality (2015 ICREPQ), La Coruña, Spain, 25–27 March 2015; pp. 25–27. [Google Scholar]
- Nam, K.Y.; Choi, S.B.; Ryoo, H.S.; Jeong, S.H.; Lee, J.D.; Jung, D.H.; Kim, D.K. Establishment of Test Field for Application of IEC 60364-4-44 in Korea. In Proceedings of the IEEE PES Power Systems Conference and Exposition, Atlanta, GA, USA, 29 October–1 November 2006; pp. 1944–1949. [Google Scholar]
- Golestan, S.; Guerrero, J.M. Conventional Synchronous Reference Frame Phase-Locked Loop is an Adaptive Complex Filter. IEEE Trans. Ind. Electron. 2015, 62, 1679–1682. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value | Unit |
---|---|---|
Rated power of system | 50 | [kW] |
3 phase line-to-line grid voltage | 380 | [Vrms] |
Grid frequency | 60 | [Hz] |
Switching frequency | 5 | [kHz] |
Output DC-link voltage | 700 | [Vdc] |
DC-link capacitance | 10200 | [] |
LCL filter inductance at grid side | 120 | [] |
LCL filter capacitance | 50 | [] |
LCL filter inductance at converter side | 500 | [] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.-W.; Shin, K.-W.; Lee, H.; Kang, K.-M.; Kim, J.; Won, C.-Y. A Study on Stability Control of Grid Connected DC Distribution System Based on Second Order Generalized Integrator-Frequency Locked Loop (SOGI-FLL). Appl. Sci. 2018, 8, 1387. https://doi.org/10.3390/app8081387
Kang J-W, Shin K-W, Lee H, Kang K-M, Kim J, Won C-Y. A Study on Stability Control of Grid Connected DC Distribution System Based on Second Order Generalized Integrator-Frequency Locked Loop (SOGI-FLL). Applied Sciences. 2018; 8(8):1387. https://doi.org/10.3390/app8081387
Chicago/Turabian StyleKang, Jin-Wook, Ki-Woong Shin, Hoon Lee, Kyung-Min Kang, Jintae Kim, and Chung-Yuen Won. 2018. "A Study on Stability Control of Grid Connected DC Distribution System Based on Second Order Generalized Integrator-Frequency Locked Loop (SOGI-FLL)" Applied Sciences 8, no. 8: 1387. https://doi.org/10.3390/app8081387
APA StyleKang, J.-W., Shin, K.-W., Lee, H., Kang, K.-M., Kim, J., & Won, C.-Y. (2018). A Study on Stability Control of Grid Connected DC Distribution System Based on Second Order Generalized Integrator-Frequency Locked Loop (SOGI-FLL). Applied Sciences, 8(8), 1387. https://doi.org/10.3390/app8081387