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Featured Application: The proposed method could potentially be applied in condition-based
maintenance and prognosis of rotating machineries to predict the incipient and final failure.

Abstract: In recent years, the utilization of rotating parts, e.g., bearings and gears, has been
continuously supporting the manufacturing line to produce a consistent output quality. Due to
their critical role, the breakdown of these components might significantly impact the production rate.
Prognosis, which is an approach that predicts the machine failure, has attracted significant interest in
the last few decades. In this paper, the prognostic approaches are described briefly and advanced
predictive analytics, namely a parsimonious network based on a fuzzy inference system (PANFIS),
is proposed and tested for low speed slew bearing data. PANFIS differs itself from conventional
prognostic approaches, supporting online lifelong prognostics without the requirement of a retraining
or reconfiguration phase. The PANFIS method is applied to normal-to-failure bearing vibration
data collected for 139 days to predict the time-domain features of vibration slew bearing signals.
The performance of the proposed method is compared to some established methods, such as ANFIS,
eTS, and Simp_eTS. From the results, it is suggested that PANFIS offers an outstanding performance
compared to those methods.

Keywords: PANFIS; prognosis; slew bearing; vibration

1. Introduction

Prognosis approaches are typically applied to predict the lifetime of rotating components,
which can generally be divided into two stages. The first stage refers to the normal zone, where no
significant deviation from the normal operating state is observed. The second stage is the abnormal
zone; this stage is initiated by potential failure that progressively develops into actual failure [1]. It is
in the second stage that the prognosis methods are usually applied to predict unexpected failures on a

Appl. Sci. 2018, 8, 2656; d0i:10.3390/app8122656 www.mdpi.com/journal/applsci


http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-9784-4204
https://orcid.org/0000-0003-0074-5101
https://orcid.org/0000-0003-0546-7083
http://dx.doi.org/10.3390/app8122656
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/8/12/2656?type=check_update&version=2

Appl. Sci. 2018, 8, 2656 20f21

timely basis from the impeding damage to final failure using either event data or condition monitoring
(CM) data.

Steel mill industries rely on a number of rotating parts, i.e., slew bearings. These bearings
support highly loaded rotation and operate at a very low speed. When unforeseen failure occurs,
the steel mill industry may suffer from significant production loss. In order to predict unforeseen
failure, a condition monitoring and prognosis method is required. This requirement is becoming
difficult to fulfil without online real-time predictive analytics capable of delivering a reliable prediction.
The prediction method for self-updating the model must be able to keep pace with non-stationary
processes in typical steel mill industries due to the production target. Most processes are also subjected
to a number of changing external variables. This trait cannot be handled by a static model, where its
structure is fully determined in its initial design. A model is supposed to be flexible for new concepts
which normally lead to the expansion of its initial structure. An over-complex structure adversely
affects the model’s generalization because of overfitting. These research issues have led to algorithmic
development of the so-called evolving intelligent systems (EISs) [2,3], which have attracted significant
research interest over the past decade [4-7]. EISs have been successfully deployed in several predictive
maintenance tasks [8-10].

This paper presents time-series feature prediction using a seminal work, namely the parsimonious
network based on a fuzzy inference system (PANFIS) [11]. PANFIS is a fully open structure whose
network structure can self-evolve during the process from data streams. PANFIS utilises the theory of
statistical contribution [7,12] to prune its fuzzy rules. A unique feature of PANFIS is rgw generalized
Takagi Sugeno Kang (TSK) fuzzy system, where it scatters multivariate Gaussian functions as rule
premise by using the first-order TSK rule consequent. It is well-known that such rules obscure
rule semantics since the atomic rules of classic fuzzy rules vanish. PANFIS is equipped with a
transformation strategy which extracts a fuzzy set representation of a high-dimensional ellipsoidal
cluster. The fuzzy set merging strategy is incorporated because the projection of ellipsoids to
one-dimensional space normally results in overlapping fuzzy sets. The parameter learning strategy is
based on the extended recursive least square method [13], which appends a binary function to enhance
the convergence and stability of the tuning process.

The objective of the proposed method is to predict the future state of the slew bearing
condition based on the vibration features on a timely basis. The Fuzzy-based method is selected
as a prognosis method due to its capability to capture the nonlinear time-varying nature of the
process [14]. Some recent literature has also proved that the fuzzy-based method is a potential
method for prediction [15-17]. The proposed method can also be potentially applied to other
time-series predictions, such as stocks prediction, climate change prediction, and tool life prediction.
These examples of applications usually have a huge number of historical datasets, which are difficult
to model by typical regression methods and time-series prediction methods. The challenge of the
proposed method is the pre-requisite understanding of fundamental fuzzy theory, which sometimes
requires an expert to determine its parameters. The PANFIS method also has high complexity in terms
of programming language and parameters selection that would be another challenge to embed the
proposed method into the real-time application, for example, using LabVIEW. The limitations of the
proposed method are the requirement of sufficient historical datasets. Less historical datasets will
reduce the prediction accuracy because the model is constructed based on minimum information from
the historical datasets.

2. Classification of Prognosis Approaches

To date, there are a number of literature reviews on the prognosis approaches for rotating
machineries [18-21]. For example, Lee et al. [18] reviewed prognosis methods for critical components,
such as the bearing, gear, shaft, pump, and alternator. The authors classified the prognosis approaches
into three types, namely model-based, data-driven, and hybrid prognosis approaches. However,
the classification does not include complete methods on each prognosis approach. In their work,
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two methods are classified as a model-based approach, i.e., an alpha-beta-gamma tracking filter
and Kalman filter, while a neural network (NN), fuzzy logic, and a decision tree are classified as a
data-driven approach.

Another review paper by Jardine et al. [19] presented a clearer classification in prognosis
approaches, but the review placed a greater emphasis on rotating machinery diagnostics than
machinery prognostics. The authors classified the prognosis approaches into three groups: statistical,
artificial intelligent (AI), and model-based approaches. The statistical approaches include statistical
process control (SPC), logistic regression, autoregressive and moving average (ARMA), proportional
hazard model (PHM), proportional intensity model (PIM), and hidden Markov model (HMM). In Al
techniques, e.g., an artificial neural network (ANN) and its sub-classes, such as self-organising neural
networks, dynamic wavelet neural networks, and recurrent neural networks, back propagation neural
network and neural-fuzzy inference systems are still commonly used in Al prognostics. Among
model-based approaches, defect propagation models via mechanistic modelling and the crack growth
rate model are the commonly used methods.

A popular review paper on prognosis methods was presented by Heng et al. [21]. The authors
classified the methodologies for predicting rotating machinery failure into two different groups, namely
physics-based and data-driven prognosis models. A number of papers focusing on physics-based
prognostics which used Paris’ formula are still found to be dominant [21]. Other methods, such as
finite element analysis (FEA) to calculate stress and strain field, and the Forman law of linear elastic
fracture mechanics, are also classified in physics-based approaches. Similar to the result from the
two review papers previously mentioned, ANN and its variants are currently the most commonly
used methods in the data-driven prognosis class. Other methods, such as fuzzy logic, regression
analysis, particle filtering, recursive Bayesian technique, and HMM, are also included in data-driven
prognosis methods. However, a number of methods within data-driven methods, as presented in [21],
need further sub-classification in terms of artificial intelligent or statistical approaches.

A recent review is presented by Lei et al. [22], which mentioned that a machinery prognostic
method generally consists of four technical processes, i.e., data acquisition, health indicator (HI)
construction, health state (HS) division, and RUL prediction. In addition, they also explained that the
existing research work and literature review have converged to the four processes, especially the latter
one. The paper presents a systematic review that comprehensively covers the four technical processes.

Four prognosis approaches: (1) model-based approaches; (2) reliability-based methods and
probability models; (3) data-driven approaches; and (4) combined data-driven approaches and
reliability-based methods, have been developed and presented in the literature. Brief information
on the prognosis methods of each approach, including the method’s name and feature, is presented
in Table 1. It can be seen that RMS and kurtosis are the most commonly used features in prognosis
methods. It is worth noting that the reviewed methods in this paper only focused on rolling element
bearings prognostics. A detailed explanation of prognosis methods classified in four approaches can
be seen in [23].
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Table 1. Prognosis methods for rolling element bearing.

No. Classification Method or Algorithm Features
Model-based approaches: PériS' formula [24,25] N/A
1 _ Physics-based methods Stlffness—l.)ased model [26] N/A
- State space-based methods Kalman filter [27] N/A
Particle filter [28] RMS and envelope
Gaussian process models [29] o
PIM [30] Rényi entropy
1 ra- Kurtosis
PCM [:_; 1] Principal features
5 Reliability-based method and Stochastic model [32] N/A
probability models: PHM [33,34] N/A
Weibull distribution [35] N/A
HMM [36] RMS
WPD 2 and HMM [37] Peak-to-peak, energy and kurtosis
ANN [38,39]
Fuzzy logic [40] E; f:
Data-driven approaches: Gene;ic algorithm [4/1] Monitoring index
- Al methods ALE a‘md ARIMA [42] _ RMS, skewness, kurtosis
3 R Regression methods Recursive least square [25] RMS
~ Al + regression methods Dempster-Shafer regression [43] RMS and envelope
ARMA /GARCH * model [44] RMS and envelope
RVM % and LR © [45] Kurtosis
- RVM and exp. regression [46] RMS
- CPH 7 model + SVM 8 [33] Kurtosis
- (ARMA, PHM) + SVM [34] Peak v{ilue and RMS
4 Data-driven + reliability-based methods SVM + survival probability [47] I;urIOS}s
- RVM + survival probability [48] Rll\l/;soils < and
- ANN + Weibull distribution [49] > Kurtosis and entropy
estimation

1 PCM: Proportional Covariates Model. 2 WPD: Wavelet Package Decomposition. 3> ALE: Adaptive Line Enhancer.
* GARCH: Generalized Autoregressive Conditional Heteroskedasticity. > RVM: Relevance Vector Machine. ¢ LR:
Logistic Regression. 7 CPH: Cox-Proportional Hazard. 8 SVM: Support Vector Machine.

3. Experimental Setup

3.1. Slew Bearing Test-Rig and Data Acquisition

The run-to-failure data used in this paper was collected from a slew bearing test rig. The test rig
was designed to replicate an actual condition in steel mill manufacturing that operates the bearing
in a low rotational speed, high load, and dust environment. Figure 1 shows the schematic of the
slew bearing test rig, including the main drive gear reducer, the hydraulic load, and how the bearing
is attached. A detailed sensors placement is presented in Figure 2. Four accelerometers, two AE
sensors, and four temperature sensors were used during the experiment. Two accelerometers of IMI
608A11 ICP type sensors with a sensitivity of 100 mV /g and frequency range of 0.5 to 10 kHz, and two
accelerometers of IMI 626B02 ICP type sensors with a sensitivity of 500 mV /g and frequency range of
0.2 to 6 kHz, were used. The IMI 608A11 ICP type sensors were installed on the inner radial surface at
180 degrees to each other and the IMI 626B02 ICP type sensors were attached on the axial surface at
180 degrees to each other. Similar to the measurement in continuous rotation, these accelerometers
were connected to a high speed Pico scope DAQ (PS3424). The IMI 626B02 ICP type accelerometers
were selected because of the minimum frequency range of 0.2 Hz and because the sensitivity is higher
than that of the IMI 626B02 ICP type accelerometer. The vibration signal was acquired using a 4880 Hz
sampling rate.

A three-axes (two axial rows and one radial row) brand new slew bearing is used in this
experiment. Each axial and radial row has dozens of rollers inside. The slew bearing is typically large
in dimension and is usually used to support a high axial and radial load [50]. The bearing attachment
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to the test rig is shown in Figure 1b, and 30 tonnes was applied to the bearing. The vibration signal
of the bearing was acquired two times daily (morning and night). To accelerate the failure, coal dust
contamination was injected into the bearing on day 90.

Rpm sensor
]
Belt—|—~ Gear configuration

Drive ring
Slewing
bearing

Hidraulic

pressure Belt

Motor

Figure 1. (a) Slew bearing rig picture; (b) Schematic of laboratory slew bearing rig showing a slew
bearing attached in the drive ring and the applied load from the hydraulic.

@ ‘ Acoustic Emission sensor 1 ‘
@ ‘ Acoustic Emission sensor 2 ‘

@ ‘ Accelerometer sensor 1 (radial) ‘

@ ‘ Accelerometer Sensor 2 (axial) ‘

@ ‘ Accelerometer Sensor 3 (radial) ‘

@ ‘ Accelerometer Sensor 4 (axial) ‘

Figure 2. A detailed sketch of the location of four accelerometers and two AE sensors on slew bearing.
3.2. Vibration Signals

The test rig was designed to run the slew bearing from brand new until final failure. The vibration
signal was monitored continuously for 139 days from February to August 2007. Each day, the vibration
signal was acquired automatically using task scheduler software that automatically triggers the Pico
data acquisition equipment to collect the signal for approximately 3 min. Once the vibration data are
saved in the PC, a nine-features extraction executable file is also run automatically using task scheduler
software at about 30 min after the digitized vibration signal is stored in the PC. An example plot of the
vibration signal from accelerometer #1 (radial) is presented in Figure 3 and the feature extraction result
is presented in Section 3.3.

In steel making industries, slew bearings are operated in dusty environments. Typical micro size
particles from coal as the energy source in the industry are visually found inside the bearing when the
bearing is dismantled from the rig during the maintenance work. In this study, the coal dust is inserted
into the slew bearing to accelerate the failure in mid-April (58 days from the beginning). An example of
the original vibration signal is presented in Figure 3a. The signal is collected before the final failure on
1 September. It can be seen from Figure 3b that the signal is dominated with unknown high frequency
signals. None of these frequencies are associated with bearing fault frequencies. According to the FFT
result, some degradation parameters, namely features, are necessary to quantitatively monitor the
bearing condition, especially to identify when the impending damage occurs.
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Figure 3. Slew bearing vibration signal on 30 August 2007: (a) 1 min duration signal; (b) FFT.
3.3. Feature Extraction

Nine time-domain features (i.e., RMS, variance, skewness, kurtosis, shape factor, crest factor,
entropy, histogram upper, and histogram lower) are extracted from four sets of vibration data collected
in 139 days. The example plot of nine features from accelerometer #1 (radial) is presented in Figure 4.
It can be seen from Figure 4 that not all features represent the degradation condition of the slew bearing.
Kurtosis, variance, and histogram lower features are more sensitive to the bearing condition than the
other six features. Focusing on the RMS, variance, kurtosis, and histogram upper and histogram lower
features, they show a sudden peak on day 90. This is due to the fact that coal dust has been inserted
into the bearing (on day 58) and the roller and raceway have an incipient defect.
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Figure 4. Time-domain feature extraction results (139 days).
4. Parsimonious Network Based on Fuzzy Inference System (PANFIS)

This section presents the working principle of PANFIS [11]. An overview of the PANFIS learning
policy is outlined in Algorithm 1 [11]. PANFIS is a modified version of the fuzzy set method, where the
basic theory of the fuzzy modeling for an uncertainty nonlinear system is presented in [51]. The PANFIS
algorithm is a type of evolving intelligent system (EIS) which features a fully open structure. It initiates
its learning process from scratch and its fuzzy rules can be automatically generated and pruned on
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demand. PANFIS characterizes a generalized ellipsoidal cluster in a high dimension which arbitrarily
rotates in any direction. Furthermore, PANFIS is equipped with a fuzzy set extraction strategy which
allows crafting fuzzy set representation to obtain transparent traditional If-Then rules of the Takagi
Sugeno Kang (TSK) fuzzy system. A fuzzy set merging scenario is incorporated to merge similar fuzzy
sets. The rule consequent is constructed with a first-order linear function adjusted using the extended
recursive least square (ERLS) method [13]. An architectural scheme of the PANFIS method is presented
in Figure 5 and detailed steps of the PANFIS algorithm are presented in Sections 4.1-4.5.

Data input
(Features)
Construct the association rules <______; The rule of antecedent (If) and consequent (Then) is
Process constructed based on the first order TSK fuzzy rule.
To model the pattern of data input. required
The multivariate Gaussian function is used to produce
the rule firing strength.
Rule growing P __; The s_tatistical of datzfl streams and the number of fuzzy
p rules is calculated using DS method.
To train and to correlate the current rerouciizz
observation and the target value. q The winning rule is updated using ESOM
v
Rule pruning <______; The rule base simplification method, i.e. ERS is used
Process to discard inconsequential rules.
To simplify the rules by discard required
inconsequential rules. The rule pruning scenario also used DS method to

approximate the statistical contribution of fuzzy rules.

Fuzzy set extraction and <______; The centre of the multivariate Gaussian function is
merging scenario Process | |applied to the fuzzy set level.

To coalesce highly overlapping fuzzy | required
sets.

PANFIS used the kernel-based metric principle for
fuzzy set merging scenario.

Adaptation of rule consequent <______; The ERLS method is used to update the rule
Process consequent of the fuzzy rule.
To update the rule consequent of the required . .
P fuzzy rule g Obtain the convergence of system error and weight

vector of rules using the Lyapunov stability criterion.

Figure 5. An architectural scheme of the PANFIS method.
4.1. Network Architecture of PANFIS

The unique property of PANFIS’s network architecture is observed in the presence of the
multivariate Gaussian function. The multivariate Gaussian function possesses a non-diagonal
covariance matrix which triggers a non-axis-parallel ellipsoidal cluster [11]. Compared to the traditional
Gaussian function with the standard product t-norm operator, such a cluster offers better coverage to an
irregular data distribution which does not span the main axes. As a result, it suppresses the fuzzy rule
requirement to a lower level than that of the standard Gaussian rule. The multivariate Gaussian rule is,
however, less transparent than the standard Gaussian rule since the atomic clause of the If-Then rule
(AND-part) is omitted and thus does not have a fuzzy set representation. This calls for a transformation
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strategy which makes it possible to form accurate representation of a fuzzy set. The rule consequent of
PANFIS is constructed under the first order TSK fuzzy rule, which is a linear function in the output
space. The multivariate Gaussian function for the rule firing strength is expressed as follows:

R; = exp(—(X - C)Z Y (X~ C)T) 1)

where X,, € R1*" is the input feature and C; € RIX# is the center of the multivariate Gaussian function,
while Z;l € R*** denotes the inverse covariance matrix which steers the orientation and size of the
non-axis parallel ellipsoidal cluster. u is the input dimension. R; stands for the firing strength of the
fuzzy rule, which also indicates the degree of confidence of the fuzzy rule. To guarantee the partition
of unity [11], the normalization of rule firing strength is performed as follows:

@)

where C is the number of fuzzy rules. The output of PANFIS results from the weighted average of the
rule firing strength and the rule consequent, as follows:

®)

where Q; = x,W; is the rule consequent of PANFIS, while x, € R1*("+1) and W; € R(#+1D*1 are the
extended input vector and the output weight vector of the i-th rule, respectively. The first-order TSK
rule consequent is selected here because it offers a higher degree of freedom than the zero-order TSK
rule consequent.

4.2. Rule Growing Mechanism of PANFIS

PANFIS uses the concept of datum significance (DS), which estimates the statistical contribution
of data streams. A data point offering a high statistical contribution leads to a new rule. This concept
is inspired by the neuron growing mechanism of GGAP-RBF [12] and SAFIS [6]. The key difference,
however, can be found in the fact that PANFIS extends the statistical contribution concept to the
framework of the multivariate Gaussian function. Suppose that a hypothetical rule (C + 1) is created
using the newest data point, the DS method can be formulated as follows:

Vear)"
Dest = feal E1 @
rw)"
i=1
where e, = |T, — y,| denotes the system error. Ty,y, refer to the target value and the predictive

output at the n-th or current training observation, respectively. V; denotes the volume of the i-th rule,
which can be simply calculated as the determinant of the non-diagonal covariance matrix det(%;). It is
seen from (4) that a datum is considered to significantly contribute to the training process provided
that it causes a high system error. On the other hand, the volume of a rule portrays its zone of influence
in the input space and a cluster with a small influence zone potentially contributes little during
its lifespan. Note that (4) contains the implicit distance information due to the initialization of the
covariance matrix. This facet addresses the novelty of the hypothetical rule because the hypothetical
rule occupying a remote region possesses a high coverage span. The hypothetical rule is confirmed as
a new rule if it induces high statistical contribution D1 > g1, where g1 denotes a conflict threshold.
The higher the values of the conflict threshold, the lower the number of fuzzy rules added; while the
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lower the values of the conflict threshold, the higher the number of fuzzy rules generated during the
training process.

If a new fuzzy rule is added, the center of the multivariate Gaussian function is set as the data
sample of interest, while the diagonal element of inverse covariance matrix is set according to the
e-completeness principle, as follows:

Cer1 = Xy @)
_ max(|C; — Ci1l, |G — Cita])

diag(Sc17") -
In()

(6)

where ¢ is usually set at 0.6. The e-completeness principle borrows the seminal work of DFNN and
GDEFNN in [52] and [53]. It is said that there does not exist any data point with a membership degree
less than e if this setting is implemented and has been mathematically confirmed. It is worth noting
that the covariance matrix of the multivariate Gaussian function is vital to the success of PANFIS.
Too large values lead to averaging, while too small values lead to overfitting.

Another situation may occur during the training process where a data sample induces minor
conflict. That is, the rule growing condition is not satisfied Dc11 < g;. This triggers the so-called
rule premise adaptation phase since these samples remain important to refine the network structure.
The original PANFIS utilizes the evolving self-organizing map (ESOM) to update the winning rule in
this situation. The underlying bottleneck of the ESOM for PANFIS rule premise adaptation is seen
in the reinversion requirement, which sometimes causes instability if the covariance matrix is not
in the full-rank condition. To correct this shortcoming, the direct update scheme of GENEFIS [5],
and GEN-SMART-EFS [4] is adopted. The winning rule is fine-tuned if the rule growing condition is
violated, as follows:

Nuin (X — Cuin)
Cuvin Nopin +1 Coin + Nyin +1 v
z1 L (X — Coin)) (Eph (X — Cain))”
Z_,l — “win + a ( win< — wm))( win< _ wm)) (8)
win T 1_x  1—a 1+“(X—Cwin)2;l%1(x—cwin)T
Nyin = Nyin +1 (9)

where & = 1/(Ny;i, + 1) and Ny, represent the support of the winning cluster. The update of the
winning rule also increases the population of the i-th cluster. The support of fuzzy rules is involved in
the rule premise adaptation scheme in (7), (8) to allow stable adaptation because a cluster will converge
when it is occupied by a high number of supports. This, however, calls for the forgetting mechanism in
the presence of concept drift to improve the sensitivity of a highly populated cluster in accepting new
training stimuli. The direct update formula of (8) is obtained from the rank-1 modification principle [5].

4.3. Rule Pruning Scenario of PANFIS

PANTFIS is equipped by a rule base simplification strategy, namely the extended rule significance
(ERS) method, which discards inconsequential rules. The inconsequential rules which are less
important during their lifespan can be detected and will be pruned in the latter process. In the
realm of EIS, the rule pruning strategy is vital to alleviate the risk of overfitting and to improve the
interpretability of rule semantics. The rule pruning scenario adopts the same principle of the DS
method, which approximates the statistical contribution of fuzzy rules. The ERS method is formalized
as follows:

(V)"

ERS; = [6i| -
(V)"
=1

(10)

1
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n+1
where 6; = ). W;; stands for the total output weight of the i-th rule. The salient feature of the ERS
j=1

method is in the approximation form of statistical contribution during the training process under the
assumption of uniform distribution. In addition, (10) also measures the contribution of output weights.
The fuzzy rule contribution is deemed poor provided it has a low output weight because it results
in a small output which can be negligible to the overall predictive output of PANFIS. A fuzzy rule is
pruned once the following condition is fulfilled:

ERS; < & (11)

where g5 is the rule pruning threshold. The higher the value of the rule pruning threshold, the higher
the number of fuzzy rules that are pruned during the training process, and vice versa. This is because
the ERS method and the DS method share a similar working principle, and g1, g» are often selected
close to each other.

4.4. Fuzzy Set Extraction and Merging Scenario

Although PANTFIS operates in the high-dimensional space, it is fitted with the fuzzy set extraction
scenario, which derives the fuzzy set representation of the non-axis parallel ellipsoidal cluster.
This mechanism allows the classical-interpretable of the If-Then rule. The centre of the multivariate
Gaussian function can be simply applied to the fuzzy set level, while the radii of the fuzzy set should be
carefully determined because the ellipsoidal cluster rotates in any direction. There exist two strategies to
elicit the fuzzy set radii of the multivariate Gaussian function: (1) the first method elicits the eigenvalue
and eigenvector of the non-diagonal covariance matrix. The disadvantage of the first approach is
its prohibitive computational cost function because of the eigenvalue and eigenvector computation,
even though it offers accurate approximation; (2) the second method enumerates the distance from the
center to the cutting point of the ellipsoids in the main axes. This method is computationally light,
although it is rather inaccurate if the ellipsoidal cluster rotates around 45°. In such a circumstance,
this method generates a spread that is too small. The present study only focuses on the second method,

which is expressed as follows:
’

7 Lii (12
where 7,) ;; are the Mahalanobis distance and the diagonal elements of the covariance matrix,
respectively. This mechanism is executed once completing the training process to show the fuzzy rules
to operators.

PANFIS is equipped with the fuzzy set merging strategy, which aims to coalesce highly
overlapping fuzzy sets. Although two fuzzy rules are well-separated in the high-dimensional
space, the overlapping in fuzzy sets usually results from the projection to the one-dimensional axis.
This situation often results in inconsistency of rule semantics because fuzzy rules with similar fuzzy sets
generate different rule conclusions. PANFIS utilizes the kernel-based metric principle for a fuzzy set
merging scenario, which compares the center and width of Gaussian fuzzy sets in one joint formula [3].
It is expressed as follows:

Sker(A,B) = o~ |Ca—Cgl—loa—0s| (13)

This formula holds the following interesting properties:

Sker(A,B) =14 [Cp — Cp| + |04 —0B| < Cop =CpAoa =03

14
Sker(A,B)<€<=>|CA—CB|>(5\/|(TA—(TB|>(5 (14

Two fuzzy sets are merged if the kernel-based metric returns Sy (A, B) > 0.8, as set in [3].
This hyper-parameter controls a tradeoff of the intensity of the fuzzy set merging scenario, where the
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higher the values, the more frequently the fuzzy set merging scenario is executed, and vice versa.
The fuzzy set merging process itself is carried out as follows:

Cnew = (max(U) +min(U))/2

Tnew = (max(U) —min(U))/2 (15)

where U = {ca £ 04,cp £0p}. This formula is used to perform the exact merging in accordance
with their a-cuts. It is expected that merged fuzzy sets deliver the membership degree around 0.6,
which ensures the e-completeness at 0.6. It reflects the inflection points of Gaussian fuzzy set c - .

4.5. Adaptation of Rule Consequent

PANFIS utilizes the extended recursive least square (ERLS) method to update the rule consequent
of the fuzzy rule. This approach differs from the original RLS method because of the insertion of a
constant « to improve asymptotic convergence of the weight vector. This approach is inspired by the
work presented in [13], where the system error convergence and the weight vector convergence have
been mathematically proven with the help of the Lyaponov stability criterion. The constant « behaves
like the binary function, where it is activated when the approximation error e is greater than the
system error e. It is worth mentioning that the approximation error refers to the system error before
the adaptation process of one-step ahead PANFIS prediction, while the system error corresponds to
after the tuning process e, = |T,, — y»|. In other words, the weight vector remains unchanged if the
approximation error is lower than the system error.

el >
we { Ve[ 21 (16)
0, otherwise
_ -1
L= Qixe(¥; '+ x. Qixe) (17)
Qi = (I —aLx.")Q; (18)
W; = W; + aL(t — xIW;) (19)

where Q;, L are the covariance matrix of the i-th rule and the Kalman gain, respectively. For the global
learning scenario, the covariance matrix Q is global and embraces the covariance matrix of all fuzzy
rules. Since PANFIS is evolving in nature, fuzzy rules can be dynamically added Sequentially, the rule
consequent is set as W1 = Wyinper if a new rule is introduced. This setting reflects where the winning
rule represents the most adjacent region to the new rule. On the other hand, the covariance matrix of a
new rule is set as Q; = al in the case of local learning, whereas it is assigned in the same way for the
global learning case, but the dimension of the covariance matrix might have to be expanded. Note that
« must be set as a large positive constant to assure convergence of the predictive model. The ERLS
method can also be seen as a variation of the FWRLS method in [3], where the binary function is used
to enhance the convergence of the adaptation process.

5. Time-Series Feature Prediction

This section presents our numerical study on the slew bearing prognosis method using the 139 data
samples which correspond to 139 daily records of vibration signals. Nine input features, namely RMS,
variance, skewness, kurtosis, shape factor, crest factor, entropy, histogram upper, and histogram lower,
are calculated. Our simulation was carried out under two modes: direct and time-series mode.

5.1. Direct Mode Prediction

The direct mode prediction aims to study the correlation among input features, where eight
features are used as the input attributes to predict the trend of input attributes. For instance, the kurtosis
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is made the target variable, while the other eight features serve as the input attributes to guide the
predictive analytics. A schematic illustration of kurtosis feature prediction based on the PANFIS direct
mode method is presented in Figure 6. This simulation aims to illustrate the descriptive power of input
attributes to indicate the degradation of the slew bearing. Another goal is to model the characteristic of
an input attribute based on its nonlinear relationship with the other eight input features. The 139 data
points are partitioned into two groups: training and testing, where 108 samples are reserved for the
training samples, while the rest are fed to test the model. In other words, prediction or testing is done
for a one-month period. Figure 7 pictorially exhibits the predictive trend of PANFIS in modelling the
kurtosis feature under the direct mode prediction. It is shown that the kurtosis feature characterizes
a nonlinear, uncertain, and non-stationary nature; however, PANFIS is able to predict accurately.
This scenario was carried out for all nine input attributes. PANFIS’s performance is examined based on
its generalization power for the testing samples. It is worth noting that under the direct mode, one can
observe the generalization power of PANFIS because the model is fixed after 108 days.

Input attributes

Feature 1- RMS Target variable
Feature 2: Variance Feature 4 L.
Feature 3: Skewness > PANFIS | (Kurtosis) Prediction
Feature 5: Shape factor /N K
Feature 6: Crest factor i _ /
Feature 7: Entropy <o Correlation -~ , R
Feature 8: Histogram upper | !
Feature 9: Histogram lower 1./ jl

- S 1 1

Testing

o0&

0.6

0.4

Kurtosis

0.z

o ....M—-...—.._...._..._._.._.___A_.Jd
| e
Training Testing
03 1 " L " 1
1] 0 40 &0 a0 100 1z0 140
Days

Figure 6. A schematic diagram of direct mode prediction.
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Figure 7. PANFIS prediction of kurtosis feature.

The evolving and adaptive characteristic of PANFIS is illustrated in Figure 8, where it shows the
fuzzy rule evolution of PANFIS in the kurtosis feature prediction. PANFIS starts its learning process
from no existing rules until the fuzzy rules are automatically created and pruned during the process
in accordance with the novelty of data streams. PANFIS responds to changing characteristics of the
system on a timely basis, where it introduces a new rule at t = 88 when there exists a “spike” in the
kurtosis feature.

Table 2 presents the numerical results of consolidated algorithms in direct mode prediction. It is
evident from Table 2 that PANFIS outperforms the other three algorithms in terms of predictive quality.
Although ANFIS is reported to have a lower RMSE value in a few cases, it experienced 10 epochs
of the training process. In addition, it is found that ANFIS suffers from the curse of dimensionality,
notably when the grid partitioning method is used. Hence, two numbers of rule is selected as a fixed
number in our simulations.

251 7

1.5 g

Fuzzy rule

0.5 7

0 . . . . . . L 1 . .
0 10 20 30 40 50 60 70 80 90 100

Days

Figure 8. Fuzzy rule evolution of kurtosis feature.
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Table 2. Numerical results using direct partition scenario.

Input Feature Description PANFIS eTS Simp_eTS ANFIS
RMSE (%) 0.03 0.04 0.25 0.32
Rule 1 5 2 2
RMS Fuzzy set 8 40 16 16
Time (s) 0.41 0.12 0.15 N/A
RMSE (%) 0.04 0.04 0.21 0.11
Vari Rule 1 5 2 2
ariance Fuzzy set 8 40 16 16
Time (s) 0.43 0.13 0.15 N/A
RMSE (%) 0.11 0.21 0.25 0.33
Sk Rule 8 5 2 2
ewness Fuzzy set 64 40 16 16
Time (s) 0.61 0.09 0.15 N/A
RMSE (%) 0.05 0.27 0.43 0.09
Kurtosi Rule 1 5 2 2
urtosts Fuzzy set 8 40 16 16
Time (s) 0.49 0.13 1.1 N/A
RMSE (%) 0.006 0.05 0.11 0.33
Rule 1 5 2 2
Shape factor Fuzzy set 8 40 16 16
Time (s) 0.52 0.19 1.36 N/A
RMSE (%) 0.14 0.23 0.79 8.69
C f Rule 5 5 2 2
rest factor Fuzzy set 40 40 16 16
Time (s) 0.35 0.1 1.29 N/A
RMSE (%) 0.14 0.22 0.79 0.15
Entro Rule 5 5 2 2
Py Fuzzy set 39 40 16 16
Time (s) 0.64 0.13 14 N/A
RMSE (%) 0.08 0.3 0.28 0.1
Histogram upper Rule 1 5 2 2
gram upp Fuzzy set 8 40 16 16
Time (s) 0.57 0.15 1.01 N/A
RMSE (%) 0.05 0.37 0.35 0.54
Histogram lower Rule 1 5 2 2
& Fuzzy set 8 40 16 16
Time (s) 04 0.15 1.2 N/A

5.2. Time-Series Mode Prediction

14 of 21

The time-series mode aims to deliver one-step-ahead prediction based on the previous two

consecutive data samples v, = f(y,—1,Yn—2). The progression of the slew bearing wear is traced
by the predictive model. All samples are fed to the training process and the predictive quality is
evaluated by the training error, which pinpoints to what extent the predictive model learns given
training representation. A schematic illustration of variance feature prediction based on PANFIS
time-series mode is presented in Figure 9.
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Figure 9. A schematic diagram of time series mode prediction.

PANFIS is compared against three prominent algorithms, known as eTS [2], simp_eTS [12],
and ANFIS [1]. eTS and simp_eTS are counterparts of PANFIS, which features both structural and
parameter learning scenarios in the online manner. This comparison is needed to confirm the learning
performance of PANFIS with respect to similar algorithms. ANFIS is a pioneer of the fuzzy neural
network (FNN) which is more traditional than PANFIS, TS, and simp_eTS. It adopts an offline
learning scenario where the training process is repeated over multiple epochs. Ten epochs are applied
in our study. This comparison aims to demonstrate that although PANFIS works fully in the one-pass
learning scenario, it produces a comparable predictive quality. Table 3 presents the numerical results
of the consolidated algorithm in time-series mode. The advantage of PANFIS is more obvious in the
direct mode prediction (as shown in Table 2) than that in the time-series mode prediction, as displayed
in Table 3. However, it still outperforms the other three algorithms in terms of RMSE, rule, and fuzzy
set in almost all features prediction.

Figure 10 visualizes PANFIS’s prediction of the variance feature under the time-series mode.
It is seen that PANFIS perfectly models the variance attribute using only its previous two time
steps. Figures 8 and 11 demonstrate the adaptive trait of PANFIS. It keeps changing on demand,
which follows the nonlinear and time-varying properties of the given problem. PANFIS is also capable
of crafting a classical-transparent fuzzy rule from a high-dimensional ellipsoidal rule through fuzzy
rule transformation (14). An example of PANFIS’s rule is exemplified in variance prediction:

Ry :If Variance =

Variance,,_1 0.290 y 1= 7.4,0.19
Variance,_o 0292 |~ T | 019,74 (20)

Then y = 0.03 + 0.17variance,_1 + 0.04variance,_,

] is close to C; =
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This fuzzy rule is rather vague and is unable to be associated directly with linguistic labels because
of the absence of atomic clauses. This issue can be addressed using the fuzzy set transformation strategy
(14) and this leads to the traditional expression of the fuzzy rule as follows:

Ry :If Variance,,_1 is close to c11 = 0.29,07; = 0.11
and Skewness,,_» is close to c1p = 0.292, 095, = 0.11 (21)
Then y = 0.03 + 0.17variance,_1 + 0.04variance,_,

This rule is more readable than (20) because each fuzzy set corresponds to a specific linguistic
label. This fuzzy rule is generated under the time-series mode prediction. Another example of PANFIS
prediction for histogram lower feature under the time-series mode is presented in Figure 12 and the
fuzzy rule evolution is presented in Figure 13.

Table 3. Numerical results using time-series scenario.

Input Feature Description PANFIS eTS Simp_eTS  ANFIS
RMSE (%) 0.1 0.11 0.13 0.1
Rule 2 5 2 2
RMS Fuzzy set 2-2 5-5 2-2 2-2
Time (s) 0.73 0.54 1.54 N/A
RMSE (%) 0.09 0.11 0.14 0.09
Vari Rule 6 4 2 2
anance Fuzzy set 6-5 4-4 2-2 2-2
Time (s) 1.1 0.17 1.36 N/A
RMSE (%) 0.08 0.09 0.09 0.12
Sk Rule 2 5 4 2
cwness Fuzzy set 2-2 5-5 4-4 2-2
Time (s) 078 0.12 1.42 N/A
RMSE (%) 0.13 0.13 0.18 0.11
Kuctos Rule 16 6 3 2
urtosis Fuzzy set 16-16 6-6 3-3 22
Time (s) 0.49 0.09 1.72 N/A
RMSE (%) 0.11 0.09 0.09 0.06
Rule 4 5 2 2
Shape factor Fuzzy set 43 55 2-2 22
Time (s) 0.55 0.17 14 N/A
RMSE (%) 0.09 0.14 0.14 0.12
Crest f Rule 3 6 7 2
rest factor Fuzzy set 33 6-6 77 22
Time (s) 0.49 0.15 2.1 N/A
RMSE (%) 0.11 0.14 0.15 0.11
Entro Rule 6 6 5 2
Py Fuzzy set 66 66 55 22
Time (s) 0.51 0.12 1.81 N/A
RMSE (%) 0.13 0.15 0.16 0.12
Histogram upper Rule 7 8 6 2
& PP Fuzzy set 7-7 8-8 6-6 2-2
Time (s) 0.69 0.19 17 N/A
RMSE (%) 0.14 0.16 0.2 0.14
Histogram lower Rule 2 8 > 2
& Fuzzy set 22 8-8 55 22

Time (s) 0.52 0.15 15 N/A
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Figure 11. Fuzzy rule evolution of variance feature.
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Figure 12. PANFIS prediction of histogram lower feature.
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Figure 13. Fuzzy rule evolution of histogram lower feature.

6. Conclusions

A number of literature reviews on prognosis methods have been conducted in the last few decades
and each review paper has presented its own terminology of prognosis approaches. This paper aims
to consolidate all the prognosis approaches to provide a clearer understanding and guidelines in
selecting the particular prognosis approach for specific needs. Following the review, a study on the
time-series feature prediction has also been presented in this paper. The PANFIS-based method, which
is considered as one of the data-driven prognosis approaches, is developed and presented in this
paper. PANFIS provides a solution for the adaptive prognostic requirement, where it characterizes
a fully open structure and operates in a single-pass learning mode. This trait makes it possible to
handle non-stationary characteristics of the system in a sample-wise manner. PANFIS is tested for
run-to-failure low speed slew bearing vibration data to predict the time domain vibration features.
A comparative study of PANFIS and three other prominent algorithms, known as eTS, simp_eTS,
and ANFIS, is also presented. It is shown that PANFIS offers a better prediction performance compared
to the other three methods. In order to apply the proposed method for real-time prediction, some future
research to simplify the complexity of the algorithm is necessary. A feasibility study to embed the
PANFIS method into real-time measurement, for example, using the LabVIEW platform, is also
expected to be conducted in the future.

Supplementary Materials: The MATLAB code of Parsimonious Network Based on Fuzzy Inference System
(PANFIS) and the time-domain features of slew bearing vibration data can be downloaded from the following
weblink: http://www.ntu.edu.sg/home/mpratama/Publication.html.
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