Numerical Control Machine Tool Fault Diagnosis Using Hybrid Stationary Subspace Analysis and Least Squares Support Vector Machine with a Single Sensor
"> Figure 1
<p>Damage diagnosis procedure based on hybrid Stationary subspace analysis, SSA: stationary subspace analysis, LS-SVM: least squares support vector machine.</p> "> Figure 2
<p>Experiment design.</p> "> Figure 3
<p>Measuring vibration signal by a laser vibrometer.</p> "> Figure 4
<p>Samples of different tool states, (<b>a</b>) mild wear tool; (<b>b</b>) severe wear tool.</p> "> Figure 5
<p>SSA results of normal tool sample.</p> "> Figure 6
<p>SSA results of mild wear tool sample.</p> "> Figure 7
<p>SSA results of severe wear tool sample.</p> ">
Abstract
:1. Introduction
2. Brief Introductions to SSA and LS-SVM
2.1. SSA
Algorithm 1. Finding non-stationary subspaces by SSA and PSR |
Given observed signal , number of time periods |
|
2.2. Least Squares SVM
Algorithm 2. Training LS-SVM classifier by leave-one-out cross validation |
Given data , is the feature indexes of the i-th signal and is the class corresponding to the i-th sample. |
|
3. Damage Diagnosis Approach Based on Hybrid SSA and LS-SVM
Algorithm 3. Damage diagnosis approach based on SSA + LS-SVM |
Step 1: Model training
|
Step 2: Damage detection
|
4. Experimental Design
5. Result and Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lei, Y.; Lin, J.; He, Z.; Zuo, M.J. A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Signal Proc. 2013, 35, 108–126. [Google Scholar] [CrossRef]
- Amer, W.; Grosvenor, R.I.; Prickett, P.W. Sweeping filters and tooth rotation energy estimation (TREE) techniques for machine tool condition monitoring. Int. J. Mach. Tools Manuf. 2006, 46, 1045–1052. [Google Scholar] [CrossRef]
- Lv, J.; Wang, J.; Wang, M.; Wu, Y. Research on tool wear condition monitoring Based on combination of SOM and HMM. China Mech. Eng. 2010, 21, 1531–1535. [Google Scholar]
- Shen, Z.; He, N.; Li, L. Monitoring of Tool Wear in Hard Milling. China Mech. Eng. 2009, 20, 1582–1586. [Google Scholar]
- Zaghbani, I.; Lamraoui, M.; Songmene, V.; Thomas, M.; ElBadaoui, M. Robotic high speed machining of aluminum alloys. Adv. Mater. Res. 2011, 188, 584–589. [Google Scholar] [CrossRef]
- RodolfoHaber, E.; JoseJimenez, E.; RoneiPeres, C.; JoseAlique, R. An investigation of tool-wear monitoring in a high-speed machining process. Sens. Actuators A Phys. 2004, 116, 539–545. [Google Scholar]
- Jachan, M.; Matz, G.; Hlawatsch, F. Time-frequency ARMA models and parameter estimators for under spread non stationary random processes. IEEE Trans. Signal Process. 2007, 55, 4366–4381. [Google Scholar] [CrossRef]
- Kankar, P.K.; Sharma, S.C.; Harsha, S.P. Rolling element bearing fault diagnosis using autocorrelation and continuous wavelet transform. J. Vib. Control. 2011, 17, 2081–2094. [Google Scholar] [CrossRef]
- Guo, X.; Shen, C.; Chen, L. Deep Fault Recognizer: An Integrated Model to Denoise and Extract Features for Fault Diagnosis in Rotating Machinery. Appl. Sci. 2017, 7, 41. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, R. Thrust bearing groove race defect measurement by wavelet decomposition of pre-processed vibration signal. Measurement 2013, 46, 3508–3515. [Google Scholar] [CrossRef]
- Jena, D.P.; Panigrahi, S.N.; Kumar, R. Gear fault identification and localization using analytic wavelet transform of vibration signal. Measurement 2013, 46, 1115–1124. [Google Scholar] [CrossRef]
- Feng, Z.; Liang, M.; Chu, F. Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples. Mech. Syst. Signal Process. 2013, 38, 165–205. [Google Scholar] [CrossRef]
- Hong, Y.-S.; Yoon, H.-S.; Moon, J.-S.; Cho, Y.-M.; Ahn, S.-H. Tool wear monitoring during micro-end milling using wavelet packet transform and Fisher’s linear discriminant. Int. J. Precis. Eng. Manuf. 2016, 17, 845–855. [Google Scholar] [CrossRef]
- Xiang, J.; Zhong, Y. A Novel Personalized Diagnosis Methodology Using Numerical Simulation and an Intelligent Method to Detect Faults in a Shaft. Appl. Sci. 2016, 6, 414. [Google Scholar] [CrossRef]
- Wang, G.; Yang, Y.; Guo, Z. Hybrid learning based Gaussian ARTMAP network for tool condition monitoring using selected force harmonic features. Sens. Actuators A 2013, 203, 394–404. [Google Scholar] [CrossRef]
- Bhat, N.N.; Dutta, S.; Vashisth, T.; Pal, S.; Pal, S.K.; Sen, R. Tool condition monitoring by SVM classification of machined surface images in turning. Int. J. Adv. Manuf. Technol. 2016, 83, 1487–1502. [Google Scholar] [CrossRef]
- Torabi, A.J.; Er, M.J.; Li, X.; Lim, B.S.; Peen, G.O. Application of Clustering Methods for Online Tool Condition Monitoring and Fault Diagnosis in High-Speed Milling Processes. IEEE Syst. J. 2016, 10, 721–732. [Google Scholar] [CrossRef]
- Zhu, K.; Wong, Y.S.; Hong, G.S. Wavelet analysis of sensor signals for tool condition monitoring- A review and some new results. Int. J. Mach. Tools Manuf. 2009, 49, 537–553. [Google Scholar] [CrossRef]
- Torabi, A.J.; Meng, J.E.; Li, X.; Lim, B.S. A Survey on Artificial Intelligence-Based Modeling Techniques for High Speed Milling Processes. IEEE Syst. J. 2014, 9, 1069–1080. [Google Scholar] [CrossRef]
- Lamraoui, M.; Thomas, M.; Badaoui, M.E. Cyclostationarity approach for monitoring chatter and tool wear in high speed milling. Mech. Syst. Signal Process. 2014, 44, 177–198. [Google Scholar] [CrossRef]
- Von Bünau, P.; Meinecke, F.C.; Király, F.C. Finding stationary subspaces in multivariate time series. Phys. Rev. Lett. 2009, 103, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Baktashmotlagh, M.; Harandi, M.; Lovell, B.C.; Salzmann, M. Discriminative non-linear stationary subspace analysis for video classification. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 2353–2366. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Song, A.; Yan, R.; Qin, H. Eog artifact correction from eeg recording using stationary subspace analysis and empirical mode decomposition. Sensors 2012, 13, 14839–14859. [Google Scholar] [CrossRef] [PubMed]
- Blythe, D.A.; von Bünau, P.; Meinecke, F.C.; Müller, K.R. Feature Extraction for Change-Point Detection using stationary subspace analysis. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Von Bünau, P. Stationary Subspace Analysis: Towards Understanding Non-Stationary Data. Ph.D. Thesis, Berlin Institute of Technology, Berlin, Germany, 2012. [Google Scholar]
- Packard, N.H.; Crutchfield, J.P.; Farmer, J.D. Geometry from a time series. Phys. Rev. Lett. 1980, 45, 712–716. [Google Scholar] [CrossRef]
- Kennel, M.; Brown, R.; Abarbanel, H. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45, 3403–3411. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Han, B. A Survey of State Space Reconstruction of Chaotic Time Series Analysis. Comput. Sci. 2005, 32, 67–70. [Google Scholar]
- Suykens, J.A.K. Least squares support vector machines for classification and nonlinear modeling. Neural Netw. World 2000, 10, 29–48. [Google Scholar]
- Feng, Y.; Jia, B.; Yan, G.; Jia, X. Prediction model of high-speed oblique cutting temperature based on LS-SVM. Int. J. Adv. Manuf. Technol. 2016, 85, 1–8. [Google Scholar]
- Falck, T.; Dreesen, P.; de Brabanter, K.; Pelckmans, K.; de Moor, B.; Suykens, J.A.K. Least-Squares Support Vector Machines for the identification of Wiener–Hammerstein systems. Control Eng. Pract. 2012, 20, 1165–1174. [Google Scholar] [CrossRef]
- Ying, Z.; Keong, K.C. Fast Leave-One-Out Evaluation and Improvement on Inference for LS-SVM’s. Proc. ICPR 2004, 1–4. [Google Scholar] [CrossRef]
- Van Gestal, T.; Suykens, J.A.K.; Lanckriet, G.; Lambrechts, A.; de Moor, B.; Vandewalle, J. Bayesian framework for least squares support vector machine classifiers, gaussian processes and kernel fisher discriminant analysis. Neural Comput. 2002, 14, 1115–1147. [Google Scholar] [CrossRef] [PubMed]
- Ciabattoni, L.; Cimini, G.; Ferracuti, F.; Grisostomi, M.; Ippoliti, G.; Pirro, M. Bayes error based feature selection: An electric motors fault detection case study. IECON 2015, 003893–003898. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.; Li, F.; Sun, B.; Xue, W. An online damage identification approach for numerical control machine tools based on data fusion using vibration signals. J. Vib. Control 2015, 21, 2925–2936. [Google Scholar]
- Xie, H.; Huang, M. Research of numerical control machine tools wear monitoring method based on vibration testing. Instrum. Tech. Sens. 2013, 2, 73–75. [Google Scholar]
- Van der Maaten, L.J.P.; Postma, E.O.; van den Herik, H.J. Dimensionality reduction: A comparative review. J. Mach. Learn. Res. 2009, 10, 1–41. [Google Scholar]
- Zhang, X.; Jia, Y. A linear discriminant analysis framework based on random subspace for face recognition. Pattern Recognit. 2007, 40, 2585–2591. [Google Scholar] [CrossRef]
- Sahraoui, M.; Cardoso, A.J.M.; Ghoggal, A. The Use of a Modified Prony Method to Track the Broken Rotor Bar Characteristic Frequencies and Amplitudes in Three-Phase Induction Motors. IEEE Trans. Ind. Appl. 2015, 51, 2136–2147. [Google Scholar] [CrossRef]
- Ferracuti, F.; Giantomassi, A.; Iarlori, S.; Ippoliti, G.; Longhi, S. Electric motor defects diagnosis based on kernel density estimation and kullback–leibler divergence in quality control scenario. Eng. Appl. Artif. Intell. 2015, 44, 25–32. [Google Scholar] [CrossRef]
Domain | Indexes | Formula |
---|---|---|
Time | Shape factor Tsf | |
Crest factor Tcf | ||
Kurtosis Tk | ||
Skewness Tsk | ||
Kurtosis factor Tkf | ||
Frequency | Stabilization ratio Fsr | |
Wave-height ratio Fwr | ||
Average Frequency Faf | ||
Frequency high-low ratio Ffhr | ||
Modified equivalent bandwidth Fmeb |
Methods | Training Classes | Training Result | Classification Accuracy | ||
---|---|---|---|---|---|
Normal Tool | Mild Wear Tool | Severe Wear Tool | |||
SSA + LS-SVM proposed | normal tool | 40 | 0 | 0 | 100% |
mild wear tool | 0 | 35 | 5 | 87.5% | |
severe wear tool | 0 | 3 | 37 | 92.5% | |
Original LS-SVM | normal tool | 37 | 3 | 0 | 92.5% |
mild wear tool | 4 | 29 | 7 | 72.5% | |
severe wear tool | 0 | 8 | 32 | 80% | |
PCA + LS-SVM | normal tool | 38 | 2 | 0 | 95% |
mild wear tool | 5 | 30 | 5 | 75% | |
severe wear tool | 2 | 6 | 32 | 80% | |
SSA + LDA | normal tool | 31 | 9 | 0 | 77.5% |
mild wear tool | 6 | 26 | 8 | 65% | |
severe wear tool | 0 | 11 | 29 | 72.5% |
Methods | Testing Classes | Testing Result | Classification Accuracy | ||
---|---|---|---|---|---|
Normal Tool | Mild Wear Tool | Severe Wear Tool | |||
SSA + LS-SVM proposed | normal tool | 20 | 0 | 0 | 100% |
mild wear tool | 0 | 16 | 4 | 80% | |
severe wear tool | 0 | 3 | 17 | 85% | |
Original LS-SVM | normal tool | 18 | 2 | 0 | 90% |
mild wear tool | 4 | 13 | 3 | 65% | |
severe wear tool | 0 | 5 | 15 | 75% | |
PCA + LS-SVM | normal tool | 19 | 1 | 0 | 95% |
mild wear tool | 5 | e | 1 | 70% | |
severe wear tool | 1 | 4 | 15 | 75% | |
SSA + LDA | normal tool | 14 | 6 | 0 | 70% |
mild wear tool | 7 | 10 | 3 | 50% | |
severe wear tool | 2 | 5 | 13 | 65% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, C.; Xue, W.; Ren, Y.; Zhou, Y. Numerical Control Machine Tool Fault Diagnosis Using Hybrid Stationary Subspace Analysis and Least Squares Support Vector Machine with a Single Sensor. Appl. Sci. 2017, 7, 346. https://doi.org/10.3390/app7040346
Gao C, Xue W, Ren Y, Zhou Y. Numerical Control Machine Tool Fault Diagnosis Using Hybrid Stationary Subspace Analysis and Least Squares Support Vector Machine with a Single Sensor. Applied Sciences. 2017; 7(4):346. https://doi.org/10.3390/app7040346
Chicago/Turabian StyleGao, Chen, Wei Xue, Yan Ren, and Yuqing Zhou. 2017. "Numerical Control Machine Tool Fault Diagnosis Using Hybrid Stationary Subspace Analysis and Least Squares Support Vector Machine with a Single Sensor" Applied Sciences 7, no. 4: 346. https://doi.org/10.3390/app7040346
APA StyleGao, C., Xue, W., Ren, Y., & Zhou, Y. (2017). Numerical Control Machine Tool Fault Diagnosis Using Hybrid Stationary Subspace Analysis and Least Squares Support Vector Machine with a Single Sensor. Applied Sciences, 7(4), 346. https://doi.org/10.3390/app7040346