Free Vibration Analysis of Elastically Restrained Tapered Beams with Concentrated Mass and Axial Force
<p>Geometry of elastically restrained tapered beam with concentrated mass and axial loading.</p> "> Figure 2
<p>Beam types utilized to consider various conditions: (<b>a</b>) Type A, (<b>b</b>) Type B, (<b>c</b>) Type C, and (<b>d</b>) Type D.</p> "> Figure 3
<p>Variation of nondimensional natural frequency with respect to increase of spring value.</p> "> Figure 4
<p>Effects of the concentrated mass on the first three natural frequencies of single tapered beams with the cantilevered end condition: (<b>a</b>) results for entire concentrated masses, and (<b>b</b>) results for <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>m</mi> </mrow> <mo>¯</mo> </mover> </mrow> </semantics></math> = 0, 0.1, 0.5, and 1.</p> "> Figure 5
<p>Effects of the concentrated mass on the first three natural frequencies of double tapered beams with the cantilevered end condition: (<b>a</b>) results for entire concentrated masses, and (<b>b</b>) results for <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>m</mi> </mrow> <mo>¯</mo> </mover> </mrow> </semantics></math> = 0, 0.1, 0.5, and 1.</p> "> Figure 6
<p>Comparison of natural frequencies for <math display="inline"><semantics> <mrow> <mi>n</mi> </mrow> </semantics></math> = 1 and <math display="inline"><semantics> <mrow> <mi>n</mi> </mrow> </semantics></math> = 2 when having <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>m</mi> </mrow> <mo>¯</mo> </mover> </mrow> </semantics></math> = 0.1 at the arbitrary location.</p> "> Figure 7
<p>Effects of the concentrated mass and taper ratios on the first three natural frequencies of <math display="inline"><semantics> <mrow> <mi>n</mi> </mrow> </semantics></math> = 1: Cases A1–A4.</p> "> Figure 8
<p>Effects of the concentrated mass and taper ratios on the first three natural frequencies of <math display="inline"><semantics> <mrow> <mi>n</mi> </mrow> </semantics></math> = 1 with respect to Cases A5–A8.</p> "> Figure 9
<p>Effects of the concentrated mass and taper ratios on the first three natural frequencies of <math display="inline"><semantics> <mrow> <mi>n</mi> </mrow> </semantics></math> = 1 with respect to Cases A9–A12.</p> "> Figure 10
<p>Effects of the concentrated mass and taper ratios on the first three natural frequencies of <math display="inline"><semantics> <mrow> <mi>n</mi> </mrow> </semantics></math> = 2 with respect to Cases A1–A4.</p> "> Figure 11
<p>Effects of the concentrated mass and taper ratios on the first three natural frequencies of <math display="inline"><semantics> <mrow> <mi>n</mi> </mrow> </semantics></math> = 2 with respect to Cases A5–A8.</p> "> Figure 12
<p>Effects of the concentrated mass and taper ratios on the first three natural frequencies of <math display="inline"><semantics> <mrow> <mi>n</mi> </mrow> </semantics></math> = 2: Cases A9–A12.</p> "> Figure 13
<p>Comparison of <math display="inline"><semantics> <mrow> <mi>n</mi> </mrow> </semantics></math> = 1 and <math display="inline"><semantics> <mrow> <mi>n</mi> </mrow> </semantics></math> = 2 for effects of the concentrated mass on the first three natural frequencies when <span class="html-italic">c</span> = 0.5: (<b>a</b>) Cases A3 and A4, (<b>b</b>) Cases A7 and A8, and (<b>c</b>) Cases A11 and A12.</p> "> Figure 14
<p>Effects of the axial loading on the first three natural frequencies of elastically restrained tapered beam.</p> "> Figure 15
<p>Relationships between compressive loadings and values of elastic springs at which the first natural frequency vanished.</p> "> Figure 16
<p>Variation in the first three mode shapes of tapered beams for Type A.</p> "> Figure 17
<p>Effects of the elastic supports on the first three mode shapes of uniform beams and single and double tapered beams having <math display="inline"><semantics> <mrow> <mi>c</mi> </mrow> </semantics></math> = 0.5.</p> ">
Abstract
:1. Introduction
2. Theory
3. Results and Discussion
3.1. Effects of Elastic Supports
3.2. Effects of the Concentrated Mass
3.3. Effects of Concentrated Mass Attached to Elastic Supports
3.4. Effect of Axial Loading on Elastic Supports
3.5. Effects of the Combination of Axial Loading, Concentrated Mass, and Elastic Supports
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, H.; Pan, Q.X.; Adetoro, O.B.; Avital, E.; Yuan, Y.; Wen, P.H. Dynamic large deformation analysis of a cantilever beam. Math. Comput. Simul. 2020, 174, 183–204. [Google Scholar] [CrossRef]
- Sibtain, M.; Yee, K.; Ong, O.Z.S.; Ghayesh, M.H.; Amabili, M. Dynamics of size-dependent multilayered shear deformable microbeams with axially functionally graded core and non-uniform mass supported by an intermediate elastic support. Eng. Anal. Bound. Elem. 2023, 146, 263–283. [Google Scholar] [CrossRef]
- De Rosa, M.A.; Lippiello, M. Closed-form solutions for vibrations analysis of cracked Timoshenko beams on elastic medium: An analytically approach. Eng. Struct. 2021, 236, 111946. [Google Scholar] [CrossRef]
- Li, X.F.; Tang, A.A.; Xi, L.Y. Vibration of a Rayleigh cantilever beam with axial force and tip mass. J. Constr. Steel. Res. 2013, 80, 15–22. [Google Scholar] [CrossRef]
- Yesilce, Y. Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias. Struct. Eng. Mech. 2015, 53, 537–573. [Google Scholar] [CrossRef]
- Demirdag, O.; Yesilce, Y. Solution of free vibration equation of elastically supported Timoshenko columns with a tip mass by differential transform method. Adv. Eng. Softw. 2011, 42, 860–867. [Google Scholar] [CrossRef]
- Ko, Y.Y. A simplified structural model for monopile-supported offshore wind turbines with tapered towers. Renew. Energ. 2020, 156, 777–790. [Google Scholar] [CrossRef]
- Karami, G.; Malekzadeh, P.; Shahpari, S.A. A DQEM for vibration of shear deformable nonuniform beams with general boundary conditions. Eng. Struct. 2003, 25, 1169–1178. [Google Scholar] [CrossRef]
- Auciello, N.M. On the transverse vibrations of non-uniform beams with axial loads and elastically restrained ends. Int. J. Mech. Sci. 2001, 43, 193–208. [Google Scholar] [CrossRef]
- Zhou, D.; Cheung, Y.K. The free vibration of a type of tapered beams. Comput. Methods Appl. Mech. Eng. 2000, 188, 203–216. [Google Scholar] [CrossRef]
- Banerjee, J.R.; Su, H.; Jackson, D.R. Free vibration of rotating tapered beams using the dynamic stiffness method. J. Sound Vib. 2006, 298, 1034–1054. [Google Scholar] [CrossRef]
- Rajasekaran, S.; Khaniki, H.B. Bending, buckling and vibration of small-scale tapered beams. Int. J. Eng. Sci. 2017, 120, 172–188. [Google Scholar] [CrossRef]
- Banerjee, J.R.; Jackson, D.R. Free vibration of a rotating tapered Rayleigh beam: A dynamic stiffness method of solution. Comput. Struct. 2013, 124, 11–20. [Google Scholar] [CrossRef]
- Banerjee, J.R.; Ananthapuvirajah, A. Free flexural vibration of tapered beams. Comput. Struct. 2019, 224, 106106. [Google Scholar] [CrossRef]
- Boiangiu, M.; Ceausu, V.; Untaroiu, C.D. A transfer matrix method for free vibration analysis of Euler-Bernoulli beams with variable cross section. J. Vib. Control 2016, 22, 2591–2602. [Google Scholar] [CrossRef]
- Laura, P.A.A.; Pombo, J.L.; Susemihl, E.A. A note on the vibrations of a clamped-free beam with a mass at the free end. J. Sound Vib. 1974, 37, 161–168. [Google Scholar] [CrossRef]
- Auciello, N.M.; Nole, G. Vibrations of a cantilever tapered beam with varying section properties and carrying a mass at the free end. J. Sound Vib. 1998, 214, 105–119. [Google Scholar] [CrossRef]
- Sarkar, K.; Ganguli, R.; Elishakoff, I. Closed-form solutions for non-uniform axially loaded Rayleigh cantilever beams. Struct. Eng. Mech. 2016, 60, 455–470. [Google Scholar] [CrossRef]
- Bokaian, A. Natural frequencies of beams under tensile axial loads. J. Sound Vib. 1990, 142, 481–498. [Google Scholar] [CrossRef]
- Bokaian, A. Natural frequencies of beams under compressive axial loads. J. Sound Vib. 1988, 126, 49–65. [Google Scholar] [CrossRef]
- Chen, B.; Xu, Q.; Zhu, B.; Yang, Y.; Li, Y. Buckling and postbuckling behaviors of symmetric/asymmetric double-beam systems. Int. J. Mech. Sci. 2022, 235, 107712. [Google Scholar] [CrossRef]
- Zhang, Z.; Liang, C.; Kong, D.; Xiao, Z.; Zhang, C.; Chen, W. Dynamic buckling and free bending vibration of axially compressed piezoelectric semiconductor rod with surface effect. Int. J. Mech. Sci. 2023, 238, 107823. [Google Scholar] [CrossRef]
- Chen, D.; Gu, C.; Li, M.; Sun, B.; Li, X. Natural vibration characteristics determination of elastic beam with attachments based on a transfer matrix method. J. Vib. Control 2022, 28, 637–651. [Google Scholar] [CrossRef]
- Ni, Z.; Hua, H. Axial-bending coupled vibration analysis of an axially-loaded stepped multi-layered beam with arbitrary boundary conditions. Int. J. Mech. Sci. 2018, 138, 187–198. [Google Scholar] [CrossRef]
- Subrahmanyam, K.B.; Garg, A.K. Uncoupled flexural vibrations of straight beams with all possible boundary conditions treated by a transfer matrix method. J. Sound Vib. 1997, 204, 397–419. [Google Scholar] [CrossRef]
- Chen, G.; Zeng, X.; Liu, X.; Rui, X. Transfer matrix method for the free and forced vibration analyses of multi-step Timoshenko beams coupled with rigid bodies on springs. Appl. Math. Model. 2020, 87, 152–170. [Google Scholar] [CrossRef]
- Jin, Y.; Luo, X.; Liu, H.; Qiu, B.; Chi, H. An accurate solution method for vibration analysis of multi-span lattice sandwich beams under arbitrary boundary conditions. Thin-Walled Struct. 2022, 175, 109214. [Google Scholar] [CrossRef]
- Gong, Q.; Teng, Y.; Li, H.; Pang, F.; Zhang, L. Series solution for dynamical characteristic of spatial beam system structure in offshore platform. Ocean Eng. 2023, 280, 114814. [Google Scholar] [CrossRef]
- Zheng, D.; Du, J.; Liu, Y. Vibration characteristics analysis of an elastically restrained cylindrical shell with arbitrary thickness variation. Thin-Walled Struct. 2021, 165, 107930. [Google Scholar] [CrossRef]
- De Rosa, M.A.; Lippiello, M.; Maurizi, M.J.; Martin, H.D. Free vibration of elastically restrained cantilever tapered beams with concentrated viscous damping and mass. Mech. Res. Commun. 2010, 37, 261–264. [Google Scholar] [CrossRef]
- Auciello, N.M. Transverse vibrations of a linearly tapered cantilever beam with tip mass of rotary inertia and eccentricity. J. Sound Vib. 1996, 194, 25–34. [Google Scholar] [CrossRef]
- Gao, C.; Xiang, Y.; Yang, Y.; Lin, H. Transfer matrix method for analyzing dynamic response of multi-span elastically supported SFT under moving load. Appl. Math. Model. 2022, 112, 238–261. [Google Scholar] [CrossRef]
- Sun, K.; Nie, X.; Tan, T.; Yu, Z.; Yan, Z. Coupled vortex-induced modeling for spatially large-curved beam with elastic support. Int. J. Mech. Sci. 2022, 214, 106903. [Google Scholar] [CrossRef]
- Lin, S.M.; Lee, S.Y.; Wang, W.R. Dynamic analysis of rotating damped beams with an elastically restrained root. Int. J Mech. Sci. 2004, 46, 673–693. [Google Scholar] [CrossRef]
- Song, Z.; Cao, Q.; Dai, Q. Free vibration of truncated conical shells with elastic boundary constraints and added mass. Int. J. Mech. Sci. 2019, 155, 286–294. [Google Scholar] [CrossRef]
- Chen, Q.; Du, J. A Fourier series solution for the transverse vibration of rotating beams with elastic boundary supports. Appl. Acoust. 2019, 155, 1–15. [Google Scholar] [CrossRef]
- Leroux, M.; Langlois, S.; Savadkoohi, A.T. Investigation of nonlinear control of galloping with a linear beam with elastic boundary conditions. Int. J. Non-Linear Mech. 2023, 156, 104484. [Google Scholar] [CrossRef]
- Luo, J.; Zhu, S.; Zhai, W. Exact closed-form solution for free vibration of Euler-Bernoulli and Timoshenko beams with intermediate elastic supports. Int. J. Mech. Sci. 2022, 213, 106842. [Google Scholar] [CrossRef]
- Doeva, O.; Masjedi, P.K.; Weaver, P.M. Exact analytical solution for static deflection of Timoshenko composite beams on two-parameter elastic foundations. Thin-Walled Struct. 2022, 172, 108812. [Google Scholar] [CrossRef]
- Nguyen, N.D.; Nguyen, T.N.; Nguyen, T.K.; Vo, T.P. A Legendre-Ritz solution for bending, buckling and free vibration behaviours of porous beams resting on the elastic foundation. Structures 2023, 50, 1934–1950. [Google Scholar] [CrossRef]
- Li, X.; Yurchenko, D.; Li, R.; Feng, X.; Yan, B.; Yang, K. Performance and dynamics of a novel bistable vibration energy harvester with appended nonlinear elastic boundary. Mech. Syst. Signal. Process. 2023, 185, 109787. [Google Scholar] [CrossRef]
- Liu, W.; Lyu, Z.; Liu, C.; Zhang, Y.; Pang, L. Traveling Wave Characteristics of a Rotating Functionally Graded Laminated Cylindrical Shell with General Boundary Conditions. Int. J. Struct. Stab. Dyn. 2023, 2450033. [Google Scholar] [CrossRef]
- Chen, Z.; Fu, L.; Yao, J.; Guo, W.; Plant, C.; Wang, S. Learnable graph convolutional network and feature fusion for multi-view learning. Inf. Fusion. 2023, 95, 109–119. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, X.; Sun, B.; Zhai, J.; Liu, Z. Multireceptive field denoising residual convolutional networks for fault diagnosis. IEEE Trans. Ind. Electron. 2021, 69, 11686–11696. [Google Scholar] [CrossRef]
- Rao, S.S. Mechanical Vibrations, 6th ed.; Prentice Hall: Miami, FL, USA, 2018. [Google Scholar]
- Ji, H.; Li, D. A novel nonlinear finite element method for structural dynamic modeling of spacecraft under large deformation. Thin-Walled Struct. 2021, 165, 107926. [Google Scholar] [CrossRef]
- Wang, P.; Cao, R.; Deng, Y.; Sun, Z.; Luo, H.; Wu, N. Vibration and resonance reliability analysis of non-uniform beam with randomly varying boundary conditions based on Kriging model. Structures 2023, 50, 925–936. [Google Scholar] [CrossRef]
- Sinha, J.K.; Friswell, M.I.; Edwards, S. Simplified models for the location of cracks in beam structures using measured vibration data. J. Sound Vib. 2002, 251, 13–38. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, J.Y. Free vibration analysis using the transfer-matrix method on a tapered beam. Comput. Struct. 2016, 164, 75–82. [Google Scholar] [CrossRef]
- Beer, F.; Johnston, R.J.; DeWolf, J.; Mazurek, D. Mechanics of Materials, 7th ed.; McGraw-Hill Education: New York, NY, USA, 2015. [Google Scholar]
- Lee, J.W.; Lee, J.Y. A transfer matrix method for in-plane bending vibrations of tapered beams with axial force and multiple edge cracks. Struct. Eng. Mech. 2018, 66, 125–138. [Google Scholar]
Natural Frequencies [Hz] | ||||||||
---|---|---|---|---|---|---|---|---|
Sinha et al. [48] | Present | |||||||
= 1 | = 2 | |||||||
Experimental | = 0 | Fully-Clamped | = 0 | = 1 | Fully-Clamped | = 0 | = 1 | |
1 | 20.000 | 19.902 | 21.089 | 19.897 | 19.897 | 21.089 | 19.897 | 19.897 |
2 | 124.500 | 124.543 | 132.063 | 124.431 | 124.431 | 132.063 | 124.431 | 124.431 |
3 | 342.188 | 345.507 | 369.332 | 345.068 | 345.068 | 369.332 | 345.068 | 345.068 |
4 | 664.375 | 664.317 | 722.465 | 663.545 | 663.546 | 722.465 | 663.545 | 663.546 |
Nondimensional Natural Frequencies | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
= 0 | = 0.1 | = 0.2 | = 0.3 | = 0.4 | = 0.5 | = 0.6 | = 0.7 | = 0.8 | = 0.9 | = 1 | ||
0 | 1 | 3.516 | 3.516 | 3.513 | 3.503 | 3.479 | 3.437 | 3.375 | 3.293 | 3.196 | 3.086 | 2.968 |
2 | 22.03 | 21.99 | 21.63 | 20.87 | 20.23 | 20.15 | 20.73 | 21.64 | 22.00 | 21.15 | 19.34 | |
3 | 61.66 | 61.00 | 57.43 | 56.13 | 59.00 | 61.66 | 59.49 | 57.51 | 60.04 | 61.19 | 55.47 | |
0.1 | 1 | 3.559 | 3.558 | 3.556 | 3.545 | 3.520 | 3.475 | 3.407 | 3.317 | 3.209 | 3.089 | 2.959 |
2 | 21.33 | 21.30 | 20.96 | 20.22 | 19.55 | 19.43 | 19.98 | 20.92 | 21.32 | 20.42 | 18.53 | |
3 | 58.95 | 58.37 | 55.02 | 53.56 | 56.17 | 58.93 | 56.91 | 54.71 | 57.16 | 58.51 | 52.64 | |
0.2 | 1 | 3.608 | 3.608 | 3.605 | 3.594 | 3.567 | 3.518 | 3.443 | 3.344 | 3.224 | 3.090 | 2.947 |
2 | 20.62 | 20.59 | 20.27 | 19.55 | 18.86 | 18.69 | 19.21 | 20.17 | 20.60 | 19.65 | 17.67 | |
3 | 56.17 | 55.66 | 52.55 | 50.94 | 53.27 | 56.11 | 54.27 | 51.83 | 54.18 | 55.74 | 49.71 | |
0.3 | 1 | 3.667 | 3.666 | 3.664 | 3.652 | 3.623 | 3.570 | 3.487 | 3.375 | 3.241 | 3.091 | 2.930 |
2 | 19.88 | 19.85 | 19.56 | 18.86 | 18.15 | 17.93 | 18.41 | 19.39 | 19.86 | 18.85 | 16.76 | |
3 | 53.30 | 52.87 | 50.01 | 48.27 | 50.29 | 53.19 | 51.58 | 48.89 | 51.08 | 52.90 | 46.68 | |
0.4 | 1 | 3.737 | 3.737 | 3.734 | 3.722 | 3.691 | 3.631 | 3.538 | 3.412 | 3.259 | 3.089 | 2.907 |
2 | 19.11 | 19.09 | 18.82 | 18.15 | 17.42 | 17.15 | 17.58 | 18.58 | 19.10 | 18.01 | 15.80 | |
3 | 50.34 | 49.97 | 47.39 | 45.54 | 47.22 | 50.13 | 48.81 | 45.86 | 47.83 | 49.95 | 43.55 | |
0.5 | 1 | 3.824 | 3.824 | 3.820 | 3.807 | 3.774 | 3.708 | 3.602 | 3.456 | 3.280 | 3.083 | 2.874 |
2 | 18.32 | 18.29 | 18.06 | 17.42 | 16.68 | 16.34 | 16.73 | 17.73 | 18.30 | 17.12 | 14.78 | |
3 | 47.25 | 46.95 | 44.66 | 42.73 | 44.05 | 46.92 | 45.97 | 42.76 | 44.39 | 46.90 | 40.29 |
Nondimensional Natural Frequencies | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
= 0 | = 0.1 | = 0.2 | = 0.3 | = 0.4 | = 0.5 | = 0.6 | = 0.7 | = 0.8 | = 0.9 | = 1 | ||
0 | 1 | 3.516 | 3.516 | 3.513 | 3.503 | 3.479 | 3.437 | 3.375 | 3.293 | 3.196 | 3.086 | 2.968 |
2 | 22.03 | 21.99 | 21.63 | 20.88 | 20.23 | 20.15 | 20.73 | 21.64 | 22.01 | 21.16 | 19.35 | |
3 | 61.66 | 61.00 | 57.43 | 56.13 | 59.00 | 61.66 | 59.49 | 57.51 | 60.04 | 61.21 | 55.49 | |
0.1 | 1 | 3.674 | 3.673 | 3.670 | 3.659 | 3.631 | 3.580 | 3.505 | 3.405 | 3.286 | 3.153 | 3.011 |
2 | 21.55 | 21.51 | 21.16 | 20.38 | 19.68 | 19.54 | 20.13 | 21.12 | 21.52 | 20.54 | 18.54 | |
3 | 59.16 | 58.57 | 55.14 | 53.64 | 56.32 | 59.14 | 56.97 | 54.65 | 57.28 | 58.67 | 52.51 | |
0.2 | 1 | 3.855 | 3.855 | 3.851 | 3.838 | 3.805 | 3.743 | 3.650 | 3.527 | 3.380 | 3.217 | 3.045 |
2 | 21.05 | 21.02 | 20.68 | 19.88 | 19.11 | 18.92 | 19.50 | 20.58 | 21.02 | 19.88 | 17.67 | |
3 | 56.61 | 56.08 | 52.81 | 51.12 | 53.57 | 56.56 | 54.42 | 51.71 | 54.40 | 56.07 | 49.45 | |
0.3 | 1 | 4.067 | 4.067 | 4.063 | 4.047 | 4.007 | 3.931 | 3.814 | 3.658 | 3.474 | 3.272 | 3.061 |
2 | 20.55 | 20.52 | 20.19 | 19.37 | 18.54 | 18.28 | 18.85 | 20.02 | 20.51 | 19.17 | 16.73 | |
3 | 54.00 | 53.53 | 50.44 | 48.57 | 50.76 | 53.90 | 51.83 | 48.68 | 51.39 | 53.41 | 46.33 | |
0.4 | 1 | 4.319 | 4.318 | 4.314 | 4.295 | 4.246 | 4.150 | 4.000 | 3.801 | 3.567 | 3.313 | 3.051 |
2 | 20.05 | 20.02 | 19.70 | 18.87 | 17.96 | 17.63 | 18.19 | 19.46 | 19.99 | 18.41 | 15.72 | |
3 | 51.32 | 50.92 | 48.03 | 45.99 | 47.89 | 51.14 | 49.22 | 45.57 | 48.21 | 50.67 | 43.16 | |
0.5 | 1 | 4.625 | 4.625 | 4.619 | 4.596 | 4.534 | 4.410 | 4.213 | 3.953 | 3.650 | 3.328 | 3.000 |
2 | 19.55 | 19.52 | 19.21 | 18.37 | 17.39 | 16.98 | 17.52 | 18.89 | 19.46 | 17.58 | 14.65 | |
3 | 48.57 | 48.23 | 45.57 | 43.37 | 44.96 | 48.28 | 46.58 | 42.39 | 44.86 | 47.85 | 39.94 |
Approaches | Nondimensional Natural Frequencies | ||||||||
---|---|---|---|---|---|---|---|---|---|
= 0 | = 0.2 | = 0.4 | = 0.6 | = 0.8 | = 1.0 | ||||
Exact [16] | BE | 1 | 3.5160 | 2.6127 | 2.1680 | 1.8925 | 1.7006 | 1.5573 | |
2 | 22.0345 | 18.2078 | 17.1763 | 16.7007 | 16.4274 | 16.2501 | |||
3 | 61.6972 | 53.5586 | 52.0632 | 51.4451 | 51.1080 | 50.8958 | |||
Present | = 1 | = 0 | 1 | 3.5160 | 2.6127 | 2.1679 | 1.8924 | 1.7005 | 1.5571 |
2 | 22.0343 | 18.2076 | 17.1761 | 16.7006 | 16.4273 | 16.2499 | |||
3 | 61.6961 | 53.5577 | 52.0624 | 51.4443 | 51.1071 | 50.8950 | |||
≠ 0 | 1 | 3.5159 | 2.6126 | 2.1679 | 1.8924 | 1.7005 | 1.5571 | ||
2 | 22.0296 | 18.2053 | 17.1744 | 16.6990 | 16.4258 | 16.2485 | |||
3 | 61.6651 | 53.5397 | 52.0463 | 51.4288 | 51.0921 | 50.8801 | |||
= 2 | = 0 | 1 | 3.5160 | 2.6127 | 2.1679 | 1.8924 | 1.7005 | 1.5571 | |
2 | 22.0343 | 18.2076 | 17.1761 | 16.7006 | 16.4273 | 16.2499 | |||
3 | 61.6961 | 53.5577 | 52.0624 | 51.4443 | 51.1071 | 50.8950 | |||
≠ 0 | 1 | 3.5159 | 2.6126 | 2.1679 | 1.8924 | 1.7005 | 1.5571 | ||
2 | 22.0296 | 18.2053 | 17.1744 | 16.6990 | 16.4258 | 16.2485 | |||
3 | 61.6651 | 53.5397 | 52.0463 | 51.4288 | 51.0921 | 50.8802 |
Case | [N/m] | [N-m/rad] | [N/m] | [N-m/rad] | |||
---|---|---|---|---|---|---|---|
= 0 | = 1 | ||||||
A1 | 0 | 0–0.1 | 0 | 22,026.5 | 22,026.5 | 0 | 0 |
A2 | 0 | 0 | 0–0.1 | 22,026.5 | 22,026.5 | 0 | 0 |
A3 | 0.5 | 0–0.1 | 0 | 22,026.5 | 22,026.5 | 0 | 0 |
A4 | 0.5 | 0 | 0–0.1 | 22,026.5 | 22,026.5 | 0 | 0 |
A5 | 0 | 0–0.1 | 0 | 22,026.5 | 22,026.5 | 22,026.5 | 0 |
A6 | 0 | 0 | 0–0.1 | 22,026.5 | 22,026.5 | 22,026.5 | 0 |
A7 | 0.5 | 0–0.1 | 0 | 22,026.5 | 22,026.5 | 22,026.5 | 0 |
A8 | 0.5 | 0 | 0–0.1 | 22,026.5 | 22,026.5 | 22,026.5 | 0 |
A9 | 0 | 0–0.1 | 0 | 22,026.5 | 22,026.5 | 22,026.5 | 22,026.5 |
A10 | 0 | 0 | 0–0.1 | 22,026.5 | 22,026.5 | 22,026.5 | 22,026.5 |
A11 | 0.5 | 0–0.1 | 0 | 22,026.5 | 22,026.5 | 22,026.5 | 22,026.5 |
A12 | 0.5 | 0 | 0–0.1 | 22,026.5 | 22,026.5 | 22,026.5 | 22,026.5 |
Case | Nondimensional Natural Frequencies | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | 0.1 | |||
A1 | 1 | 2.859 | 2.857 | 2.856 | 2.854 | 2.853 | 2.851 | 2.850 | 2.848 | 2.846 | 2.845 | 2.843 |
2 | 8.638 | 8.549 | 8.463 | 8.379 | 8.297 | 8.218 | 8.140 | 8.065 | 7.992 | 7.921 | 7.851 | |
3 | 30.35 | 29.98 | 29.64 | 29.32 | 29.02 | 28.74 | 28.48 | 28.23 | 28.00 | 27.78 | 27.57 | |
A2 | 1 | 2.859 | 2.816 | 2.775 | 2.736 | 2.698 | 2.661 | 2.626 | 2.592 | 2.559 | 2.527 | 2.496 |
2 | 8.638 | 8.551 | 8.471 | 8.398 | 8.331 | 8.268 | 8.211 | 8.157 | 8.108 | 8.061 | 8.018 | |
3 | 30.35 | 29.81 | 29.34 | 28.93 | 28.56 | 28.24 | 27.95 | 27.68 | 27.45 | 27.23 | 27.03 | |
A3 | 1 | 3.239 | 3.237 | 3.235 | 3.233 | 3.231 | 3.229 | 3.227 | 3.225 | 3.223 | 3.221 | 3.219 |
2 | 8.561 | 8.474 | 8.389 | 8.306 | 8.225 | 8.147 | 8.070 | 7.996 | 7.923 | 7.852 | 7.783 | |
3 | 24.10 | 23.85 | 23.61 | 23.39 | 23.18 | 22.99 | 22.81 | 22.63 | 22.47 | 22.32 | 22.17 | |
A4 | 1 | 3.239 | 3.150 | 3.067 | 2.989 | 2.916 | 2.848 | 2.783 | 2.723 | 2.666 | 2.612 | 2.561 |
2 | 8.561 | 8.393 | 8.250 | 8.127 | 8.020 | 7.927 | 7.845 | 7.772 | 7.707 | 7.649 | 7.597 | |
3 | 24.10 | 23.20 | 22.51 | 21.96 | 21.51 | 21.15 | 20.84 | 20.59 | 20.37 | 20.18 | 20.01 | |
A5 | 1 | 6.080 | 6.050 | 6.019 | 5.988 | 5.958 | 5.928 | 5.898 | 5.868 | 5.838 | 5.809 | 5.779 |
2 | 12.18 | 12.09 | 12.01 | 11.93 | 11.86 | 11.78 | 11.71 | 11.65 | 11.58 | 11.52 | 11.46 | |
3 | 31.85 | 31.50 | 31.17 | 30.86 | 30.57 | 30.30 | 30.05 | 29.82 | 29.60 | 29.39 | 29.19 | |
A6 | 1 | 6.080 | 6.069 | 6.057 | 6.045 | 6.032 | 6.019 | 6.006 | 5.993 | 5.979 | 5.966 | 5.951 |
2 | 12.18 | 11.96 | 11.76 | 11.57 | 11.38 | 11.20 | 11.04 | 10.88 | 10.72 | 10.58 | 10.44 | |
3 | 31.85 | 31.18 | 30.59 | 30.07 | 29.60 | 29.19 | 28.82 | 28.49 | 28.19 | 27.92 | 27.67 | |
A7 | 1 | 6.324 | 6.288 | 6.251 | 6.215 | 6.179 | 6.143 | 6.108 | 6.072 | 6.038 | 6.003 | 5.969 |
2 | 13.58 | 13.46 | 13.36 | 13.25 | 13.15 | 13.06 | 12.97 | 12.88 | 12.79 | 12.71 | 12.64 | |
3 | 28.44 | 28.21 | 28.00 | 27.80 | 27.62 | 27.44 | 27.28 | 27.13 | 26.99 | 26.86 | 26.73 | |
A8 | 1 | 6.324 | 6.318 | 6.312 | 6.306 | 6.299 | 6.292 | 6.285 | 6.277 | 6.270 | 6.262 | 6.254 |
2 | 13.58 | 13.35 | 13.11 | 12.88 | 12.64 | 12.40 | 12.17 | 11.95 | 11.73 | 11.51 | 11.31 | |
3 | 28.44 | 27.03 | 25.84 | 24.84 | 24.01 | 23.32 | 22.74 | 22.25 | 21.83 | 21.47 | 21.16 | |
A9 | 1 | 13.43 | 13.29 | 13.17 | 13.05 | 12.93 | 12.82 | 12.71 | 12.61 | 12.51 | 12.42 | 12.33 |
2 | 38.86 | 38.42 | 38.01 | 37.63 | 37.28 | 36.95 | 36.64 | 36.36 | 36.10 | 35.85 | 35.61 | |
3 | 85.14 | 84.15 | 83.27 | 82.48 | 81.77 | 81.13 | 80.55 | 80.03 | 79.55 | 79.11 | 78.70 | |
A10 | 1 | 13.43 | 13.29 | 13.17 | 13.05 | 12.93 | 12.82 | 12.71 | 12.61 | 12.51 | 12.42 | 12.33 |
2 | 38.86 | 38.42 | 38.01 | 37.63 | 37.28 | 36.95 | 36.64 | 36.36 | 36.10 | 35.85 | 35.61 | |
3 | 85.14 | 84.15 | 83.27 | 82.48 | 81.77 | 81.13 | 80.55 | 80.03 | 79.55 | 79.11 | 78.70 | |
A11 | 1 | 6.964 | 6.919 | 6.875 | 6.831 | 6.787 | 6.744 | 6.700 | 6.658 | 6.615 | 6.573 | 6.532 |
2 | 31.05 | 30.76 | 30.49 | 30.24 | 30.01 | 29.79 | 29.59 | 29.40 | 29.23 | 29.06 | 28.91 | |
3 | 64.62 | 63.99 | 63.42 | 62.90 | 62.44 | 62.01 | 61.62 | 61.27 | 60.94 | 60.65 | 60.37 | |
A12 | 1 | 6.964 | 6.946 | 6.928 | 6.909 | 6.889 | 6.870 | 6.849 | 6.829 | 6.807 | 6.785 | 6.763 |
2 | 31.05 | 30.24 | 29.54 | 28.92 | 28.39 | 27.91 | 27.50 | 27.13 | 26.80 | 26.51 | 26.24 | |
3 | 64.62 | 63.09 | 61.85 | 60.85 | 60.03 | 59.35 | 58.78 | 58.29 | 57.87 | 57.51 | 57.19 |
Case | Nondimensional Natural Frequencies | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | 0.1 | |||
A1 | 1 | 2.859 | 2.857 | 2.856 | 2.854 | 2.853 | 2.851 | 2.850 | 2.848 | 2.846 | 2.845 | 2.843 |
2 | 8.638 | 8.549 | 8.463 | 8.379 | 8.297 | 8.218 | 8.140 | 8.065 | 7.992 | 7.921 | 7.851 | |
3 | 30.35 | 29.98 | 29.64 | 29.32 | 29.02 | 28.74 | 28.48 | 28.23 | 28.00 | 27.78 | 27.58 | |
A2 | 1 | 2.859 | 2.816 | 2.775 | 2.736 | 2.698 | 2.661 | 2.626 | 2.592 | 2.559 | 2.527 | 2.496 |
2 | 8.638 | 8.551 | 8.471 | 8.398 | 8.331 | 8.269 | 8.211 | 8.158 | 8.108 | 8.062 | 8.018 | |
3 | 30.35 | 29.81 | 29.34 | 28.93 | 28.56 | 28.24 | 27.95 | 27.68 | 27.45 | 27.23 | 27.03 | |
A3 | 1 | 3.901 | 3.898 | 3.894 | 3.890 | 3.886 | 3.883 | 3.879 | 3.875 | 3.871 | 3.867 | 3.863 |
2 | 9.188 | 9.083 | 8.982 | 8.883 | 8.788 | 8.696 | 8.606 | 8.519 | 8.435 | 8.353 | 8.273 | |
3 | 24.93 | 24.67 | 24.43 | 24.21 | 24.00 | 23.80 | 23.62 | 23.45 | 23.29 | 23.13 | 22.99 | |
A4 | 1 | 3.901 | 3.729 | 3.572 | 3.431 | 3.302 | 3.185 | 3.079 | 2.982 | 2.893 | 2.811 | 2.735 |
2 | 9.188 | 8.868 | 8.622 | 8.429 | 8.275 | 8.151 | 8.048 | 7.962 | 7.889 | 7.827 | 7.773 | |
3 | 24.93 | 23.28 | 22.22 | 21.49 | 20.96 | 20.56 | 20.00 | 19.80 | 19.80 | 19.63 | 19.49 | |
A5 | 1 | 6.081 | 6.050 | 6.019 | 5.989 | 5.958 | 5.928 | 5.898 | 5.868 | 5.838 | 5.809 | 5.779 |
2 | 12.18 | 12.09 | 12.01 | 11.93 | 11.86 | 11.78 | 11.71 | 11.65 | 11.58 | 11.52 | 11.46 | |
3 | 31.85 | 31.50 | 31.17 | 30.86 | 30.57 | 30.31 | 30.05 | 29.82 | 29.60 | 29.39 | 29.19 | |
A6 | 1 | 6.081 | 6.069 | 6.057 | 6.045 | 6.032 | 6.019 | 6.006 | 5.993 | 5.979 | 5.966 | 5.951 |
2 | 12.18 | 11.96 | 11.76 | 11.57 | 11.38 | 11.21 | 11.04 | 10.88 | 10.72 | 10.58 | 10.44 | |
3 | 31.85 | 31.18 | 30.59 | 30.07 | 29.60 | 29.19 | 28.82 | 28.49 | 28.19 | 27.92 | 27.67 | |
A7 | 1 | 6.838 | 6.789 | 6.741 | 6.693 | 6.645 | 6.598 | 6.551 | 6.505 | 6.460 | 6.415 | 6.371 |
2 | 15.24 | 15.09 | 14.95 | 14.81 | 14.69 | 14.57 | 14.45 | 14.35 | 14.24 | 14.14 | 14.05 | |
3 | 32.32 | 32.08 | 31.86 | 31.65 | 31.46 | 31.28 | 31.11 | 30.96 | 30.81 | 30.68 | 30.56 | |
A8 | 1 | 6.838 | 6.834 | 6.829 | 6.824 | 6.819 | 6.814 | 6.808 | 6.802 | 6.796 | 6.790 | 6.783 |
2 | 15.24 | 15.00 | 14.75 | 14.48 | 14.19 | 13.88 | 13.58 | 13.27 | 12.96 | 12.66 | 12.38 | |
3 | 32.32 | 29.70 | 27.53 | 25.81 | 24.47 | 23.43 | 22.61 | 21.95 | 21.43 | 21.01 | 20.66 | |
A9 | 1 | 13.43 | 13.29 | 13.17 | 13.05 | 12.93 | 12.82 | 12.71 | 12.61 | 12.51 | 12.42 | 12.33 |
2 | 38.86 | 38.42 | 38.01 | 37.63 | 37.28 | 36.95 | 36.64 | 36.36 | 36.10 | 35.85 | 35.61 | |
3 | 85.14 | 84.15 | 83.27 | 82.48 | 81.77 | 81.13 | 80.55 | 80.03 | 79.55 | 79.11 | 78.70 | |
A10 | 1 | 13.43 | 13.29 | 13.17 | 13.05 | 12.93 | 12.82 | 12.71 | 12.61 | 12.51 | 12.42 | 12.33 |
2 | 38.86 | 38.42 | 38.01 | 37.63 | 37.28 | 36.95 | 36.64 | 36.36 | 36.10 | 35.85 | 35.61 | |
3 | 85.14 | 84.15 | 83.27 | 82.48 | 81.77 | 81.13 | 80.55 | 80.03 | 79.55 | 79.11 | 78.70 | |
A11 | 1 | 15.680 | 15.548 | 15.423 | 15.305 | 15.193 | 15.087 | 14.987 | 14.892 | 14.801 | 14.716 | 14.634 |
2 | 33.29 | 33.00 | 32.74 | 32.49 | 32.27 | 32.06 | 31.87 | 31.69 | 31.53 | 31.37 | 31.23 | |
3 | 66.06 | 65.43 | 64.86 | 64.35 | 63.89 | 63.48 | 63.10 | 62.75 | 62.44 | 62.15 | 61.89 | |
A12 | 1 | 15.680 | 15.309 | 14.941 | 14.582 | 14.233 | 13.898 | 13.578 | 13.273 | 12.985 | 12.713 | 12.456 |
2 | 33.29 | 31.62 | 30.26 | 29.16 | 28.26 | 27.53 | 26.93 | 26.42 | 26.00 | 25.64 | 25.33 | |
3 | 66.06 | 63.07 | 61.05 | 59.63 | 58.59 | 57.81 | 57.20 | 56.72 | 56.32 | 56.00 | 55.72 |
Approaches | Nondimensional Axial Loading | ||||||||
---|---|---|---|---|---|---|---|---|---|
−5 | −3 | 0 | 4 | 7 | 15 | ||||
Li et al. [4] | BE | 1 | – | – | 3.5160 | 5.4082 | 6.3830 | 8.2497 | |
2 | 17.9631 | 19.6928 | 22.0345 | 24.7759 | 26.6100 | 30.8390 | |||
3 | 58.4823 | 59.7843 | 69.6972 | 64.1526 | 65.9392 | 70.4318 | |||
Present | = 1 | = 0 | 1 | – | – | 3.5160 | 5.4208 | 6.3830 | 8.2497 |
2 | 17.9629 | 19.6925 | 22.0343 | 24.7757 | 26.6098 | 30.8388 | |||
3 | 58.4812 | 59.7873 | 61.6961 | 64.1515 | 65.9298 | 70.4305 | |||
≠ 0 | 1 | – | – | 3.5159 | 5.4207 | 6.3829 | 8.2495 | ||
2 | 17.9591 | 19.6884 | 22.0296 | 24.7706 | 26.6044 | 30.8328 | |||
3 | 58.4518 | 59.7573 | 61.6651 | 64.1193 | 65.8967 | 70.3955 | |||
= 2 | = 0 | 1 | – | – | 3.5160 | 5.4208 | 6.3830 | 8.2497 | |
2 | 17.9629 | 19.6926 | 22.0343 | 24.7758 | 26.6098 | 30.8389 | |||
3 | 58.4812 | 59.7873 | 61.6961 | 64.1515 | 65.9298 | 70.4306 | |||
≠ 0 | 1 | – | – | 3.5159 | 5.4207 | 6.3829 | 8.2495 | ||
2 | 17.9590 | 19.6884 | 22.0296 | 24.7707 | 26.6044 | 30.8329 | |||
3 | 58.4518 | 59.7573 | 61.6651 | 64.1193 | 65.8968 | 70.3956 |
Nondimensional Axial Loading | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
−3 | −2 | −1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
1 | 0 | 1 | - | 1.2733 | 2.3386 | 2.8588 | 3.1813 | 3.4016 | 3.5618 | 3.6837 | 3.7798 | 3.8577 | 3.9223 |
2 | 6.7710 | 7.3707 | 8.0041 | 8.6378 | 9.2530 | 9.8427 | 10.403 | 10.936 | 11.444 | 11.928 | 12.392 | ||
3 | 28.002 | 28.804 | 29.585 | 30.346 | 31.091 | 31.816 | 32.525 | 33.218 | 33.896 | 34.560 | 35.210 | ||
0.5 | 1 | - | - | 1.8380 | 3.2388 | 3.7776 | 4.0739 | 4.2657 | 4.4023 | 4.5060 | 4.5881 | 4.6553 | |
2 | 5.5186 | 6.3473 | 7.4409 | 8.5608 | 9.5644 | 10.446 | 11.230 | 11.940 | 12.592 | 13.198 | 13.768 | ||
3 | 18.479 | 20.506 | 22.383 | 24.104 | 25.681 | 27.134 | 28.480 | 29.735 | 30.913 | 32.025 | 33.079 | ||
2 | 0 | 1 | - | 1.2733 | 2.3386 | 2.8588 | 3.1813 | 3.4016 | 3.5618 | 3.6837 | 3.7799 | 3.8577 | 3.9223 |
2 | 6.7710 | 7.3707 | 8.0041 | 8.6378 | 9.2530 | 9.8420 | 10.403 | 10.936 | 11.444 | 11.928 | 12.392 | ||
3 | 28.002 | 28.804 | 29.585 | 30.347 | 31.091 | 31.816 | 32.525 | 33.218 | 33.896 | 34.560 | 35.210 | ||
0.5 | 1 | - | - | 0.4914 | 3.9014 | 4.5704 | 4.8860 | 5.0780 | 5.2111 | 5.3106 | 5.3888 | 5.4525 | |
2 | 5.2604 | 6.1048 | 7.5063 | 9.1877 | 10.590 | 11.736 | 12.713 | 13.579 | 14.365 | 15.091 | 15.770 | ||
3 | 15.484 | 18.877 | 22.123 | 24.932 | 27.332 | 29.413 | 31.255 | 32.913 | 34.429 | 35.833 | 37.147 |
Unit | Type A | Type C | Type D | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Case 1 | Case 2 | Case 3 | Case 1 | Case 2 | Case 1 | Case 2 | |||||
Nm/rad | 0 | 1.319 109 | – | – | – | – | – | – | |||
N/m | 0 | 1.319 109 | 0 | 5000 | 5000 | 0.4 | 5000 | 5000 | |||
N/m | 0.3 | 5000 | 5000 | 5000 | 0.5 | 5000 | 5000 | 0.6 | 5000 | 5000 | |
N/m | 0.5 | 5000 | 5000 | 5000 | 1 | 5000 | 5000 | – | – | – | |
N/m | 0.7 | 5000 | 5000 | 5000 | – | – | – | – | – | – | |
– | 0 | – | – | – | 0 | 0 | 0.1 | 0 | 0 | 0.1 | |
– | 1 | 0 | 0.1 | 0.1 | 1 | 0 | 0.1 | 1 | 0 | 0.1 | |
N | 1 | 0 | 0 | 5000 | – | – | – | – | – | – |
Type | Case | Beam Type | Approaches | Natural Frequencies [Hz] | |||
---|---|---|---|---|---|---|---|
A | 3 | 0.5 | = 1 | ANSYS | 24.94 | 75.74 | 166.8 |
Present | 24.90 | 75.61 | 166.5 | ||||
0.5 | = 2 | ANSYS | 28.46 | 81.38 | 174.8 | ||
Present | 28.38 | 81.02 | 174.0 | ||||
C | 2 | 0.3 | = 1 | ANSYS | 14.99 | 21.71 | 74.46 |
Present | 14.99 | 21.71 | 74.32 | ||||
0.3 | = 2 | ANSYS | 14.34 | 17.75 | 53.14 | ||
Present | 14.34 | 17.76 | 53.22 | ||||
D | 2 | 0 | = 1 | ANSYS | 3.169 | 10.38 | 63.99 |
Present | 3.169 | 10.38 | 63.77 | ||||
0 | = 2 | ANSYS | 3.169 | 10.38 | 63.99 | ||
Present | 3.169 | 10.38 | 63.77 |
Type | Case | Nondimensional Natural Frequencies | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
= 1 | = 2 | |||||||||||||
= 0 | = 0.1 | = 0.2 | = 0.3 | = 0.4 | = 0.5 | = 0 | = 0.1 | = 0.2 | = 0.3 | = 0.4 | = 0.5 | |||
A | 1 | 1 | 4.693 | 4.794 | 4.909 | 5.042 | 5.196 | 5.381 | 4.693 | 4.966 | 5.284 | 5.660 | 6.112 | 6.669 |
2 | 22.44 | 21.78 | 21.10 | 20.40 | 19.69 | 18.95 | 22.44 | 22.01 | 21.57 | 21.14 | 20.71 | 20.31 | ||
3 | 61.83 | 59.14 | 56.37 | 53.53 | 50.60 | 47.55 | 61.83 | 59.35 | 56.83 | 54.26 | 51.64 | 48.96 | ||
2 | 1 | 3.932 | 3.950 | 3.963 | 3.969 | 3.962 | 3.935 | 3.932 | 4.029 | 4.111 | 4.168 | 4.177 | 4.108 | |
2 | 19.85 | 19.08 | 18.28 | 17.45 | 16.58 | 15.68 | 19.85 | 19.12 | 18.35 | 17.55 | 16.75 | 15.97 | ||
3 | 55.68 | 52.84 | 49.93 | 46.93 | 43.83 | 40.61 | 55.68 | 52.72 | 49.70 | 46.62 | 43.51 | 40.37 | ||
3 | 1 | 6.047 | 6.196 | 6.362 | 6.546 | 6.752 | 6.984 | 6.047 | 6.368 | 6.718 | 7.099 | 7.508 | 7.943 | |
2 | 23.23 | 22.79 | 22.37 | 21.99 | 21.66 | 21.41 | 23.23 | 22.99 | 22.80 | 22.71 | 22.75 | 22.96 | ||
3 | 58.88 | 56.42 | 53.96 | 51.54 | 49.20 | 46.98 | 58.88 | 56.48 | 54.19 | 52.10 | 50.34 | 49.12 | ||
C | 1 | 1 | 3.863 | 3.953 | 4.045 | 4.138 | 4.231 | 4.322 | 3.864 | 4.046 | 4.227 | 4.402 | 4.570 | 4.732 |
2 | 5.508 | 5.649 | 5.810 | 5.992 | 6.198 | 6.423 | 5.508 | 5.803 | 6.154 | 6.565 | 7.028 | 7.504 | ||
3 | 23.43 | 22.43 | 21.45 | 20.51 | 19.63 | 18.85 | 23.43 | 22.50 | 21.67 | 20.97 | 20.49 | 20.37 | ||
2 | 1 | 3.555 | 3.627 | 3.700 | 3.772 | 3.844 | 3.914 | 3.555 | 3.698 | 3.834 | 3.959 | 4.073 | 4.177 | |
2 | 4.370 | 4.442 | 4.524 | 4.617 | 4.724 | 4.848 | 4.371 | 4.518 | 4.694 | 4.899 | 5.136 | 5.398 | ||
3 | 17.97 | 17.01 | 16.04 | 15.06 | 14.06 | 13.04 | 17.97 | 16.88 | 15.78 | 14.66 | 13.52 | 12.36 | ||
D | 1 | 1 | 1.107 | 1.135 | 1.165 | 1.198 | 1.234 | 1.272 | 1.107 | 1.163 | 1.223 | 1.285 | 1.348 | 1.411 |
2 | 3.164 | 3.241 | 3.328 | 3.427 | 3.541 | 3.675 | 3.164 | 3.327 | 3.520 | 3.753 | 4.039 | 4.398 | ||
3 | 22.62 | 21.53 | 20.43 | 19.34 | 18.25 | 17.17 | 22.62 | 21.55 | 20.51 | 19.50 | 18.53 | 17.63 | ||
2 | 1 | 0.875 | 0.888 | 0.902 | 0.917 | 0.933 | 0.949 | 0.874 | 0.901 | 0.928 | 0.954 | 0.979 | 1.003 | |
2 | 2.864 | 2.916 | 2.969 | 3.024 | 3.079 | 3.131 | 2.864 | 2.974 | 3.088 | 3.204 | 3.311 | 3.392 | ||
3 | 17.60 | 16.62 | 15.63 | 14.62 | 13.59 | 12.53 | 17.60 | 16.49 | 15.37 | 14.23 | 13.08 | 11.94 |
Beam Type | Natural Frequencies [rad/s] | ||||||||
---|---|---|---|---|---|---|---|---|---|
[N/m] | |||||||||
exp(10) | exp(11) | exp(12) | exp(13) | exp(14) | … | exp(23) | |||
uniform | 0 | 1 | 65.088 | 73.831 | 77.664 | 79.158 | 79.718 | … | 80.050 |
2 | 196.66 | 276.06 | 375.73 | 449.31 | 482.21 | … | 501.55 | ||
3 | 690.90 | 734.44 | 831.66 | 1032.3 | 1245.3 | … | 1403.9 | ||
= 1 | 0.5 | 1 | 73.738 | 81.827 | 85.100 | 86.332 | 86.788 | … | 87.055 |
2 | 194.91 | 270.67 | 349.02 | 391.83 | 407.95 | … | 416.99 | ||
3 | 548.78 | 593.63 | 701.92 | 880.65 | 1005.4 | … | 1075.8 | ||
= 2 | 0.5 | 1 | 88.825 | 99.002 | 102.979 | 104.4 | 105.0 | … | 105.3 |
2 | 209.18 | 290.00 | 374.71 | 419.67 | 436.01 | … | 445.00 | ||
3 | 567.63 | 611.77 | 722.14 | 908.61 | 1036.3 | … | 1105.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.W. Free Vibration Analysis of Elastically Restrained Tapered Beams with Concentrated Mass and Axial Force. Appl. Sci. 2023, 13, 10742. https://doi.org/10.3390/app131910742
Lee JW. Free Vibration Analysis of Elastically Restrained Tapered Beams with Concentrated Mass and Axial Force. Applied Sciences. 2023; 13(19):10742. https://doi.org/10.3390/app131910742
Chicago/Turabian StyleLee, Jung Woo. 2023. "Free Vibration Analysis of Elastically Restrained Tapered Beams with Concentrated Mass and Axial Force" Applied Sciences 13, no. 19: 10742. https://doi.org/10.3390/app131910742
APA StyleLee, J. W. (2023). Free Vibration Analysis of Elastically Restrained Tapered Beams with Concentrated Mass and Axial Force. Applied Sciences, 13(19), 10742. https://doi.org/10.3390/app131910742