A Study on Tomato Disease and Pest Detection Method
<p>Structure of the YOLOv5n.</p> "> Figure 2
<p>C3_1 structure diagram.</p> "> Figure 3
<p>C3_2 structure diagram.</p> "> Figure 4
<p>ViT structure.</p> "> Figure 5
<p>EfficientViT structure.</p> "> Figure 6
<p>Lightweight MSA structure.</p> "> Figure 7
<p>CARAFE module structure.</p> "> Figure 8
<p>Improved network structure.</p> "> Figure 9
<p>Tomato pest and disease example diagram.</p> "> Figure 10
<p>mAP@0.5 curve.</p> "> Figure 11
<p>mAP@0.5:0.95 curve.</p> "> Figure 12
<p>mAP@0.5 curve.</p> "> Figure 13
<p>mAP@0.5:0.95 curve.</p> "> Figure 14
<p>mAP@0.5 curve.</p> "> Figure 15
<p>mAP@0.5:0.95 curve.</p> "> Figure 16
<p>mAP@0.5 curve.</p> "> Figure 17
<p>mAP@0.5:0.95 curve.</p> "> Figure 18
<p>PR curve.</p> "> Figure 19
<p>Labeled images.</p> "> Figure 20
<p>YOLOv5n predictive images.</p> "> Figure 21
<p>YOLOv5n-VCW predictive images.</p> ">
Abstract
:1. Introduction
- In this paper, we propose a lightweight model for tomato pest and disease detection called YOLOv5n-VCW. This model improves the YOLOv5n architecture by replacing the original backbone network with Efficient Vision Transformer (EfficientViT) [9], replacing the original upsampling method with the lightweight and general-purpose Content-Aware ReAssembly of FEatures (CARAFE) algorithm [10], and replacing Complete-IoU (CIoU) Loss with Wise-IoU (WIoU) Loss [11]. All these improvements are effective in improving the performance of the model in tomato disease and pest detection tasks.
- This paper evaluates and compares the performance of mainstream object detection models, including YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x, SSD, Faster R-CNN, and the proposed YOLOv5n-VCW model, in the task of detecting tomato pests and diseases. The evaluation results show that YOLOv5n-VCW achieves mAP50 and mAP50:95 scores of 98.1% and 84.8%, respectively, which is a 2.3% and 1.7% improvement over YOLOv5n and even outperforms other models such as YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x.
- Another contribution of this paper is that it reduces the size of the model parameters to 1.9 M, which is a reduction of 0.4 M compared with YOLOv5n. In addition, the computational complexity is reduced by 1.2 GFLOPs, making the YOLOv5-VCW model much smaller than other evaluated models. This makes the YOLOv5-VCW model more suitable for use on devices with limited computational resources.
2. Related Works
3. YOLOv5 Object Detection Algorithm
4. Methods
4.1. Backbone Network Improvements
4.2. Up-Sampling Improvements
4.3. Bounded Box Regression Loss Function Improvement
4.4. Improved Network Structure
5. Experiment and Result
5.1. Datasets
5.2. Experimental Environment
5.3. Model Evaluation Metrics and Training Parameter Settings
5.4. Experimental Results and Analysis
5.4.1. Experimental Analysis of Improved Backbone Networks
5.4.2. Experimental Analysis of the Improved Upsampling Operator
5.4.3. Experimental Analysis of the Improved Bounding Box Regression Loss Function
5.4.4. Ablation Experiments
- (1)
- Using the original YOLOv5n as a base, only one of the above improvements was added to each group of experiments separately to verify the effectiveness of each improvement method on the original algorithm.
- (2)
- Based on the finally obtained improved algorithm, YOLOv5n-VCW, each experimental group eliminated only one of the above improvement methods separately to verify the effect of each improvement method on the final improved algorithm.
5.4.5. Comparison Experiments
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J. Research on tomato bacterial pith necrosis. Plant Dis. Pests 2012, 3, 9. [Google Scholar]
- Takayama, M.; Ezura, H. How and why does tomato accumulate a large amount of GABA in the fruit? Front. Plant Sci. 2015, 6, 612. [Google Scholar] [CrossRef] [PubMed]
- Manríquez-Altamirano, A.; Sierra-Pérez, J.; Muñoz, P.; Gabarrell, X. Analysis of urban agriculture solid waste in the frame of circular economy: Case study of tomato crop in integrated rooftop greenhouse. Sci. Total Environ. 2020, 734, 139375. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Ulucak, R.; Murshed, M.; Ma, H.; Işık, C. Carbonization and atmospheric pollution in China: The asymmetric impacts of forests, livestock production, and economic progress on CO2 emissions. J. Environ. Manag. 2021, 294, 113059. [Google Scholar] [CrossRef]
- Li, N.; Yu, Q. Tomato super-pangenome highlights the potential use of wild relatives in tomato breeding. Nat. Genet. 2023, 55, 744–745. [Google Scholar]
- Wang, X.Y.; Feng, J.; Zang, L.Y.; Yan, Y.L.; Yang, Y.Y.; Zhu, X.P. Natural occurrence of Tomato chlorosis virus in cowpea (Vigna unguiculata) in China. Plant Dis. 2018, 102, 254. [Google Scholar] [CrossRef]
- Arafa, R.A.; Kamel, S.M.; Taher, D.I.; Solberg, S.; Rakha, M.T. Leaf Extracts from Resistant Wild Tomato Can Be Used to Control Late Blight (Phytophthora infestans) in the Cultivated Tomato. Plants 2022, 11, 1824. [Google Scholar] [CrossRef]
- Ferrero, V.; Baeten, L.; Blanco-Sánchez, L.; Planelló, R.; Díaz-Pendón, J.A.; Rodríguez-Echeverría, S.; Haegeman, A.; Peña, E. Complex patterns in tolerance and resistance to pests and diseases underpin the domestication of tomato. New Phytol. 2020, 226, 254–266. [Google Scholar] [CrossRef]
- Han, C.; Gan, C.; Han, S. Efficientvit: Enhanced linear attention for high-resolution low-computation visual recognition. arXiv 2022, arXiv:2205.14756. [Google Scholar]
- Wang, J.; Chen, K.; Xu, R.; Liu, Z.; Loy, C.C.; Lin, D. Carafe: Content-aware reassembly of features. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Tong, Z.; Chen, Y.; Xu, Z.; Yu, R. Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism. arXiv 2023, arXiv:2301.10051. [Google Scholar]
- Viola, P.; Jones, M.J. Robust real-time face detection. Int. J. Comput. Vis. 2004, 57, 137–154. [Google Scholar] [CrossRef]
- Tan, P.S.; Lim, K.M.; Lee, C.P. Human action recognition with sparse autoencoder and histogram of oriented gradients. In Proceedings of the 2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), Kota Kinabalu, Malaysia, 26–27 September 2020. [Google Scholar]
- Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object Detection with Discriminatively Trained Part-Based Models. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1627–1645. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar, U.; Ali, M.A.; Hassanien, A.E.; Hefny, H. Identifying two of tomatoes leaf viruses using support vector machine. In Information Systems Design and Intelligent Applications, Proceedings of the Second International Conference INDIA 2015, Kalyani, India, 8–9 January 2015; Springer: Berlin/Heidelberg, Germany, 2015; Volume 1. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Fuentes, A.F.; Yoon, S.; Lee, J.; Park, D.S. High-performance deep neural network-based tomato plant diseases and pests diagnosis system with refinement filter bank. Front. Plant Sci. 2018, 9, 1162. [Google Scholar] [CrossRef] [PubMed]
- Ale, L.; Sheta, A.; Li, L.; Wang, Y.; Zhang, N. Deep learning based plant disease detection for smart agriculture. In Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Zhao, J.; Qu, J. Healthy and diseased tomatoes detection based on YOLOv2. In Proceedings of the Human Centered Computing: 4th International Conference, HCC 2018, Mérida, Mexico, 5–7 December 2018; Revised Selected Papers 4. Springer International Publishing: New York City, NY, USA, 2019. [Google Scholar]
- Latif, G.; Alghazo, J.; Maheswar, R.; Vijayakumar, V.; Butt, M. Deep learning based intelligence cognitive vision drone for automatic plant diseases identification and spraying. J. Intell. Fuzzy Syst. 2020, 39, 8103–8114. [Google Scholar] [CrossRef]
- Prabhakar, M.; Purushothaman, R.; Awasthi, D.P. Deep learning based assessment of disease severity for early blight in tomato crop. Multimed. Tools Appl. 2020, 79, 28773–28784. [Google Scholar] [CrossRef]
- Pattnaik, G.; Shrivastava, V.K.; Parvathi, K. Transfer learning-based framework for classification of pest in tomato plants. Appl. Artif. Intell. 2020, 34, 981–993. [Google Scholar] [CrossRef]
- Jiang, D.; Li, F.; Yang, Y.; Yu, S. A tomato leaf diseases classification method based on deep learning. In Proceedings of the 2020 Chinese Control and Decision Conference (CCDC), Hefei, China, 22–24 August 2020. [Google Scholar]
- Liu, J.; Wang, X. Tomato diseases and pests detection based on improved Yolo V3 convolutional neural network. Front. Plant Sci. 2020, 11, 898. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Liu, G. Diseases detection of occlusion and overlapping tomato leaves based on deep learning. Front. Plant Sci. 2021, 12, 792244. [Google Scholar] [CrossRef]
- Huang, X.; Chen, A.; Zhou, G.; Zhang, X.; Wang, J.; Peng, N.; Yan, N.; Jiang, C. Tomato leaf disease detection system based on FC-SNDPN. Multimed. Tools Appl. 2023, 82, 2121–2144. [Google Scholar] [CrossRef]
- Kc, K.; Yin, Z.; Wu, M.; Wu, Z. Depthwise separable convolution architectures for plant disease classification. Comput. Electron. Agric. 2019, 165, 104948. [Google Scholar] [CrossRef]
- Albahli, S.; Nawaz, M. DCNet: DenseNet-77-based CornerNet model for the tomato plant leaf disease detection and classification. Front. Plant Sci. 2022, 13, 957961. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Teng, Z.; Tong, M. LightMixer: A novel lightweight convolutional neural network for tomato disease detection. Front. Plant Sci. 2023, 14, 1166296. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, D.; Zeb, A.; Nanehkaran, Y.A. Identification of rice plant diseases using lightweight attention networks. Expert Syst. Appl. 2021, 169, 114514. [Google Scholar] [CrossRef]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- He, Y.; Zhu, C.; Wang, J.; Savvides, M.; Zhang, X. Bounding box regression with uncertainty for accurate object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
Class | Training Set (Sheets) | Test Set (Sheets) |
---|---|---|
healthy | 1700 | 425 |
bacterial spot | 1900 | 475 |
early blight | 1900 | 475 |
late blight | 1850 | 462 |
leaf mold | 1880 | 470 |
powdery mildew | 1827 | 456 |
septoria leaf spot | 1740 | 435 |
spider mites | 1740 | 435 |
mosaic virus | 1790 | 447 |
yellow leaf curl virus | 1965 | 491 |
Models | [email protected]/% | [email protected]:0.95/% | Params/M | FLOPs |
---|---|---|---|---|
YOLOv5n | 95.8 | 83.1 | 1.9 | 4.2 G |
YOLOv5n-V | 96.9 | 83.7 | 2.0 | 4.4 G |
Models | [email protected]/% | [email protected]:0.95/% | Params/M | FLOPs |
---|---|---|---|---|
YOLOv5n | 95.8 | 83.1 | 1.9 | 4.2 G |
YOLOv5n-C | 97.1 | 84.1 | 1.5 | 3.0 G |
Models | [email protected]/% | [email protected]:0.95/% | Params/M | FLOPs |
---|---|---|---|---|
YOLOv5n | 95.8 | 83.1 | 1.9 | 4.2 G |
YOLOv5n-W | 96.2 | 83.7 | 1.9 | 4.2 G |
Models | V | C | W | [email protected]% | [email protected]:0.95/% | Params/M | FLOPs |
---|---|---|---|---|---|---|---|
YOLOv5n | 95.8 | 83.1 | 1.9 | 4.2 G | |||
YOLOv5n-V | ✓ | 96.9 | 83.7 | 1.5 | 3.0 G | ||
YOLOv5n-C | ✓ | 97.1 | 84.1 | 2.0 | 4.4 G | ||
YOLOv5n-W | ✓ | 96.2 | 83.7 | 1.9 | 4.2 G | ||
YOLOv5n-VC | ✓ | ✓ | 97.8 | 84.5 | 1.6 | 3.3 G | |
YOLOv5n-VW | ✓ | ✓ | 97.3 | 84.1 | 1.5 | 3.0 G | |
YOLOv5n-CW | ✓ | ✓ | 97.7 | 84.6 | 2.0 | 4.4 G | |
YOLOv5n-VCW | ✓ | ✓ | ✓ | 98.1 | 84.8 | 1.6 | 3.3 G |
Models | [email protected]/% | [email protected]:0.95/% | Params/M | GFLOPs |
---|---|---|---|---|
YOLOv5n | 95.8 | 83.1 | 1.9 | 4.2 G |
YOLOv5s | 96.8 | 83.7 | 7.2 | 16.5 G |
YOLOv5m | 97.1 | 84.1 | 21.2 | 49.0 G |
YOLOv5l | 97.4 | 84.3 | 46.5 | 109.1 G |
YOLOv5x | 97.5 | 84.7 | 86.7 | 205.7 G |
YOLOv3 | 92.3 | 75.9 | 61.5 | 155.4 G |
SSD | 78.5 | 59.7 | 23.6 | 273.1 G |
Faster R-CNN | 81.7 | 64.5 | 136.6 | 369.7 G |
YOLOv5n-VCW(Ours) | 98.1 | 84.8 | 1.6 | 3.3 G |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, W.; Hong, W.; Wang, H.; Liu, M.; Liu, S. A Study on Tomato Disease and Pest Detection Method. Appl. Sci. 2023, 13, 10063. https://doi.org/10.3390/app131810063
Hu W, Hong W, Wang H, Liu M, Liu S. A Study on Tomato Disease and Pest Detection Method. Applied Sciences. 2023; 13(18):10063. https://doi.org/10.3390/app131810063
Chicago/Turabian StyleHu, Wenyi, Wei Hong, Hongkun Wang, Mingzhe Liu, and Shan Liu. 2023. "A Study on Tomato Disease and Pest Detection Method" Applied Sciences 13, no. 18: 10063. https://doi.org/10.3390/app131810063
APA StyleHu, W., Hong, W., Wang, H., Liu, M., & Liu, S. (2023). A Study on Tomato Disease and Pest Detection Method. Applied Sciences, 13(18), 10063. https://doi.org/10.3390/app131810063