Factors Influencing the Stability of a Slope Containing a Coal Seam in a Goaf
<p>Formation process of a slope containing a coal seam in goafs.</p> "> Figure 2
<p>Schematic diagram of the influencing factors. i is the slope gradient, T is the coal seam thickness, α is the coal seam dip angle, H is the coal seam position (that is, the distance between the coal seam exposed on the slope surface and the top of the slope), S is the roadway position (that is, the horizontal distance between the roadway center and the slope foot), and W is the roadway width. Blue dotted line is the boundary line of the rock strata.</p> "> Figure 3
<p>Schematic diagram of the model size.</p> "> Figure 4
<p>Meshing of the finite element model.</p> "> Figure 5
<p>Calculation stability of the slope containing a coal seam in a goaf. Within the scope of the red line is the position of the coal seam.</p> "> Figure 6
<p>Overall instability and collapse of a slope containing a coal seam in a goaf. The road line is a straight line in reality, which can be viewed in conjunction with <a href="#applsci-12-11699-f007" class="html-fig">Figure 7</a> and <a href="#applsci-12-11699-f008" class="html-fig">Figure 8</a>. Because of the wide angle of the camera, the road in the picture is curved.</p> "> Figure 7
<p>Side view of the instability and collapse of a slope containing a coal seam in a goaf.</p> "> Figure 8
<p>Top view of the instability and collapsed top of a slope containing a coal seam in a goaf.</p> "> Figure 9
<p>Stability coefficient of a slope containing a coal seam in a goaf under different influencing factors. (<b>a</b>)influencing factors: the coal seam position, the roadway width, the slope gradient, the coal seam thickness and the roadway position; (<b>b</b>)influencing factors: the mining depth and mining thickness ratio, the coal seam cohesion, the coal seam internal friction angle and the coal seam dip angle.</p> "> Figure 9 Cont.
<p>Stability coefficient of a slope containing a coal seam in a goaf under different influencing factors. (<b>a</b>)influencing factors: the coal seam position, the roadway width, the slope gradient, the coal seam thickness and the roadway position; (<b>b</b>)influencing factors: the mining depth and mining thickness ratio, the coal seam cohesion, the coal seam internal friction angle and the coal seam dip angle.</p> ">
Abstract
:1. Introduction
2. Model Analysis of a Slope Containing a Coal Seam in a Goaf
2.1. Influencing Factors and the Rock Mass Mechanical Parameters
2.2. Influencing Factors and the Rock Mass Mechanical Parameters
2.3. Model Parameter Analysis
3. Model Establishment and Stability Analysis
3.1. Model Establishment
3.2. Stability Analysis
4. Analysis of the Influencing Factors
4.1. Single-Factor Simulation
4.2. Orthogonal Multifactor Simulation Test
4.2.1. Range Analysis of the Slope Stability Coefficient
4.2.2. Variance Analysis of the Slope Stability Coefficient
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karrech, A.; Dong, X.; Elchalakani, M.; Basarir, H.; Shahin, M.A.; Regenauer-Lieb, K. Limit analysis for the seismic stability of three-dimensional rock slopes using the generalized Hoek-Brown criterion. Int. J. Min. Sci. Technol. 2022, 32, 237–245. [Google Scholar] [CrossRef]
- Kardani, N.; Zhou, A.N.; Nazem, M.; Shen, S.L. Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data. J. Rock Mech. Geotech. Eng. 2021, 13, 188–201. [Google Scholar] [CrossRef]
- Bai, G.X.; Hou, Y.L.; Wan, B.F.; An, N.; Yan, Y.H.; Tang, Z.; Yan, M.C.; Zhang, Y.H.; Sun, D.Y. Performance Evaluation and Engineering Verification of Machine Learning Based Prediction Models for Slope Stability. Appl. Sci. 2022, 12, 7890. [Google Scholar] [CrossRef]
- Ijaz, N.; Ye, W.M.; Rehman, Z.U.; Dai, F.; Ijaz, Z. Numerical study on stability of lignosulphonate-based stabilized surficial layer of unsaturated expansive soil slope considering hydro-mechanical effect. Transp. Geotech. 2022, 32, 100697. [Google Scholar] [CrossRef]
- Yang, Q.; Li, R.J.; Zhang, S.B.; Li, R.J.; Bai, W.S.; Xiao, H.P. Algorithm Implementation of Equivalent Expansive Force in Strength Reduction FEM and Its Application in the Stability of Expansive Soil Slope. Water 2022, 14, 1540. [Google Scholar] [CrossRef]
- Zhou, J.F.; Qin, C.B. Stability analysis of unsaturated soil slopes under reservoir drawdown and rainfall conditions: Steady and transient state analysis. Comput. Geotech. 2022, 142, 104541. [Google Scholar] [CrossRef]
- Pi, X.Q.; Li, L.; Tang, G.P.; Zhang, R.; Zhao, L.H. Stability analysis for soil slopes with weak interlayers using the finite element upper bound limit analysis. J. Rail Way Sci. Eng. 2019, 16, 351–358. [Google Scholar]
- Korzec, A.; Jankowski, R. Extended Newmark method to assess stability of slope under bidirectional seismic loading. Soil Dyn. Earthq. Eng. 2021, 143, 106600. [Google Scholar] [CrossRef]
- Di, B.F.; Stamatopoulos, C.A.; Stamatopoulos, A.C.; Liu, E.N.; Balla, L. Proposal, application and partial validation of a simplified expression evaluating the stability of sandy slopes under rainfall conditions. Geomorphology 2021, 395, 107966. [Google Scholar] [CrossRef]
- Theocharis, A.I.; Zevgolis, I.E.; Deliveris, A.V.; Karametou, R.; Koukouzas, N.C. From Climate Conditions to the Numerical Slope Stability Analysis of Surface Coal Mines. Appl. Sci. 2022, 12, 1538. [Google Scholar] [CrossRef]
- Zhang, C.B.; Li, D.R.; Jiang, J.; Zhou, X.; Niu, X.Y.; Wei, Y.; Ma, J.J. Evaluating the potential slope plants using new method for soil reinforcement program. Catena 2019, 180, 346–354. [Google Scholar] [CrossRef]
- Liu, C.G.; Bi, H.J.; Wang, D.; Li, X.N. Stability Reinforcement of Slopes Using Vegetation Considering the Existence of Soft Rock. Appl. Sci. 2021, 11, 9228. [Google Scholar] [CrossRef]
- Ashpiz, E.S.; Lanis, A.L.; Razuvaev, D.A.; Lomov, P.O. Designing and Explanation of Reinforcement of Operated High Fills with the Injection of Solidifying Solutions. Transp. Res. Procedia 2022, 61, 614–620. [Google Scholar] [CrossRef]
- Sikora, P.; Wesołowski, M. Numerical assessment of the influence of former mining activities and plasticity of rock mass on deformations of terrain surface. Int. J. Min. Sci. Technol. 2021, 31, 209–214. [Google Scholar] [CrossRef]
- Xie, C.Y.; Hoang, N.; Bui, X.-N.; Van-Thieu, N.; Zhou, J. Predicting roof displacement of roadways in underground coal mines using adaptive neuro-fuzzy inference system optimized by various physics-based optimization algorithms. J. Rock Mech. Geotech. Eng. 2021, 13, 1452–1465. [Google Scholar] [CrossRef]
- He, J.S. Combined Application of Wide-Field Electromagnetic Method and Flow Field Fitting Method for High-Resolution Exploration: A Case Study of the Anjialing No. 1 Coal Mine. Engineering 2018, 4, 667–675. [Google Scholar] [CrossRef]
- Zhang, S.K.; Zhang, X.D.; Li, Y.J. Old goaf detection and verification techniques under highway. J. Cent. South Univ. Sci. Technol. 2015, 46, 3361–3367. [Google Scholar]
- Zhao, X.H.; Liu, C.Y.; Zuo, L.M.; Wang, L.; Zhu, Q.; Liu, Y.C.; Zhou, B.Y. Synthesis and characterization of fly ash geopolymer paste for goaf backfill: Reuse of soda residue. J. Clean. Prod. 2020, 260, 121045. [Google Scholar] [CrossRef]
- Yao, Y.C.; Yuan, B.Y. Study and Analysis of the Key Technology of High Speed Railway Subgrade in Complex Goaf. J. Railw. Eng. Soc. 2021, 38, 47–52. [Google Scholar]
- Wang, K.; Feng, G.R.; Bai, J.W.; Guo, J.; Shi, X.D.; Cui, B.Q.; Song, C. Dynamic behaviour and failure mechanism of coal subjected to coupled water-static-dynamic loads. Soil Dyn. Earthq. Eng. 2022, 153, 107084. [Google Scholar] [CrossRef]
- Orlecka-Sikora, B.; Lasocki, S.; Lizurek, G.; Rudzinski, L. Response of seismic activity in mines to the stress changes due to mining induced strong seismic events. Int. J. Rock Mech. Min. Sci. 2012, 53, 151–158. [Google Scholar] [CrossRef]
- Xie, L.K.; Xiong, D.Y.; Yang, T.H.; Wan, C.C.; Hu, J.J. Analysis and treatment of hidden goaf disaster under slope of open pit. Chin. J. Nonferrous. Met. 2020, 30, 2503–2512. [Google Scholar]
- Xu, M.B.; Xia, A.X. Numerical Simulation for the Influence of Goaf on the Slope Stability. Min. Res. Dev. 2016, 36, 50–54. [Google Scholar]
- Li, W.; Ren, P.; Li, Q.Y.; Guo, X.F. Study on instability mechanism of red clay slope under the influence of goaf. Saf. Coal Mines 2021, 52, 237–240. [Google Scholar]
- Zhao, B.; Zhao, Y.Q.; Wang, J.M.; Ren, Z.D.; Du, J.F. Goaf slope risk evaluation model based on improved TOPSIS method. J. Nat. Disasters 2020, 29, 164–171. [Google Scholar]
- Zhang, Y.J.; Chen, G.P.; Li, Q.L.; Sun, D.; Li, B.; Wan, Y. Study on Slope Instability Process under the Effect of Multistage Mining Activities. Met. Mine 2015, 10, 156–162. [Google Scholar]
- Zhang, L.Y.; Zheng, Y.R.; Zhao, S.Y.; Shi, W.M. Study on the accuracy of the finite element strength reduction coefficient method for calculating the safety factor of soil slope stability. J. Water Conserv. 2003, 01, 21–27. [Google Scholar]
- JTG-D30-2015; Code for Design of Highway Subgrade. People’s Communications Publishing Press: Beijing, China, 2015.
- Yang, D. Experimental Design and Analysis; China Agricultural Publishing House: Beijing, China, 2002; p. 171. [Google Scholar]
- Ruggiero, A.; Tricarico, L.; Olabi, A.G.; Benyounis, K.Y. Weld-bead profile and costs optimisation of the CO2 dissimilar laser welding process of low carbon steel and austenitic steel AISI316. Opt. Laser Technol. 2011, 43, 82–90. [Google Scholar] [CrossRef]
Rock Stratum | Modulus of Elasticity (GPa) | Poisson’s Ratio | Unit Weight (KN/m3) | Cohesion (kPa) | Internal Friction Angle (°) | |||
---|---|---|---|---|---|---|---|---|
Normal | Rain | Normal | Rain | Normal | Rain | |||
Fully weathered sandstone | 5 | 0.25 | 23 | 24 | 22 | 20 | 15 | 14 |
Coal seam | 11 | 0.3 | 19 | 20 | 11 | 9 | 16 | 14.5 |
Strongly weathered sandstone | 23 | 0.25 | 24 | 25 | 35 | 32 | 25 | 23.5 |
Moderately weathered sandstone | 30 | 0.25 | 24 | 25 | 80 | 78 | 39 | 38 |
Model 1 | Model 2 | Model 3 | Model 4 | |
---|---|---|---|---|
Boundary range (m) | X = 70,Y = 35 | X = 80,Y = 40 | X = 90,Y = 45 | X = 100,Y = 50 |
Model 1 | Model 2 | Model 3 | Model 4 | |
---|---|---|---|---|
Slope grid sizes (m) | 2 | 1 | 0.5 | 0.25 |
Model 1 | Model 2 | Model 3 | Model 4 | |
---|---|---|---|---|
Moderately weathered sandstone grid sizes (m) | 6 | 3 | 1.5 | 0.75 |
Model 1 | Model 2 | |
---|---|---|
Bottom constraint condition | normal constraint | fixed constraint |
Model | Boundary Range | Slope Grid Size | Moderately Weathered Sandstone Grid Size | Bottom Constraint Condition |
---|---|---|---|---|
Model 1 | 1.05 | 1.17 | 1.10 | 1.10 |
Model 2 | 1.08 | 1.13 | 1.10 | 1.10 |
Model 3 | 1.10 | 1.10 | 1.10 | |
Model 4 | 1.10 | 1.10 | 1.10 |
Simulation | Actual Working Conditions | |
---|---|---|
Slope stability | post-rainfall instability and collapse | post-rainfall instability and collapse |
Sliding surface | coal seam | coal seam |
Factor | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
H (m) | 2.5 | 4 | 5.5 | 7 | 8.5 | 10 | 11.5 |
W (m) | 2.0 | 3.5 | 5.0 | 6.5 | 8.0 | 9.5 | 11.0 |
i (°) | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
T (m) | 0.5 | 1.0 | 1.5 | 2 | 2.5 | 3 | 3.5 |
S (m) | −15 | −10 | −5 | 0 | 5 | 10 | 15 |
R | 5 | 10 | 15 | 20 | 25 | 30 | 35 |
C (kPa) | 7 | 9 | 11 | 13 | 15 | 17 | 19 |
(°) | 14 | 16 | 18 | 20 | 22 | 24 | 26 |
α/(°) | −15 | −12.5 | −10.0 | −7.5 | −5.0 | −2.5 | 0.0 |
Factor | Level | ||
---|---|---|---|
1 | 2 | 3 | |
H (m) | 5.5 | 8.5 | 11.5 |
W (m) | 2 | 6.5 | 11 |
i (°) | 30 | 45 | 60 |
T (m) | 0.5 | 2 | 3.5 |
R | 5 | 10 | 15 |
C (kPa) | 7 | 13 | 19 |
(°) | 14 | 20 | 26 |
α (°) | −15 | −7.5 | 0 |
H | W | i | T | R | c | α | Simulation Result | ||
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.61 |
2 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 2.10 |
3 | 1 | 1 | 1 | 3 | 3 | 3 | 2 | 2 | 1.87 |
4 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 1.29 |
5 | 1 | 2 | 3 | 2 | 3 | 1 | 3 | 1 | 1.05 |
6 | 1 | 2 | 3 | 3 | 1 | 2 | 2 | 3 | 1.12 |
7 | 1 | 3 | 2 | 1 | 3 | 2 | 1 | 3 | 1.10 |
8 | 1 | 3 | 2 | 2 | 1 | 3 | 3 | 2 | 1.20 |
9 | 1 | 3 | 2 | 3 | 2 | 1 | 2 | 1 | 0.69 |
10 | 2 | 1 | 3 | 1 | 3 | 2 | 3 | 2 | 1.58 |
11 | 2 | 1 | 3 | 2 | 1 | 3 | 2 | 1 | 1.31 |
12 | 2 | 1 | 3 | 3 | 2 | 1 | 1 | 3 | 1.03 |
13 | 2 | 2 | 2 | 1 | 1 | 1 | 3 | 3 | 1.35 |
14 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1.12 |
15 | 2 | 2 | 2 | 3 | 3 | 3 | 1 | 1 | 0.91 |
16 | 2 | 3 | 1 | 1 | 2 | 3 | 3 | 1 | 1.20 |
17 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 0.92 |
18 | 2 | 3 | 1 | 3 | 1 | 2 | 1 | 2 | 0.74 |
19 | 3 | 1 | 2 | 1 | 2 | 3 | 2 | 3 | 1.60 |
20 | 3 | 1 | 2 | 2 | 3 | 1 | 1 | 2 | 0.99 |
21 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 1.08 |
22 | 3 | 2 | 1 | 1 | 3 | 2 | 2 | 1 | 1.07 |
23 | 3 | 2 | 1 | 2 | 1 | 3 | 1 | 3 | 1.14 |
24 | 3 | 2 | 1 | 3 | 2 | 1 | 3 | 2 | 0.95 |
25 | 3 | 3 | 3 | 1 | 1 | 1 | 2 | 2 | 0.54 |
26 | 3 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | 0.38 |
27 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 0.75 |
Factor | ||||||||
---|---|---|---|---|---|---|---|---|
H | W | i | T | R | c | α | ||
12.03 | 13.17 | 11.60 | 11.34 | 10.09 | 9.13 | 9.19 | 9.30 | |
10.16 | 10.00 | 10.04 | 10.21 | 10.36 | 10.29 | 10.24 | 10.28 | |
8.50 | 7.52 | 9.05 | 9.14 | 10.24 | 11.27 | 11.26 | 11.11 | |
Average 1 | 4.01 | 4.39 | 3.87 | 3.78 | 3.36 | 3.04 | 3.06 | 3.10 |
Average 2 | 3.39 | 3.33 | 3.35 | 3.40 | 3.45 | 3.43 | 3.41 | 3.43 |
Average 3 | 2.83 | 2.51 | 3.02 | 3.05 | 3.41 | 3.76 | 3.75 | 3.70 |
Range | −1.18 | −1.88 | −0.85 | −0.73 | 0.05 | 0.71 | 0.69 | 0.60 |
Range order | 2 | 1 | 3 | 4 | 8 | 5 | 6 | 7 |
Variance Source | Mean Square | Degrees of Freedom | Sum of Squares | F Value | p Value |
---|---|---|---|---|---|
H | 0.368 | 2 | 0.737 | 104.751 | <0.0001 |
W | 0.863 | 2 | 1.726 | 245.375 | <0.0001 |
i | 0.177 | 2 | 0.354 | 50.375 | <0.0001 |
T | 0.128 | 2 | 0.257 | 36.522 | <0.0001 |
R | 0.001 | 2 | 0.003 | 0.409 | 0.675 |
c | 0.121 | 2 | 0.241 | 34.298 | <0.0001 |
0.126 | 2 | 0.252 | 35.865 | <0.0001 | |
α | 0.082 | 2 | 0.164 | 23.259 | <0.0001 |
Residual | 0.004 | 10 | 0.035 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, C.; Du, C.; Zu, F.; Gao, J. Factors Influencing the Stability of a Slope Containing a Coal Seam in a Goaf. Appl. Sci. 2022, 12, 11699. https://doi.org/10.3390/app122211699
Han C, Du C, Zu F, Gao J. Factors Influencing the Stability of a Slope Containing a Coal Seam in a Goaf. Applied Sciences. 2022; 12(22):11699. https://doi.org/10.3390/app122211699
Chicago/Turabian StyleHan, Chunpeng, Chao Du, Fajin Zu, and Jianhui Gao. 2022. "Factors Influencing the Stability of a Slope Containing a Coal Seam in a Goaf" Applied Sciences 12, no. 22: 11699. https://doi.org/10.3390/app122211699
APA StyleHan, C., Du, C., Zu, F., & Gao, J. (2022). Factors Influencing the Stability of a Slope Containing a Coal Seam in a Goaf. Applied Sciences, 12(22), 11699. https://doi.org/10.3390/app122211699