RFID Authentication System Based on User Biometric Information †
<p>Illustration of RF-Ubia. The user touches the surface of the tag array to enter the password, and the reader captures the signal integrating the user’s biometric characteristics.</p> "> Figure 2
<p>(<b>Left</b>) Single tag. (<b>Right</b>) Two tags are coupling.</p> "> Figure 3
<p>Work flow of the RF-Ubia system.</p> "> Figure 4
<p>The ’×’ symbols circled in red represent data with period wrap or phase inverted <math display="inline"><semantics> <mi mathvariant="sans-serif">π</mi> </semantics></math>, i.e. abnormal data, while the red ’×’ symbols represent normal data after pre-processing. The figure above shows the wrapped phase. The figure below shows the inverted <math display="inline"><semantics> <mi mathvariant="sans-serif">π</mi> </semantics></math> phenomenon.</p> "> Figure 5
<p>The dashed rectangle represents the window of abnormal phase signal, and the red rectangle represents the feature window. The line between the two blue circles indicates that these windows are more stable feature information. After phase unwrapping, some phase values will exceed the range of 0 to <math display="inline"><semantics> <mrow> <mn>2</mn> <mi mathvariant="sans-serif">π</mi> </mrow> </semantics></math>.</p> "> Figure 6
<p>Experimental environment for testing RF-Ubia system.</p> "> Figure 7
<p>The TPR of RF-Ubia’s password identification.</p> "> Figure 8
<p>The FPR of RF-Ubia’s user validation when multiple users use the same password with a length of 2.</p> "> Figure 9
<p>Description of the touch time schematic. The tag signal obtained from the user’s touch contains time information, recording the user’s touch at each moment.</p> "> Figure 10
<p>Authentication scheme based on users’ physiological and behavioral characteristics. The start and end time of each user touch on the tag can be obtained.</p> "> Figure 11
<p>The effect of the length of the specified tag sequence on performance.</p> "> Figure 12
<p>The effect of moving step size of the sliding window on performance.</p> "> Figure 13
<p>Performance of the system using different classification models.</p> ">
Abstract
:1. Introduction
- We propose a low-cost simple user authentication method called RF-Ubia, which allows users to effectively resist password theft even with simple passwords.
- We propose an extension of the RF-Ubia system that fuses user impedance and behavioral features, allowing users to authenticate users even if they forget their passwords, and ensures security that is largely immune to environmental interference, achieving an average recognition accuracy of 0.94. We improve the traditional anomaly detection and feature extraction algorithms to obtain more fine-grained feature information to improve accuracy. We used Random Forest in Wake to classify, and RF-Ubia was able to achieve an average recognition accuracy of 0.96 while existing work based on template matching or convolutional neural networks (CNN) was below 0.92 under the same conditions.
2. Related Work
3. Design Background and Overview
3.1. Passive Tag
3.2. Tag Coupling
3.2.1. Backscatter Coupling
3.2.2. Inductive Coupling
3.3. System Architecture
4. System Design
4.1. Signal Collection
4.2. Data Preprocessing
4.3. Feature Extraction
4.4. Authentication
4.5. Experiment and Evaluation
5. Extension of Authentication System
5.1. System Design
5.2. Experiment and Evaluation
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Yin, J.; Liu, Y.; Zhang, S.; Guo, S.; Wang, K. Vital Signs Monitoring with RFID: Opportunities and Challenges. IEEE Netw. 2019, 33, 126–132. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.; Liu, Y.; Ding, B.; Guo, S.; Wang, J. Accurate Respiration Monitoring for Mobile Users With Commercial RFID Devices. IEEE J. Sel. Areas Commun. 2021, 39, 513–525. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, P.; Xiong, J.; Feng, Y.; Li, X. TagRay: Contactless Sensing and Tracking of Mobile Objects using COTS RFID Devices. In Proceedings of the 39th IEEE Conference on Computer Communications, INFOCOM 2020, Beijing, China, 27–30 April 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 307–316. [Google Scholar]
- Han, J.; Ding, H.; Qian, C.; Xi, W.; Wang, Z.; Jiang, Z.; Shangguan, L.; Zhao, J. CBID: A Customer Behavior Identification System Using Passive Tags. IEEE/ACM Trans. Netw. 2016, 24, 2885–2898. [Google Scholar] [CrossRef]
- Pradhan, S.; Chai, E.; Sundaresan, K.; Qiu, L.; Khojastepour, M.A.; Rangarajan, S. RIO: A Pervasive RFID-based Touch Gesture Interface. In Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking, MobiCom 2017, Snowbird, UT, USA, 16–20 October 2017; ACM: New York, NY, USA, 2017; pp. 261–274. [Google Scholar]
- Wang, C.; Xie, L.; Wang, W.; Chen, Y.; Bu, Y.; Lu, S. RF-ECG: Heart Rate Variability Assessment Based on COTS RFID Tag Array. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 85:1–85:26. [Google Scholar] [CrossRef]
- Wang, C.; Xie, L.; Zhang, K.; Wang, W.; Bu, Y.; Lu, S. Spin-Antenna: 3D Motion Tracking for Tag Array Labeled Objects via Spinning Antenna. In Proceedings of the 2019 IEEE Conference on Computer Communications, INFOCOM 2019, Paris, France, 29 April–2 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 865–873. [Google Scholar]
- Wang, G.; Cai, H.; Qian, C.; Han, J.; Li, X.; Ding, H.; Zhao, J. Towards Replay-resilient RFID Authentication. In Proceedings of the the 24th Annual International Conference on Mobile Computing and Networking, MobiCom 2018, New Delhi, India, 29 October–2 November 2018; ACM: New York, NY, USA, 2018; pp. 385–399. [Google Scholar]
- Wang, G.; Cai, H.; Qian, C.; Han, J.; Shi, S.; Li, X.; Ding, H.; Xi, W.; Zhao, J. Hu-Fu: Replay-Resilient RFID Authentication. IEEE/ACM Trans. Mob. Comput. 2020, 28, 547–560. [Google Scholar] [CrossRef]
- Zhao, C.; Li, Z.; Liu, T.; Ding, H.; Han, J.; Xi, W.; Gui, R. RF-Mehndi: A Fingertip Profiled RF Identifier. In Proceedings of the 2019 IEEE Conference on Computer Communications, INFOCOM 2019, Paris, France, 29 April–2 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1513–1521. [Google Scholar]
- Feng, H.; Fawaz, K.; Shin, K.G. Continuous Authentication for Voice Assistants. In Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking, MobiCom 2017, Snowbird, UT, USA, 16–20 October 2017; ACM: New York, NY, USA, 2017; pp. 343–355. [Google Scholar]
- Lin, F.; Song, C.; Zhuang, Y.; Xu, W.; Li, C.; Ren, K. Cardiac Scan: A Non-contact and Continuous Heart-based User Authentication System. In Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking, MobiHoc’17, Snowbird, UT, USA, 16–20 October 2017; ACM: New York, NY, USA, 2017; pp. 315–328. [Google Scholar]
- Hu, B.; Zhao, T.; Wang, Y.; Cheng, J.; Howard, R.; Chen, Y.; Wan, H. BioTag: Robust RFID-based continuous user verification using physiological features from respiration. In Proceedings of the 23th International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, MobiHoc’22, Seoul, Republic of Korea, 17–20 October 2022; ACM: New York, NY, USA, 2022; pp. 191–200. [Google Scholar]
- Zhao, T.; Wang, Y.; Liu, J.; Chen, Y.; Cheng, J.; Yu, J. TrueHeart: Continuous Authentication on Wrist-worn Wearables Using PPG-based Biometrics. In Proceedings of the 2020 IEEE Conference on Computer Communications, INFOCOM 2020, Beijing, China, 27–30 April 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 30–39. [Google Scholar]
- Xu, W.; Liu, J.; Zhang, S.; Zheng, Y.; Lin, F.; Han, J.; Xiao, F.; Ren, K. RFace: Anti-Spoofing Facial Authentication Using COTS RFID. In Proceedings of the 2021 IEEE Conference on Computer Communications, INFOCOM 2021, Vancouver, BC, Canada, 10–13 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–10. [Google Scholar]
- Wang, Y.; Zheng, Y. TagBreathe: Monitor Breathing with Commodity RFID Systems. IEEE Trans. Mob. Comput. 2020, 19, 969–981. [Google Scholar] [CrossRef]
- Li, T.; Luo, W.; Mo, Z.; Chen, S. Privacy-preserving RFID authentication based on cryptographical encoding. In Proceedings of the IEEE INFOCOM 2012, Orlando, FL, USA, 25–30 March 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 2174–2182. [Google Scholar]
- Lu, L.; Han, J.; Xiao, R.; Liu, Y. ACTION: Breaking the Privacy Barrier for RFID Systems. In Proceedings of the INFOCOM 2009, 28th IEEE International Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies, Rio de Janeiro, Brazil, 19–25 April 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1953–1961. [Google Scholar]
- Sun, M.; Sakai, K.; Ku, W.; Lai, T.; Vasilakos, A.V. Private and Secure Tag Access for Large-Scale RFID Systems. IEEE Trans. Dependable Secur. Comput. 2016, 13, 657–671. [Google Scholar] [CrossRef]
- Weis, S.A.; Sarma, S.E.; Rivest, R.L.; Engels, D.W. Security and Privacy Aspects of Low-Cost Radio Frequency Identification Systems. In Security in Pervasive Computing; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2802, pp. 201–212. [Google Scholar]
- Yao, Q.; Qi, Y.; Han, J.; Zhao, J.; Li, X.; Liu, Y. Randomizing RFID Private Authentication. In Proceedings of the Seventh Annual IEEE International Conference on Pervasive Computing and Communications, PerCom 2009, Galveston, TX, USA, 9–13 March 2009; IEEE Computer Society: Washington, DC, USA, 2009; pp. 1–10. [Google Scholar]
- Ding, H.; Han, J.; Zhang, Y.; Xiao, F.; Xi, W.; Wang, G.; Jiang, Z. Preventing Unauthorized Access on Passive Tags. In Proceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM 2018, Honolulu, HI, USA, 16–19 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1115–1123. [Google Scholar]
- Ding, H.; Han, J.; Zhao, C.; Wang, G.; Xi, W.; Jiang, Z.; Zhao, J. Arbitrator2.0: Preventing Unauthorized Access on Passive Tags. IEEE Trans. Mob. Comput. 2022, 21, 835–848. [Google Scholar] [CrossRef]
- Han, J.; Qian, C.; Yang, P.; Ma, D.; Jiang, Z.; Xi, W.; Zhao, J. GenePrint: Generic and Accurate Physical-Layer Identification for UHF RFID Tags. IEEE/ACM Trans. Netw. 2016, 24, 846–858. [Google Scholar] [CrossRef]
- Yang, L.; Peng, P.; Dang, F.; Wang, C.; Li, X.; Liu, Y. Anti-counterfeiting via federated RFID tags’ fingerprints and geometric relationships. In Proceedings of the 2015 IEEE Conference on Computer Communications, INFOCOM 2015, Hong Kong, China, 26 April–1 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1966–1974. [Google Scholar]
- Chen, X.; Liu, J.; Wang, X.; Liu, H.; Jiang, D.; Chen, L. Eingerprint: Robust Energy-related Fingerprinting for Passive RFID Tags. In Proceedings of the 17th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2020, Santa Clara, CA, USA, 25–27 February 2020; USENIX Association: Berkeley, CA, USA, 2020; pp. 1101–1113. [Google Scholar]
- Han, J.; Qian, C.; Wang, X.; Ma, D.; Zhao, J.; Xi, W.; Jiang, Z.; Wang, Z. Twins: Device-Free Object Tracking Using Passive Tags. IEEE/ACM Trans. Netw. 2016, 24, 1605–1617. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Chen, Y.; Li, X.; Xiao, C.; Li, M.; Liu, Y. Tagoram: Real-time tracking of mobile RFID tags to high precision using COTS devices. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, MobiCom’14, Maui, HI, USA, 7–11 September 2014; ACM: New York, NY, USA, 2014; pp. 237–248. [Google Scholar]
- Xi, Z.; Liu, X.; Luo, J.; Zhang, S.; Guo, S. Fast and Reliable Dynamic Tag Estimation in Large-Scale RFID Systems. IEEE Internet Things J. 2021, 8, 1651–1661. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Xiao, B.; Bu, K. Flexible and Time-Efficient Tag Scanning with Handheld Readers. IEEE Trans. Mob. Comput. 2016, 15, 840–852. [Google Scholar] [CrossRef]
- Zou, Y.; Xiao, J.; Han, J.; Wu, K.; Li, Y.; Ni, L.M. GRfid: A device-free RFID-based gesture recognition system. IEEE Trans. Mob. Comput. 2017, 16, 381–393. [Google Scholar] [CrossRef]
Parameter Name | Parameter Values |
---|---|
+ 1 | |
1.5 | |
2 | |
m | 4 |
Ours | HuFu [8] | Mehndit [10] | VAuth [11] | Cardiac [12] | |
---|---|---|---|---|---|
Cost | Low | Normal | Low | Higher | Higher |
Anti-interference | Normal | Normal | poor | Normal | poor |
User Friendly | good | Normal | poor | Normal | good |
Accuracy over Time | Normal | Normal | poor | good | Normal |
Security Performance | good | Normal | Limited | Normal | Normal |
Applicability | good | Limited | Normal | Limited | Limited |
Mean Accuracy | 93.8% | 92.6% | 90.6% | 89.2% | 91.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Fu, B.; Peng, N.; Ba, Y.; Liu, X.; Zhang, S. RFID Authentication System Based on User Biometric Information. Appl. Sci. 2022, 12, 12865. https://doi.org/10.3390/app122412865
Huang Y, Fu B, Peng N, Ba Y, Liu X, Zhang S. RFID Authentication System Based on User Biometric Information. Applied Sciences. 2022; 12(24):12865. https://doi.org/10.3390/app122412865
Chicago/Turabian StyleHuang, Yuanmu, Bin Fu, Ningwei Peng, Yanwen Ba, Xuan Liu, and Shigeng Zhang. 2022. "RFID Authentication System Based on User Biometric Information" Applied Sciences 12, no. 24: 12865. https://doi.org/10.3390/app122412865
APA StyleHuang, Y., Fu, B., Peng, N., Ba, Y., Liu, X., & Zhang, S. (2022). RFID Authentication System Based on User Biometric Information. Applied Sciences, 12(24), 12865. https://doi.org/10.3390/app122412865